首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biological invasions are a major driver of global change, for which models can attribute causes, assess impacts and guide management. However, invasion models typically focus on spread from known introduction points or non‐native distributions and ignore the transport processes by which species arrive. Here, we developed a simulation model to understand and describe plant invasion at a continental scale, integrating repeated transport through trade pathways, unintentional release events and the population dynamics and local anthropogenic dispersal that drive subsequent spread. We used the model to simulate the invasion of Europe by common ragweed (Ambrosia artemisiifolia), a globally invasive plant that causes serious harm as an aeroallergen and crop weed. Simulations starting in 1950 accurately reproduced ragweed's current distribution, including the presence of records in climatically unsuitable areas as a result of repeated introduction. Furthermore, the model outputs were strongly correlated with spatial and temporal patterns of ragweed pollen concentrations, which are fully independent of the calibration data. The model suggests that recent trends for warmer summers and increased volumes of international trade have accelerated the ragweed invasion. For the latter, long distance dispersal because of trade within the invaded continent is highlighted as a key invasion process, in addition to import from the native range. Biosecurity simulations, whereby transport through trade pathways is halted, showed that effective control is only achieved by early action targeting all relevant pathways. We conclude that invasion models would benefit from integrating introduction processes (transport and release) with spread dynamics, to better represent propagule pressure from native sources as well as mechanisms for long‐distance dispersal within invaded continents. Ultimately, such integration may facilitate better prediction of spatial and temporal variation in invasion risk and provide useful guidance for management strategies to reduce the impacts of invasion.  相似文献   

2.
The match between the environmental conditions of an introduction area and the preferences of an introduced species is the first prerequisite for establishment. Yet, introduction areas are usually landscapes, i.e. heterogeneous sets of habitats that are more or less favourable to the introduced species. Because individuals are able to disperse after their introduction, the quality of the habitat surrounding the introduction site is as critical to the persistence of introduced populations as the quality of the introduction site itself. Moreover, demographic mechanisms such as Allee effects or dispersal mortality can hamper dispersal and affect spread across the landscape, in interaction with the spatial distribution of favourable habitat patches. In this study, we investigate the impact of the spatial distribution of heterogeneous quality habitats on establishment and early spread. First, we simulated introductions in one‐dimensional landscapes for different dispersal rates and either dispersal mortality or Allee effects. The landscapes differed by the distribution of favourable and less favourable habitats, which were either clustered into few large aggregates of the same quality or scattered into multiple smaller ones. Second, we tested the predictions of simulations by performing experimental introductions of hymenopteran parasitoids (Trichogramma chilonis) in ‘clustered’ and ‘scattered’ microcosm landscapes. Results highlighted two impacts of the clustering of favourable habitat: by decreasing the risks of dispersal from the introduction site to unfavourable habitat early during the invasion, it increased establishment success. However, by increasing the distance between favourable habitat patches, it also hindered the subsequent spread of introduced species over larger areas.  相似文献   

3.
1. Predicting spread of non-indigenous species requires an understanding of where propagules are being transported, and whether these propagules can survive in the novel habitat and successfully integrate into the recipient community. In this study, we model potential spread of invading Cabomba caroliniana in Ontario, Canada, using a combination of passive and active dispersal models coupled with an environmental suitability model, thereby considering the first two stages of the invasion process.
2. Measures of propagule pressure incorporated both human-mediated dispersal via trailered boats, and advective flow from invaded to non-invaded systems, while habitat suitability was forecasted by combining native and global data sets and using boosted regression trees.
3. Risk of invasion differed depending on the combination of approaches used and the time period considered. Three lakes appear to be at greatest risk owing to a combination of high boater and water movement from invaded sources, and high environmental suitability. The best predictors of lake suitability were pH, mean lake temperature and dissolved calcium concentration. Hundreds of lakes in Ontario may be suitable for establishment of Cabomba , highlighting the need for vector management.  相似文献   

4.
Alien species that are desirable and commercially important in parts of the landscape, but damaging invaders in other parts, present a special challenge for managers, planners, and policy-makers. Objective methods are needed for identifying areas where control measures should be focussed. We analysed the distribution of forestry plantations and invasive (self-sown) stands of Acacia mearnsii and Pinus spp. in South Africa; these two taxa account for 60% of the area under commercial plantations and 54% of the area invaded by alien trees and shrubs. The distribution of commercial forestry plantations and invasive stands of these taxa were mapped and the data was digitised and stored as Geographic Information System (GIS) (Arc/Info) layers. A series of environmental parameters were derived from GIS layers of climate, topography, geology, land use, and natural vegetation. The current distribution of the two taxa was subdivided into three groups according to the degree of invasion, planting history and the precision of the data collection. We used regression-tree analysis to relate, for each taxon, the distribution of invasive stands with environmental variables, and to derive habitat suitability maps for future invasion. The current distribution of invasive stands in South Africa was largely influenced by climatic factors. At a national scale, the distribution of large commercial plantations was a poor predictor of areas invaded by both taxa. Using environmental factors identified by the regression trees, we found that 6.6% and 9.8% of natural habitats currently not invaded and untransformed by urbanisation or agriculture are suitable for invasion by Pinus spp. and A. mearnsii, respectively. We then derived guidelines for policy on alien plant management based on vegetation type, degree of transformation, extent of invasion, and the risk of future alien spread. These factors were used to identify demarcated areas where these alien species can be grown with little risk of invasions, and areas where special measures are needed to manage spread from plantations.  相似文献   

5.
During the early stages of invasion, the interaction between the features of the invaded landscape, notably its spatial structure, and the internal dynamics of an introduced population has a crucial impact on establishment and spread. By approximating introduction areas as networks of patches linked by dispersal, we characterised their spatial structure with specific metrics and tested their impact on two essential steps of the invasion process: establishment and spread. By combining simulations with experimental introductions of Trichogramma chilonis (Hymenoptera: Trichogrammatidae) in artificial laboratory microcosms, we demonstrated that spread was hindered by clusters and accelerated by hubs but was also affected by small‐population mechanisms prevalent for invasions, such as Allee effects. Establishment was also affected by demographic mechanisms, in interaction with network metrics. These results highlight the importance of considering the demography of invaders as well as the structure of the invaded area to predict the outcome of invasions.  相似文献   

6.
Understanding how invasive species establish and spread is vital for developing effective management strategies for invaded areas and identifying new areas where the risk of invasion is highest. We investigated the explanatory power of dispersal histories reconstructed based on local‐scale wind data and a regional‐scale wind‐dispersed particle trajectory model for the invasive seed chalcid wasp Megastigmus schimitscheki (Hymenoptera: Torymidae) in France. The explanatory power was tested by: (1) survival analysis of empirical data on M. schimitscheki presence, absence and year of arrival at 52 stands of the wasp's obligate hosts, Cedrus (true cedar trees); and (2) Approximate Bayesian analysis of M. schimitscheki genetic data using a coalescence model. The Bayesian demographic modeling and traditional population genetic analysis suggested that initial invasion across the range was the result of long‐distance dispersal from the longest established sites. The survival analyses of the windborne expansion patterns derived from a particle dispersal model indicated that there was an informative correlation between the M. schimitscheki presence/absence data from the annual surveys and the scenarios based on regional‐scale wind data. These three very different analyses produced highly congruent results supporting our proposal that wind is the most probable vector for passive long‐distance dispersal of this invasive seed wasp. This result confirms that long‐distance dispersal from introduction areas is a likely driver of secondary expansion of alien invasive species. Based on our results, management programs for this and other windborne invasive species may consider (1) focusing effort at the longest established sites and (2) monitoring outlying populations remains critically important due to their influence on rates of spread. We also suggest that there is a distinct need for new analysis methods that have the capacity to combine empirical spatiotemporal field data, genetic data, and environmental data to investigate dispersal and invasion.  相似文献   

7.
【目的】刺萼龙葵是20世纪80年代入侵我国的检疫性外来植物,目前已在东北和西北地区广泛分布并对农牧业生产造成极大危害,急需明确其时空分布格局和潜在扩散动态,为其早期监测预警提供依据。【方法】首先,利用实地调查、标本和文献查询途径获得的地理分布信息重建刺萼龙葵在我国的扩散历史和分布格局;其次,通过物种分布模型预测其潜在的分布区;最后,融合时空动态和潜在的扩张趋势,利用空间分析模型划定早期监测预警的区域。【结果】刺萼龙葵最早于1980年在辽宁省朝阳市被发现,其后不断沿河流和公路等扩散蔓延。2000年以后相继在内蒙古、北京、河北、吉林以及新疆等省区发现其入侵种群。截至目前,已扩散到了7个省的54个县区。适生区预测结果表明,其在我国存在广阔的潜在分布区,目前还处在快速扩散阶段,没有达到饱和阶段。【结论】刺萼龙葵在我国还处在快速扩散阶段,远没有达到饱和,华北平原是其潜在扩散的高风险区,建议加强对其扩散前沿带包头、张家口、北京、秦皇岛一线的监测力度,以抑制其进一步扩散蔓延。  相似文献   

8.
The historical spatio-temporal distribution of invasive species is rarely documented, hampering efforts to understand invasion dynamics, especially at regional scales. Reconstructing historical invasions through use of herbarium records combined with spatial trend analysis and modeling can elucidate spreading patterns and identify susceptible habitats before invasion occurs. Two perennial species were chosen to contrast historic and potential phytogeographies: Japanese knotweed (Polygonum cuspidatum), introduced intentionally across the US; and mugwort (Artemisia vulgaris), introduced largely accidentally to coastal areas. Spatial analysis revealed that early in the invasion, both species have a stochastic distribution across the contiguous US, but east of the 90(th) meridian, which approximates the Mississippi River, quickly spread to adjacent counties in subsequent decades. In contrast, in locations west of the 90(th) meridian, many populations never spread outside the founding county, probably a result of encountering unfavorable environmental conditions. Regression analysis using variables categorized as environmental or anthropogenic accounted for 24% (Japanese knotweed) and 30% (mugwort) of the variation in the current distribution of each species. Results show very few counties with high habitat suitability (>/=80%) remain un-invaded (5 for Japanese knotweed and 6 for mugwort), suggesting these perennials are reaching the limits of large-scale expansion. Despite differences in initial introduction loci and pathways, Japanese knotweed and mugwort demonstrate similar historic patterns of spread and show declining rates of regional expansion. Invasion mitigation efforts should be concentrated on areas identified as highly susceptible that border invaded regions, as both species demonstrate secondary expansion from introduction loci.  相似文献   

9.
Coastal dune grasslands are fragile ecosystems that have historically been subjected to various types of uses and human activities. In Buenos Aires Province (Argentina), these areas are frequently afforested for urban and touristic development. The introduction and subsequent spread of exotic tree species is one of the main threats to conservation of natural grasslands as invasive trees strongly transform their structure and composition. The aim of this study was to identify patterns of woody plant invasion comparing plant communities and environmental variables between invaded and non-invaded areas surrounding the coastal village of Mar Azul, Argentina. Coastal grasslands in this area are being invaded by Populus alba (white poplar) and Acacia longifolia (coast wattle). The height of the saplings and the richness of the accompanying vegetation were evaluated in relation to the distance from the edge of the mature tree patches. Also, the cover, richness and diversity of all species in the invaded and non-invaded areas were measured, as well as soil pH, temperature and particle size. Negative correlations were found between the height of the saplings and distance to mature tree patches in all areas. The richness of the accompanying vegetation was negatively and positively correlated with the distance from the poplar and acacia area, respectively. The most abundant native species was Cortaderia selloana. Less cover, richness and diversity of native plant species and greater soil particle size were found in invaded areas, where the proportion of bare soil was higher. Also, a higher proportion of leaf litter in the invaded areas was registered. The results emphasize the invasive capacity of P. alba and A. longifolia advancing on the native communities and reducing their richness. Knowledge of the impact of invasive woody plants in coastal grasslands is important to design active management strategies for conservation purposes.  相似文献   

10.
This paper compares the rate of invasion of Heracleum mantegazzianum (Apiaceae), a Caucasian species invading Europe, at three spatial scales (continental, regional, and local). The rate of invasion was evaluated using inclusion curves, by plotting the cumulative number of invaded countries against time on the continental scale of Europe, number of occupied grid cells at the regional scale of the Czech Republic, and invaded area inferred from a series of aerial photographs taken at the local scale over a period of 49 years in the Slavkovký les region, Czech Republic. Time of 50% inclusion (with 95% confidence intervals, CI) of invaded countries, occupied grid cells, and invaded area was assessed. The invasion was slowest at the continental scale (62 years, CI = 53–70) and did not differ significantly between regional (16 years, CI = 10–20) and local (22 years, CI = 19–24) scales. Our results indicate that there are two different mechanisms of spread acting together in this system, namely human influences and natural spread, and the relative influence of these mechanisms appears to change in an inverse proportion from the largest to the smallest scale. At the local scale, under suitable habitat conditions, the process is driven by biological traits of the species related to dispersal. At the continental and regional scales, humans played a crucial role in the invasion of H. mantegazzianum by planting it as a garden ornamental. At these scales, human-mediated dispersal seems to have been the major driver of spread, responsible for creating dispersal foci in the initial phases of invasion. Species traits played an important role in local spread, resulting in the colonization of new sites.  相似文献   

11.
The classical approach to predicting the geographical extent of species invasions consists of training models in the native range and projecting them in distinct, potentially invasible areas. However, recent studies have demonstrated that this approach could be hampered by a change of the realized climatic niche, allowing invasive species to spread into habitats in the invaded ranges that are climatically distinct from those occupied in the native range. We propose an alternative approach that involves fitting models with pooled data from all ranges. We show that this pooled approach improves prediction of the extent of invasion of spotted knapweed (Centaurea maculosa) in North America on models based solely on the European native range. Furthermore, it performs equally well on models based on the invaded range, while ensuring the inclusion of areas with similar climate to the European niche, where the species is likely to spread further. We then compare projections from these models for 2080 under a severe climate warming scenario. Projections from the pooled models show fewer areas of intermediate climatic suitability than projections from the native or invaded range models, suggesting a better consensus among modelling techniques and reduced uncertainty.  相似文献   

12.
We studied the distribution and spread of the invasive social wasp Vespula germanica in Argentina, focusing on the contribution of queen dispersal to territorial expansion. Vespula germanica is native to Eurasia and has invaded several regions of the world, including Southern Argentina. Flight potential of field‐collected queens was measured using flight mills. Also, by means of an extensive survey we estimated the rate of spread by analysing the relationship between years since arrival and distance from the introduction locality. The mean distance flown by wasp queens in flight mills was 404.7 ± 140.8 m (mean ± SE, n = 59), while the rate of spread of V. germanica was estimated at 37.2 ± 2.1 km year?1 (mean ± SE, n = 67), although faster towards the south. The observed spread rate of V. germanica wasps in Argentina confirms the invasive potential shown by several Hymenoptera species worldwide. Still, a stratified geographical expansion pattern does not match observed queen dispersal abilities, suggesting that human‐aided transport of hibernating queens is the central driver of the current distribution of these wasps. We suggest that despite several life‐history traits known for social insects that contribute to successful invasion, wasp spread must still rely strongly on human mediated pathways. This observation sheds light on those factors that are crucial for managing invasions of this and related pestiferous wasps.  相似文献   

13.
Prediction of invasive species spread helps to plan management actions. We performed a risk assessment by quantifying habitat invasibility, predicted the potential distribution of an invasive species using the Maxent modelling program and confirmed patterns using detailed field studies. Our study was conducted in southern Argentina, Patagonia, where large areas are already invaded by the European shrub Rosa rubiginosa. A total of 163 R. rubiginosa locations served as ground truth data, and predictors were obtained from the spaceborne sensor Landsat 5. Based on the Maxent Method (area under the receiver operating characteristic curve 0.8), the habitat invasibility map covered about 5000 km2. Our model revealed that R. rubiginosa has the potential to invade 36% of the area along a steep precipitation gradient (target region 600–1400 mm per year). The Tasseled Cap brightness index and the normalized vegetation index explained most of the variance in our model, followed by the Tasseled Cap greenness and wetness indices, which can be interpreted as indicators of disturbance. Highest levels of invasibility were predicted for urban areas, along roads and rivers, on pastures, in Austrocedrus chilensis forests and inside Nothofagus dombeyi forest gaps. Detailed field assessments of rose cover performed in seven habitat types supported these results: rose cover significantly decreased with increasing tree cover (P < 0.01). Our data revealed that the occurrence of R. rubiginosa is not connected to a certain habitat type, but that it thrives in open patches following habitat disturbance. Our approach is a widely applicable, cost‐free remote sensing method that can serve as a risk assessment tool for alien plant species invasion of habitats.  相似文献   

14.
Floodplain forests are characterized by high and increasing levels of invasions by plant species, but the factors that drive their spread are insufficiently understood. Using data from 708 plots surveyed twice (1998, 2008) supplemented with further data (management, stand age, distance to dispersal corridors, type of ecosystems invaded) we analyzed the factors which shape the local distribution, growth, persistence and spread of three invasive alien tree species (Acer negundo, Ailanthus altissima, Robinia pseudoacacia) in the National Park Donau-Auen in Austria. Using Generalized Linear Models (GLMs), we found that the distribution of the study species per plot is contingent on stand age (R. pseudoacacia), type of floodplain forest (A. negundo, A. altissima) and distance to the next water body (A. negundo). For all study species, colonization of new plots between both surveys is driven by short distance spread from already established invasion foci. Moreover, recipient habitats (softwood vs. hardwood floodplain forests) modify invasion success in species-specific ways. The probability of occurrence and colonization of plots located in softwood floodplain forests is higher for A. negundo, whereas A. altissima more frequently colonizes hardwood floodplain forests. Persistence of R. pseudoacacia decreases with stand age, whereas its growth rate is significantly higher in plots located in zones where management is allowed than in those which are not managed. Persistence and growth of the other two study species were not related to any explanatory variables analyzed. The on-going spread of the study species in the National Park Donau-Auen suggests that their local distribution is in disequilibrium, i.e. not all suitable habitat patches have yet been colonized. This implies that increased management efforts are necessary to reverse the spread of alien tree species in the study area and to maintain the high conservation value of this iconic area which protects one of the largest floodplain forests in Europe.  相似文献   

15.
This paper examines, theoretically, how dispersal affects the viability of brown kiwi populations in protected areas of different size. Brown kiwi are threatened by introduced mammalian predators in mainland forests and are likely to persist only in managed forests where predators are controlled. In each protected area, the kiwi population will function as a net source, with an outflow of juveniles into the adjoining forest and minimal backflow into the reserve. Computer simulations show the minimum area of forest required for population viability increases non-linearly as the mean dispersal distance of juveniles increases. Preliminary measurements of the mean dispersal distance of brown kiwi in the wild suggest kiwi populations are unlikely to be viable in protected areas of less than 10 000 ha. Our estimate of the forest area requirement for viable populations of brown kiwi agrees with those derived by earlier workers using biogeographic techniques.  相似文献   

16.
Retracing introduction routes is crucial for understanding the evolutionary processes involved in an invasion, as well as for highlighting the invasion history of a species at the global scale. The Asian long‐horned beetle (ALB) Anoplophora glabripennis is a xylophagous pest native to Asia and invasive in North America and Europe. It is responsible for severe losses of urban trees, in both its native and invaded ranges. Based on historical and genetic data, several hypotheses have been formulated concerning its invasion history, including the possibility of multiple introductions from the native zone and secondary dispersal within the invaded areas, but none have been formally tested. In this study, we characterized the genetic structure of ALB in both its native and invaded ranges using microsatellites. In order to test different invasion scenarios, we used an approximate Bayesian “random forest” algorithm together with traditional population genetics approaches. The strong population differentiation observed in the native area was not geographically structured, suggesting complex migration events that were probably human‐mediated. Both native and invasive populations had low genetic diversity, but this characteristic did not prevent the success of the ALB invasions. Our results highlight the complexity of invasion pathways for insect pests. Specifically, our findings indicate that invasive species might be repeatedly introduced from their native range, and they emphasize the importance of multiple, human‐mediated introductions in successful invasions. Finally, our results demonstrate that invasive species can spread across continents following a bridgehead path, in which an invasive population may have acted as a source for another invasion.  相似文献   

17.
应用生态位模型研究外来入侵物种生态位漂移   总被引:4,自引:0,他引:4  
由于基础生态位和实际生态位的改变,外来入侵物种在入侵地成功定殖、扩散后常会发生生态位漂移,而物种生态位漂移往往很难直接证明。生态位模型在假设入侵物种的生态位需求保守的前提下,以物种在其原产地的生态位需求为基础,预测其在入侵地的潜在分布,通过比较预测分布与实际分布的差异可以从一定程度上得到外来入侵物种的生态位是否发生漂移的间接证据。以我国入侵杂草胜红蓟在原产地的生态位需求为基础,应用生态位模型预测其在其他地区的潜在分布。研究结果表明,生态位模型可以很好地预测胜红蓟在亚太平洋地区和非洲地区的分布,但在我国,其预测分布与实际分布存在较大差别。胜红蓟在我国预测分布主要为云南、海南、台湾部分地区,而胜红蓟入侵我国后现已广泛分布于长江以南地区,其实际分布比预测分布广泛得多,由此推测胜红蓟在入侵我国后其生态位已经产生了漂移。  相似文献   

18.
The fast tracking of invasion spatial patterns of alien species is crucial for the implementation of preventive and management strategies of those species. Recently, a honeybee pest, the small hive beetle Aethina tumida (hereafter SHB), has been reported in Italy, where it colonized more than 50 apiaries in an area of about 300 km2. SHB is a nest parasite and scavenger of honeybee colonies native of Sub-Saharian Africa. Likely being helped by the globalization of apiculture, SHB underwent several invasions in the last twenty years, causing locally relevant economic impact. While many features of its biology have been addressed, an important knowledge gap concerns the spatial invasion dynamics in invaded areas. In this paper we coupled two spatial analysis techniques (geographic profiling and a density-based spatial clustering algorithm) to uncover the possible invasion pattern of SHB in Italy. We identified the port town of Gioia Tauro as the most likely point from which SHB may have spread and suggested the possible successive axes of diffusion. These putative diffusion paths suggest that the SHB spread in south Italy might have been due to a mix of natural dispersal between close apiaries and longer distance movement through faster, likely human-mediated, communication routes.  相似文献   

19.
Biological invasions are multi-stage processes comprising chance demographic events, species interactions, and dispersal. Despite this complexity, simple models can increase understanding of the invasion process. We model the spread of aquatic invasive species through a network of lakes to evaluate the effectiveness of two intervention strategies. The first, which we call offense, contains the invader at sources; the second, which we call defense, protects uninvaded destinations. Deterministic models reveal the effects of these intervention strategies on spread rates. Practical applications involve finite collections of uninvaded lakes, however, and we therefore also present a stochastic model to describe how these strategies affect expected times to important invasion milestones. When the goal is to reduce overall spread rates, both approaches agree that offense is better early in invasions, but that defense is better after 1/2 the lakes are invaded. When the goal is to protect areas of high conservation value, however, defensive site protection always provides lower per site introduction rates. Although we focus on lakes, our results are quite general, and could be applied to any discrete habitat patches including, for example, fragmented terrestrial habitats.  相似文献   

20.
Mapping the distribution of invasive alien plant species is significant for testing ecological hypotheses and for guiding effective management. Little is known about the distribution of invasive plants at landscape scale, and the factors controlling their dispersal and establishment are still poorly understood. This is the case for Rosa rugosa, an invasive shrub with negative effects on biodiversity in dune ecosystems of NW Europe. The aim of the study was to identify the factors which determine the distribution of R. rugosa in coastal dunes. In a large semi-natural dune area of NW Denmark (2364 ha) all patches of the species (1321, 1.3–59.1 m2) were GPS mapped. Patch distribution was GIS analysed, based on aerial photographs and vegetation maps. The distance of R. rugosa from the most conspicuous landscape elements was compared with randomly placed reference points. The species had invaded 0.35% of the dune landscape, and it was present in all vegetation types and all parts of the study area. Rosa rugosa patches were slightly smaller in grey dunes than in white dunes and brown dunes, and some of the largest patches were found close to villages. The occurrence of the shrub was positively correlated with distance to the coastline, to roads, tracks and houses. We conclude that the distribution of R. rugosa is determined by both natural and anthropogenic factors. It is further discussed how these factors may control dispersal and establishment of the species, and how the results can be used for improved management of coastal dunes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号