共查询到20条相似文献,搜索用时 0 毫秒
1.
《Ethology, Ecology and Evolution》2012,24(4):373-378
According to the hymenopteran pedigree, gynes have a higher coefficient of relatedness with their sons (1/2) than with brothers (1/4). When suddenly confronted with brothers at birth, such females, which can presumably often lay unfertilized eggs, may show fratricidal behaviour in order to grow their own sons. Such a behaviour is assumed to be rewarding if (i) the gynes remain in nest for a sufficiently long time, and (ii) the production of sexuals is continuous during the same period of time. One such case of fratricidal behaviour is described in ants, and, from the literature, at least five cases appear to be known among bees and one possible case among wasps. Many known cases of social insect colonies producing unisexual brood can be interpreted as a mechanism to avoid possible manifestations of such energy-consuming fratricide. 相似文献
2.
Johnstone RA Cant MA Field J 《Proceedings. Biological sciences / The Royal Society》2012,279(1729):787-793
In his famous haplodiploidy hypothesis, W. D. Hamilton proposed that high sister-sister relatedness facilitates the evolution of kin-selected reproductive altruism among Hymenopteran females. Subsequent analyses, however, suggested that haplodiploidy cannot promote altruism unless altruists capitalize on relatedness asymmetries by helping to raise offspring whose sex ratio is more female-biased than the population at large. Here, we show that haplodiploidy is in fact more favourable than is diploidy to the evolution of reproductive altruism on the part of females, provided only that dispersal is male-biased (no sex-ratio bias or active kin discrimination is required). The effect is strong, and applies to the evolution both of sterile female helpers and of helping among breeding females. Moreover, a review of existing data suggests that female philopatry and non-local mating are widespread among nest-building Hymenoptera. We thus conclude that Hamilton was correct in his claim that 'family relationships in the Hymenoptera are potentially very favourable to the evolution of reproductive altruism'. 相似文献
3.
Fjerdingstad EJ Gertsch PJ Keller L 《Evolution; international journal of organic evolution》2002,56(3):553-562
Although multiple mating most likely increases mortality risk for social insect queens and lowers the kin benefits for nonreproductive workers, a significant proportion of hymenopteran queens mate with several males. It has been suggested that queens may mate multiply as a means to manipulate sex ratios to their advantage. Multiple paternity reduces the extreme relatedness value of females for workers, selecting for workers to invest more in males. In populations with female-biased sex ratios, queens heading such male-producing colonies would achieve a higher fitness. We tested this hypothesis in a Swiss and a Swedish population of the ant Lasius niger. There was substantial and consistent variation in queen mating frequency and colony sex allocation within and among populations, but no evidence that workers regulated sex allocation in response to queen mating frequency; the investment in females did not differ among paternity classes. Moreover, population-mean sex ratios were consistently less female biased than expected under worker control and were close to the queen optimum. Queens therefore had no incentive to manipulate sex ratios because their fitness did not depend on the sex ratio of their colony. Thus, we found no evidence that the sex-ratio manipulation theory can explain the evolution and maintenance of multiple mating in L. niger. 相似文献
4.
In annual hymenopteran societies headed by a single outbred queen, paternity (determined by queen mating frequency and sperm use) is the sole variable affecting colony kin structure and is therefore a key predictor of colony reproductive characteristics. Here we investigate paternity and male production in five species of Dolichovespula wasps. Twenty workers from each of 10 colonies of each of five species, 1000 workers in total, were analysed at three DNA microsatellite loci to estimate paternity. To examine the relationship between kin structure and reproductive behaviour, worker ovary activation was assessed by dissection and the maternal origin of adult males was assessed by DNA microsatellites. Effective paternity was low in all species (D. media 1.08, D. maculata 1.0, D. sylvestris 1.15, D. norwegica 1.08 and D. saxonica 1.35), leading to the prediction of queen-worker conflict over male production. In support of this, workers with full-size eggs in their ovaries (four out of five species) and adult males that were workers' sons (all five species) were found in queenright colonies. However, workers were only responsible for a minority of male production (D. media 7.4%, D. maculata 20.9%, D. sylvestris 9.8%, D. norwegica 2.6% and D. saxonica 34.6%) suggesting that the queen maintains considerable reproductive power over the workers. Kin structure and reproductive conflict in Dolichovespula contrast with their sister group Vespula. Dolichovespula is characterized by low paternity, worker reproduction, and queen-worker conflict and Vespula by high paternity, effective worker policing and absence of worker reproduction. The trend revealed by this comparison is as predicted by kin selection theory suggesting that colony kin structure has been pivotal in the evolution of the yellowjacket wasps. 相似文献
5.
Every spring, workers of the Argentine Ant Linepithema humile kill a large proportion of queens within their nests. Although this behaviour inflicts a high energetic cost on the colonies, its biological significance has remained elusive so far. An earlier study showed that the probability of a queen being executed is not related to her weight, fecundity, or age. Here we test the hypothesis that workers collectively eliminate queens to which they are less related, thereby increasing their inclusive fitness. We found no evidence for this hypothesis. Workers of a nest were on average not significantly less related to executed queens than to surviving ones. Moreover, a population genetic analysis revealed that workers were not genetically differentiated between nests. This means that workers of a given nest are equally related to any queen in the population and that there can be no increase in average worker–queen relatedness by selective elimination of queens. Finally, our genetic analyses also showed that, in contrast to workers, queens were significantly genetically differentiated between nests and that there was significant isolation by distance for queens. 相似文献
6.
Heikki Helanterä Patrizia d'Ettorre 《Evolution; international journal of organic evolution》2015,69(2):520-529
Processing of information from the environment, such as assessing group membership in social contexts, is a major determinant of inclusive fitness. For social insects, recognizing brood origin is crucial for inclusive fitness in many contexts, such as social parasitism and kin conflicts within colonies. Whether a recognition signature is informative in kin conflicts depends on the extent of a genetic contribution into the cues. We investigated colony‐ and matriline‐specific variation in egg surface hydrocarbons in seven species of Formica ants. We show that chemical variance is distributed similarly to genetic variation, suggesting a significant genetic contribution to eggs odors in the genus. Significant among matriline components, and significant correlations between chemical and genetic similarity among individuals also indicate kin informative egg odors in several species. We suggest that egg odor surface variation could play a large role in within colony conflicts, and that a comparative method can reveal novel insight into communication of identity. 相似文献
7.
T. Pamminger S. Foitzik D. Metzler P. S. Pennings 《Journal of evolutionary biology》2014,27(11):2443-2456
The evolution of parasite virulence and host defences is affected by population structure. This effect has been confirmed in studies focusing on large spatial scales, whereas the importance of local structure is not well understood. Slavemaking ants are social parasites that exploit workers of another species to rear their offspring. Enslaved workers of the host species Temnothorax longispinosus have been found to exhibit an effective post‐enslavement defence behaviour: enslaved workers were observed killing a large proportion of the parasites’ offspring. As enslaved workers do not reproduce, they gain no direct fitness benefit from this ‘rebellion’ behaviour. However, there may be an indirect benefit: neighbouring host nests that are related to ‘rebel’ nests can benefit from a reduced raiding pressure, as a result of the reduction in parasite nest size due to the enslaved workers’ killing behaviour. We use a simple mathematical model to examine whether the small‐scale population structure of the host species could explain the evolution of this potentially altruistic defence trait against slavemaking ants. We find that this is the case if enslaved host workers are related to nearby host nests. In a population genetic study, we confirm that enslaved workers are, indeed, more closely related to host nests within the raiding range of their resident slavemaker nest, than to host nests outside the raiding range. This small‐scale population structure seems to be a result of polydomy (e.g. the occupation of several nests in close proximity by a single colony) and could have enabled the evolution of ‘rebellion’ by kin selection. 相似文献
8.
Sex allocation in colonies of eusocial Hymenoptera is one of the best studied social conflicts. We outline a framework for analysing conflict outcome through power and the costs of manipulation and suggest that the conflict will often be unresolved because both major parties of interest, the queen and the workers, should manipulate allocation even at considerable costs to the colony. We suggest future work for analysing power in the conflict between queen and workers over sex allocation and discuss the extent of male power. 相似文献
9.
Claire E. Montague Benjamin P. Oldroyd 《Evolution; international journal of organic evolution》1998,52(5):1408-1415
Normally, worker honey bees (Apis mellifera) only lay eggs when their colony is queenless. When a queen is present, worker egg-laying is controlled by mutual “policing” behavior in which any rare worker-laid eggs are eaten by other workers. However, an extremely rare behavioral phenotype arises in which workers develop functional ovaries and lay large numbers of eggs despite the presence of the queen. In this study, microsatellite analysis was used to determine the maternity of drones produced in such a colony under various conditions. One subfamily was found to account for about 90% of drone progeny, with the remainder being laid by other subfamilies or the queen. No evidence of queen policing was found. After a one-month period of extreme worker oviposition in spring, the colony studied reverted to normal behavior and showed no signs of worker oviposition. However, upon removal of the queen, workers commenced oviposition very quickly. Significantly, the subfamily that laid eggs when the queen was present did not contribute to the drone production when the colony was queenless. However, another subfamily contributed a disproportionately large number of drones. The frequency of worker oviposition appears to be determined by opposing selective forces. Individual bees benefit from personal reproduction, whereas other bees and the colony are disadvantaged by it. Thus a behavioral polymorphism can be maintained in the population in which some workers can escape worker policing, with balancing selection at the colony level to detect and eliminate these mutations. 相似文献
10.
11.
In social insects, colonies may contain multiple reproductively active queens. This leads to potential conflicts over the apportionment of brood maternity, especially with respect to the production of reproductive offspring. We investigated reproductive partitioning in offspring females (gynes) and workers in the ant Formica fusca, and combined this information with data on the genetic returns gained by workers. Our results provide the first evidence that differential reproductive partitioning among breeders can enhance the inclusive fitness returns for sterile individuals that tend non-descendant offspring. Two aspects of reproductive partitioning contribute to this outcome. First, significantly fewer mother queens contribute to gyne (new reproductive females) than to worker brood, such that relatedness increases from worker to gyne brood. Second, and more importantly, adult workers were significantly more related to the reproductive brood raised by the colony, than to the contemporary worker brood. Thus, the observed breeder shift leads to genetic benefits for the adult workers that tend the brood. Our results also have repercussions for genetic population analyses. Given the observed pattern of reproductive partitioning, estimates of effective population size based on worker and gyne samples are not interchangeable. 相似文献
12.
Lia Thomson;Daniel Priego Espinosa;Yaniv Brandvain;Jeremy Van Cleve; 《Ecology and evolution》2024,14(2):e10980
Much research on the evolution of altruism via kin selection, group selection, and reciprocity focuses on the role of a single locus or quantitative trait. Very few studies have explored how linked selection, or selection at loci neighboring an altruism locus, impacts the evolution of altruism. While linked selection can decrease the efficacy of selection at neighboring loci, it might have other effects including promoting selection for altruism by increasing relatedness in regions of low recombination. Here, we used population genetic simulations to study how negative selection at linked loci, or background selection, affects the evolution of altruism. When altruism occurs between full siblings, we found that background selection interfered with selection on the altruistic allele, increasing its fixation probability when the altruistic allele was disfavored and reducing its fixation when the allele was favored. In other words, background selection has the same effect on altruistic genes in family-structured populations as it does on other, nonsocial, genes. This contrasts with prior research showing that linked selective sweeps can favor the evolution of cooperation, and we discuss possibilities for resolving these contrasting results. 相似文献
13.
S. A. FRANK 《Journal of evolutionary biology》2010,23(1):32-39
Individual success in group‐structured populations has two components. First, an individual gains by outcompeting its neighbours for local resources. Second, an individual's share of group success must be weighted by the total productivity of the group. The essence of sociality arises from the tension between selfish gains against neighbours and the associated loss that selfishness imposes by degrading the efficiency of the group. Without some force to modulate selfishness, the natural tendencies of self interest typically degrade group performance to the detriment of all. This is the tragedy of the commons. Kin selection provides the most widely discussed way in which the tragedy is overcome in biology. Kin selection arises from behavioural associations within groups caused either by genetical kinship or by other processes that correlate the behaviours of group members. Here, I emphasize demography as a second factor that may also modulate the tragedy of the commons and favour cooperative integration of groups. Each act of selfishness or cooperation in a group often influences group survival and fecundity over many subsequent generations. For example, a cooperative act early in the growth cycle of a colony may enhance the future size and survival of the colony. This time‐dependent benefit can greatly increase the degree of cooperation favoured by natural selection, providing another way in which to overcome the tragedy of the commons and enhance the integration of group behaviour. I conclude that analyses of sociality must account for both the behavioural associations of kin selection theory and the demographic consequences of life history theory. 相似文献
14.
J. S.
Van ZWEDEN J. B. BRASK J. H. CHRISTENSEN J. J. BOOMSMA T. A. LINKSVAYER P. d’ETTORRE 《Journal of evolutionary biology》2010,23(7):1498-1508
The evolution of sociality is facilitated by the recognition of close kin, but if kin recognition is too accurate, nepotistic behaviour within societies can dissolve social cohesion. In social insects, cuticular hydrocarbons act as nestmate recognition cues and are usually mixed among colony members to create a Gestalt odour. Although earlier studies have established that hydrocarbon profiles are influenced by heritable factors, transfer among nestmates and additional environmental factors, no studies have quantified these relative contributions for separate compounds. Here, we use the ant Formica rufibarbis in a cross‐fostering design to test the degree to which hydrocarbons are heritably synthesized by young workers and transferred by their foster workers. Bioassays show that nestmate recognition has a significant heritable component. Multivariate quantitative analyses based on 38 hydrocarbons reveal that a subset of branched alkanes are heritably synthesized, but that these are also extensively transferred among nestmates. In contrast, especially linear alkanes are less heritable and little transferred; these are therefore unlikely to act as cues that allow within‐colony nepotistic discrimination or as nestmate recognition cues. These results indicate that heritable compounds are suitable for establishing a genetic Gestalt for efficient nestmate recognition, but that recognition cues within colonies are insufficiently distinct to allow nepotistic kin discrimination. 相似文献
15.
Ross KG 《Molecular ecology》2001,10(2):265-284
Molecular genetic studies of group kin composition and local genetic structure in social organisms are becoming increasingly common. A conceptual and mathematical framework that links attributes of the breeding system to group composition and genetic structure is presented here, and recent empirical studies are reviewed in the context of this framework. Breeding system properties, including the number of breeders in a social group, their genetic relatedness, and skew in their parentage, determine group composition and the distribution of genetic variation within and between social units. This group genetic structure in turn influences the opportunities for conflict and cooperation to evolve within groups and for selection to occur among groups or clusters of groups. Thus, molecular studies of social groups provide the starting point for analyses of the selective forces involved in social evolution, as well as for analyses of other fundamental evolutionary problems related to sex allocation, reproductive skew, life history evolution, and the nature of selection in hierarchically structured populations. The framework presented here provides a standard system for interpreting and integrating genetic and natural history data from social organisms for application to a broad range of evolutionary questions. 相似文献
16.
Jim Moore 《International journal of primatology》1984,5(6):537-589
Intergroup transfer by males is nearly universal among social primates. Furthermore, among the most frequently studied monkeys-savanna baboons and Japanese and rhesus macaques—females typically remain in their natal groups, so troops are composed of related matrilines. These facts strongly support two major theories: (l) that kin selection is a powerful force in patterning sociality (if one is to live in a group, one should prefer a group of one’s relatives); and (2) that the ultimate explanation for intergroup transfer is the avoidance of inbreeding depression (though both sexes would prefer to live with kin, one sex has to disperse to avoid inbreeding and for a variety of reasons the losing sex is generally male). Substantial rates of transfer by females in social species with routine male transfer would cast doubt on both ideas. In fact, evidence reviewed here indicates that female transfer is not unusual and among folivorous primates (e.g., Alouatta,the Colobinae) it seems to be routine. In addition to casting doubt on the demographic significance of inbreeding avoidance and favoring mutualistic and/or game theory interpretations of behavior over nepotistic ones, this finding supports the hypothesis that predator detection is the primary selective pressure favoring sociality for many primates. Finally, while female bonding [sensuWrangham, R. W. (1980), Behaviour75:262–299] among primates appears to be less common than generally believed, the observed correlation between female transfer and morphological adaptations to folivory provides empirical support for Wrangham’s model for the evolution of female-bonded groups. 相似文献
17.
S. A. Frank 《Journal of evolutionary biology》2010,23(6):1245-1250
An individually costly act that benefits all group members is a public good. Natural selection favours individual contribution to public goods only when some benefit to the individual offsets the cost of contribution. Problems of sex ratio, parasite virulence, microbial metabolism, punishment of noncooperators, and nearly all aspects of sociality have been analysed as public goods shaped by kin and group selection. Here, I develop two general aspects of the public goods problem that have received relatively little attention. First, variation in individual resources favours selfish individuals to vary their allocation to public goods. Those individuals better endowed contribute their excess resources to public benefit, whereas those individuals with fewer resources contribute less to the public good. Thus, purely selfish behaviour causes individuals to stratify into upper classes that contribute greatly to public benefit and social cohesion and to lower classes that contribute little to the public good. Second, if group success absolutely requires production of the public good, then the pressure favouring production is relatively high. By contrast, if group success depends weakly on the public good, then the pressure favouring production is relatively weak. Stated in this way, it is obvious that the role of baseline success is important. However, discussions of public goods problems sometimes fail to emphasize this point sufficiently. The models here suggest simple tests for the roles of resource variation and baseline success. Given the widespread importance of public goods, better models and tests would greatly deepen our understanding of many processes in biology and sociality. 相似文献
18.
Frank SA 《Evolution; international journal of organic evolution》2003,57(4):693-705
Abstract Repression of competition within groups joins kin selection as the second major force in the history of life shaping the evolution of cooperation. When opportunities for competition against neighbors are limited within groups, individuals can increase their own success only by enhancing the efficiency and productivity of their group. Thus, characters that repress competition within groups promote cooperation and enhance group success. Leigh first expressed this idea in the context of fair meiosis, in which each chromosome has an equal chance of transmission via gametes. Randomized success means that each part of the genome can increase its own success only by enhancing the total number of progeny and thus increasing the success of the group. Alexander used this insight about repression of competition in fair meiosis to develop his theories for the evolution of human sociality. Alexander argued that human social structures spread when they repress competition within groups and promote successful group-against-group competition. Buss introduced a new example with his suggestion that metazoan success depended on repression of competition between cellular lineages. Maynard Smith synthesized different lines of thought on repression of competition. In this paper, I develop simple mathematical models to illustrate the main processes by which repression of competition evolves. With the concepts made clear, I then explain the history of the idea. I finish by summarizing many new developments in this subject and the most promising lines for future study. 相似文献
19.
Models of social conflict in animal societies generally assume that within-group conflict reduces the value of a communal resource. For many animals, however, the primary cost of conflict is increased mortality. We develop a simple inclusive fitness model of social conflict that takes this cost into account. We show that longevity substantially reduces the level of within-group conflict, which can lead to the evolution of peaceful animal societies if relatedness among group members is high. By contrast, peaceful outcomes are never possible in models where the primary cost of social conflict is resource depletion. Incorporating mortality costs into models of social conflict can explain why many animal societies are so remarkably peaceful despite great potential for conflict. 相似文献
20.
Grant C. McDonald Damien R. Farine Kevin R. Foster Jay M. Biernaskie 《Evolution; international journal of organic evolution》2017,71(11):2693-2702
A central problem in evolutionary biology is to determine whether and how social interactions contribute to natural selection. A key method for phenotypic data is social selection analysis, in which fitness effects from social partners contribute to selection only when there is a correlation between the traits of individuals and their social partners (nonrandom phenotypic assortment). However, there are inconsistencies in the use of social selection that center around the measurement of phenotypic assortment. Here, we use data analysis and simulations to resolve these inconsistencies, showing that: (i) not all measures of assortment are suitable for social selection analysis; and (ii) the interpretation of assortment, and how to detect nonrandom assortment, will depend on the scale at which it is measured. We discuss links to kin selection theory and provide a practical guide for the social selection approach. 相似文献