首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ecological and evolutionary processes leading to present-day biological diversity can be inferred by reconstructing the phylogeny of living organisms, and then modelling potential processes that could have produced this genealogy. A more direct approach is to estimate past processes from the fossil record. The Carnivora (Mammalia) has both substantial extant species richness and a rich fossil record. We compiled species-level data for over 10 000 fossil occurrences of nearly 1400 carnivoran species. Using this compilation, we estimated extinction, speciation and net diversification for carnivorans through the Neogene (22–2 Ma), while simultaneously modelling sampling probability. Our analyses show that caniforms (dogs, bears and relatives) have higher speciation and extinction rates than feliforms (cats, hyenas and relatives), but lower rates of net diversification. We also find that despite continual species turnover, net carnivoran diversification through the Neogene is surprisingly stable, suggesting a saturated adaptive zone, despite restructuring of the physical environment. This result is strikingly different from analyses of carnivoran diversification estimated from extant species alone. Two intervals show elevated diversification rates (13–12 Ma and 4–3 Ma), although the precise causal factors behind the two peaks in carnivoran diversification remain open questions.  相似文献   

2.
Lineages arriving on islands may undergo explosive evolutionary radiations owing to the wealth of ecological opportunities. Although studies on insular taxa have improved our understanding of macroevolutionary phenomena, we know little about the macroevolutionary dynamics of continental exchanges. Here we study the evolution of eight Carnivora families that have migrated across the Northern Hemisphere to investigate if continental invasions also result in explosive diversification dynamics. We used a Bayesian approach to estimate speciation and extinction rates from a substantial dataset of fossil occurrences while accounting for the incompleteness of the fossil record. Our analyses revealed a strongly asymmetrical pattern in which North American lineages invading Eurasia underwent explosive radiations, whereas lineages invading North America maintained uniform diversification dynamics. These invasions into Eurasia were characterized by high rates of speciation and extinction. The radiation of the arriving lineages in Eurasia coincide with the decline of established lineages or phases of climate change, suggesting differences in the ecological settings between the continents may be responsible for the disparity in diversification dynamics. These results reveal long-term outcomes of biological invasions and show that the importance of explosive radiations in shaping diversity extends beyond insular systems and have significant impact at continental scales.  相似文献   

3.
Terrestrial vertebrates show striking changes in species richness across topographic gradients. For mammals, nearly twice as many species per unit area occur in topographically complex regions as in adjacent lowlands. The geological context of this pervasive biogeographic pattern suggests that tectonic processes have a first‐order impact on regional diversity. I evaluate ecological, evolutionary, and historical influences of tectonics and topography on the regional diversity of terrestrial mammals, focusing on the hypothesis that diversification rates are higher in active versus passive tectonic settings. Ten predictions follow from this hypothesis. 1) The timing of peaks in speciation should be congruent with the timescale for tectonic episodes. 2) The rates of speciation and genetic differentiation of populations should be greater for species inhabiting topographically complex regions than spatially continuous landscapes. 3) If topographic complexity per se promotes diversification, then a cluster of young divergences should occur for montane species compared to lowland relatives. 4) Endemism in tectonically active regions should reflect origination within the region rather than range reduction from larger areas. 5) Extinction rates should differ for lineages in tectonically active regions compared to adjacent lowlands. 6) The relationship between local and regional species richness should differ between topographic settings because of higher beta diversity in topographically complex regions. 7) Species originating in topographically complex regions should colonize adjacent lowlands more often than the reverse pattern. 8) North‐south mountain ranges should have higher regional species richness than east‐west mountain ranges. 9) Areas with multiple mountain ranges should have higher regional species richness than comparable areas with single mountain ranges. 10) Global climate changes should affect diversification in tectonically active regions. Research addressing these topics places elevational diversity gradients into a geohistorical context and integrates data from modern biotas and the fossil record.  相似文献   

4.
A longstanding debate in evolutionary biology and paleontology is whether ecological interactions such as competition impose diversity dependence on speciation and extinction rates. Here, we analyze the fossil record of terrestrial mammalian carnivores in North America and Eurasia using a Bayesian framework to assess whether their diversity dynamics were affected by diversity dependence within and between families (12 in Eurasia, 10 in North America). We found eight instances of within‐clade diversity dependence suppressing speciation rates and detected between‐clade effects increasing extinction rates in six instances. Diversity dependence often involved lineages that migrated between continents and we found that speciation was more responsive to diversity changes within the clade, whereas extinction responded to diversity of taxa in other clades. The analysis of the fossil record of Carnivora suggests that interactions within and between clades are associated with different speciation and extinction regimes, opening room for a broader theory of diversity dependence.  相似文献   

5.
Birds play an important role in studies addressing the diversity and species richness of tropical ecosystems, but because of the poor avian fossil record in all extant tropical regions, a temporal perspective is mainly provided by divergence dates derived from calibrated molecular analyses. Tropical ecosystems were, however, widespread in the Northern Hemisphere during the early Cenozoic, and the early Eocene German fossil site Messel in particular has yielded a rich avian fossil record. The Messel avifauna is characterized by a considerable number of flightless birds, as well as a high diversity of aerial insectivores and the absence of large arboreal birds. With about 70 currently known species in 42 named genus‐level and at least 39 family‐level taxa, it approaches extant tropical biotas in terms of species richness and taxonomic diversity. With regard to its taxonomic composition and presumed ecological characteristics, the Messel avifauna is more similar to the Neotropics, Madagascar, and New Guinea than to tropical forests in continental Africa and Asia. Because the former regions were geographically isolated during most of the Cenozoic, their characteristics may be due to the absence of biotic factors, especially those related to the diversification of placental mammals, which impacted tropical avifaunas in Africa and Asia. The crown groups of most avian taxa that already existed in early Eocene forests are species‐poor. This does not support the hypothesis that the antiquity of tropical ecosystems is key to the diversity of tropical avifaunas, and suggests that high diversification rates may be of greater significance.  相似文献   

6.
A major goal of research in ecology and evolution is to explain why species richness varies across habitats, regions, and clades. Recent reviews have argued that species richness patterns among regions and clades may be explained by "ecological limits" on diversity over time, which are said to offer an alternative explanation to those invoking speciation and extinction (diversification) and time. Further, it has been proposed that this hypothesis is best supported by failure to find a positive relationship between time (e.g., clade age) and species richness. Here, I critically review the evidence for these claims, and propose how we might better study the ecological and evolutionary origins of species richness patterns. In fact, ecological limits can only influence species richness in clades by influencing speciation and extinction, and so this new "alternative paradigm" is simply one facet of the traditional idea that ecology influences diversification. The only direct evidence for strict ecological limits on richness (i.e., constant diversity over time) is from the fossil record, but many studies cited as supporting this pattern do not, and there is evidence for increasing richness over time. Negative evidence for a relationship between clade age and richness among extant clades is not positive evidence for constant diversity over time, and many recent analyses finding no age-diversity relationship were biased to reach this conclusion. More comprehensive analyses strongly support a positive age-richness relationship. There is abundant evidence that both time and ecological influences on diversification rates are important drivers of both large-scale and small-scale species richness patterns. The major challenge for future studies is to understand the ecological and evolutionary mechanisms underpinning the relationships between time, dispersal, diversification, and species richness patterns.  相似文献   

7.
Continental biodiversity gradients result not only from ecological processes, but also from evolutionary and geohistorical processes involving biotic turnover in landscape and climatic history over millions of years. Here, we investigate the evolutionary and historical contributions to the gradient of increasing species richness with topographic complexity. We analysed a dataset of 418 fossil rodent species from western North America spanning 25 to 5 Ma. We compared diversification histories between tectonically active (Intermontane West) and quiescent (Great Plains) regions. Although diversification histories differed between the two regions, species richness, origination rate and extinction rate per million years were not systematically different over the 20 Myr interval. In the tectonically active region, the greatest increase in originations coincided with a Middle Miocene episode of intensified tectonic activity and global warming. During subsequent global cooling, species richness declined in the montane region and increased on the Great Plains. These results suggest that interactions between tectonic activity and climate change stimulate diversification in mammals. The elevational diversity gradient characteristic of modern mammalian faunas was not a persistent feature over geologic time. Rather, the Miocene rodent record suggests that the elevational diversity gradient is a transient feature arising during particular episodes of Earth''s history.  相似文献   

8.
Ecological opportunity has been associated with increases in diversification rates across the tree of life. Under an ecological diversification model, the emergence of novel environments is hypothesized to promote morpho- and ecospace evolution. Whether this model holds at the clade level within the most species-rich angiosperm genus found in North America (Carex, Cyperaceae) is yet to be tested. Recent works demonstrate a temporal coupling of climate cooling and widespread colonization of Carex in North America, implicating ecological diversification. In addition, research has consistently found asymmetric patterns of lineage-level diversification in the genus. Why does variation in clade sizes exist in the genus? Is ecological diversification involved? In this study, we tested whether rates of morphological and ecological trait evolution are correlated with clade-level species richness in Carex of North America north of Mexico. We constructed a phylogeny of 477 species—an almost complete regional sample. We estimated rates of evolution of morphological traits, habitat, and climatic niche and assessed whether differences in rates of evolution correlate with species richness differences in replicate non-nested sister clades. Our work demonstrates significant positive correlations between climatic niche rates, habitat and reproductive morphological evolution, and species richness. This coupling of trait and niche evolution and species richness in a diverse, continental clade sample strongly suggests that the ability of clades to explore niche and functional space has shaped disparities in richness and functional diversity across the North American flora region. Our findings highlight the importance of the evolutionary history of trait and niche evolution in shaping continental and regional floras.  相似文献   

9.
The eastern Asian (EAS)-eastern North American (ENA) floristic disjunction is one of the best-known biogeographic patterns in the Northern Hemisphere. Recent paleontological and molecular analyses have illuminated the origins of the biogeographic pattern, but subsequent diversification and evolution of the disjunct floras in each of the two continents after isolation remains poorly understood. Although similar in climate and floristic composition, EAS has twice as many species as ENA in genera occurring in both regions. Explaining such differences in species diversity between regions with similar environmental conditions (diversity anomalies) is an important goal of the study of the global patterns of biodiversity. We used a phylogenetic approach to compare rates of net speciation and molecular evolution between the two regions. We first identified EAS-ENA disjunct sister clades from ten genera (Asarum, Buckleya, Carpinus, Carya, Cornus, Hamamelis, Illicium, Panax, Stewartia, and Styrax) that represent diverse angiosperm lineages using phylogenetic analyses of ITS (internal transcribed spacer of nuclear ribosomal DNA) sequence data. Species richness and substitution rate of ITS between sister clades were compared. The results revealed a pattern of greater species diversity in the EAS counterparts. A positive relationship between species diversity and ITS substitution rate was also documented. These results suggest greater net speciation and accelerated molecular evolution in EAS. The data support the idea that a regional difference in net speciation rate related to topographic heterogeneity contributes to the diversity anomaly between EAS and ENA. The close relationship between rates of ITS evolution and species richness further suggests that species production may be directly linked to rate of nucleotide substitution.  相似文献   

10.
Declining diversification rates over time are a well-established evolutionary pattern, often interpreted as indicating initial rapid radiation with filling of ecological niche space. Here, we test the hypothesis that island radiations may show constant net diversification rates over time, due to continued expansion into new niche space in highly dispersive taxa. We investigate diversification patterns of four passerine bird families originating from the Indo-Pacific archipelagos, and link these to biogeographic patterns to provide independent indications of niche filling. We find a declining diversification rate for only one family, the Paradisaeidae (41 species). These are almost completely restricted to New Guinea, and have on average smaller species ranges and higher levels of species richness within grid cells than the other three families. In contrast, we cannot reject constant diversification rates for Campephagidae (93 species), Oriolidae (35 species), and Pachycephalidae (53 species), groups that have independently colonized neighboring archipelagos and continents. We propose that Paradisaeidae have reached the diversity limit imposed by their restricted distribution, whereas high dispersal and colonization success across the geologically dynamic Indo-Pacific archipelagos may have sustained high speciation rates for the other three families. Alternatively, increasing extinction rates may have obscured declining speciation rates in those three phylogenies.  相似文献   

11.
Geographical variation in species richness in plant groups is determined by the interplay between historical, evolutionary, and ecological processes. However, the processes underlying the striking disparity in species richness between Asia and the Americas remain poorly understood. Here, we synthesize global phylogenetic and macroecological data on the diversification of Smilacaceae, deciphering potential drivers underlying the species diversity pattern biased toward Asia. We compiled global distributions of all Smilacaceae species, and reconstructed the biogeographic history and niche evolution using a new time-calibrated phylogeny (eight genes, 135 species). Integrating these data sets, we estimated evolutionary histories and diversification rates for each region, and tested correlations among species diversification, niche evolution, and niche divergence. Smilacaceae probably originated during the Late Cretaceous/Early Palaeocene and began to diversify in middle to low latitudes in Central America and Eurasia during the Late Eocene. Both the Old and New World clades exhibited a steady, albeit slight, increase of species diversification from the Late Eocene to Early Miocene. However, the Old World clade experienced an abrupt increase in net diversification during the Late Miocene. Our findings also revealed that species diversification rates were positively correlated with ecological niche evolution and niche divergence. Niche shifts and climatic niche evolution since the Middle Miocene played crucial roles in species diversification dynamics within Smilacaceae. The high plant richness in Asia may be explained by greater diversification in this region, potentially promoted by heterogeneous environments.  相似文献   

12.
The disparity in species richness across the tree of life is one of the most striking and pervasive features of biological diversity. Some groups are exceptionally diverse, whereas many other groups are species poor. Differences in diversity among groups are frequently assumed to result from primary control by differential rates of net diversification. However, a major alternative explanation is that ecological and other factors exert primary control on clade diversity, such that apparent variation in net diversification rates is a secondary consequence of ecological limits on clade growth. Here, I consider a likelihood framework for distinguishing between these competing hypotheses. I incorporate hierarchical modeling to explicitly relax assumptions about the constancy of diversification rates across clades, and I propose several statistics for a posteriori evaluation of model adequacy. I apply the framework to a recent dated phylogeny of ants. My results reject the hypothesis that net diversification rates exert primary control on species richness in this group and demonstrate that clade diversity is better explained by total time-integrated speciation. These results further suggest that it may not possible to estimate meaningful speciation and extinction rates from higher-level phylogenies of extant taxa only.  相似文献   

13.
Origins of mangrove ecosystems and the mangrove biodiversity anomaly   总被引:7,自引:0,他引:7  
1. Mangrove species richness declines dramatically from a maximum in the Indo-West Pacific (IWP) to a minimum in the Caribbean and Western Atlantic. Explaining this ‘anomalous’ biogeographic pattern has been a focus of discussion for most of this century. 2. Two hypotheses have been put forward to explain the mangrove biodiversity anomaly. The ‘centre-of-origin hypothesis’ asserts that all mangrove taxa originated in the IWP and subsequently dispersed to other parts of the world. The ‘vicariance hypothesis’ asserts that mangrove taxa evolved around the Tethys Sea during the Late Cretaceous, and regional species diversity resulted from in situ diversification after continental drift. 3. Five lines of evidence are used to test between these two hypotheses. First, we review the mangrove fossil record. Second, we compare modern and fossil distributions of mangroves and eight genera of gastropods that show high fidelity to the mangrove environment. Third, we describe species-area relationships of mangroves and associated gastropods with respect to area of available habitat. Fourth, we analyse patterns of nestedness of individual plant and gastropod communities in mangrove forests. Fifth, we analyse patterns of nestedness of individual plant and gastropod species. 4. All five lines of evidence support the vicariance hypothesis. The first occurrences in the fossil record of most mangrove genera and many genera of gastropods associated with mangrove forests appear around the Tethys Sea from the Late Cretaceous through the Early Tertiary. Globally, species richness in any given mangrove forest is tightly correlated with available area. Patterns of nestedness at the community and species-level both point towards three independent regions of diversification of mangrove ecosystems: South-east Asia, the Caribbean and Eastern Pacific, and the Indian Ocean region.  相似文献   

14.
Understanding historical patterns of diversity dynamics is of paramount importance for many evolutionary questions. The fossil record has long been the only source of information on patterns of diversification, but the molecular record, derived from time-calibrated phylogenies, is becoming an important additional resource. Both fossil and molecular approaches have shortcomings and biases. These have been well studied for fossil data but much less so for molecular data and empirical comparisons between approaches are lacking. Here, we compare the patterns of diversification derived from fossil and molecular data in scleractinian reef coral species. We also assess the robustness of molecular diversification rates to poor taxon sampling. We find that the temporal pattern of molecular diversification rates is robust to incomplete sampling when rates are calculated per interval. The major obstacle of molecular methods is that rate estimates are distorted because diversification rates can never be negative, whereas the fossil record suffers from incomplete preservation and inconsistent taxonomy. Nevertheless, the molecular pattern of diversification is comparable to the pattern we observe in the fossil record, with the timing of major diversification pulses coinciding in each dataset. For example, both agree that the end-Triassic coral extinction was a catastrophic bottleneck in scleractinian evolution.  相似文献   

15.
The major clades of vertebrates differ dramatically in their current species richness, from 2 to more than 32 000 species each, but the causes of this variation remain poorly understood. For example, a previous study noted that vertebrate clades differ in their diversification rates, but did not explain why they differ. Using a time-calibrated phylogeny and phylogenetic comparative methods, I show that most variation in diversification rates among 12 major vertebrate clades has a simple ecological explanation: predominantly terrestrial clades (i.e. birds, mammals, and lizards and snakes) have higher net diversification rates than predominantly aquatic clades (i.e. amphibians, crocodilians, turtles and all fish clades). These differences in diversification rates are then strongly related to patterns of species richness. Habitat may be more important than other potential explanations for richness patterns in vertebrates (such as climate and metabolic rates) and may also help explain patterns of species richness in many other groups of organisms.  相似文献   

16.
Understanding the history that underlies patterns of species richness across the Tree of Life requires an investigation of the mechanisms that not only generate young species‐rich clades, but also those that maintain species‐poor lineages over long stretches of evolutionary time. However, diversification dynamics that underlie ancient species‐poor lineages are often hidden due to a lack of fossil evidence. Using information from the fossil record and time calibrated molecular phylogenies, we investigate the history of lineage diversification in Polypteridae, which is the sister lineage of all other ray‐finned fishes (Actinopterygii). Despite originating at least 390 million years (Myr) ago, molecular timetrees support a Neogene origin for the living polypterid species. Our analyses demonstrate polypterids are exceptionally species depauperate with a stem lineage duration that exceeds 380 million years (Ma) and is significantly longer than the stem lineage durations observed in other ray‐finned fish lineages. Analyses of the fossil record show an early Late Cretaceous (100.5–83.6 Ma) peak in polypterid genus richness, followed by 60 Ma of low richness. The Neogene species radiation and evidence for high‐diversity intervals in the geological past suggest a “boom and bust” pattern of diversification that contrasts with common perceptions of relative evolutionary stasis in so‐called “living fossils.”  相似文献   

17.
Our objective was to estimate and analyze the body‐size distribution parameters of terrestrial mammal assemblages at different spatial scales, and to determine whether these parameters are controlled by local ecological processes or by larger‐scale ones. Based on 93 local assemblages, plus the complete mammal assemblage from three continents (Africa, North, and South America), we estimated three key distribution parameters (diversity/size slope, skewness, and modal size) and compared the values to those expected if size distributions are mainly controlled by local interactions. Mammal diversity decreased much faster as body size increased than predicted by fractal niche theory, both at continental and at local scales, with continental distributions showing steeper slopes than the localities within them. South America showed a steeper slope (after controlling for species diversity), compared to Africa and North America, at local and continental scales. We also found that skewness and modal body size can show strikingly different correlations with predictor variables, such as species richness and median size, depending on the use of untransformed versus log‐transformed data, due to changes in the distribution density generated by log‐transformation. The main differences in slope, skewness, and modal size between local and continental scales appear to arise from the same biogeographical process, where small‐sized species increase in diversity much faster (due to higher spatial turnover rates) than large‐sized species. This process, which can operate even in the absence of competitive saturation at local scales, generates continental assemblages with steeper slopes, smaller modal sizes, and higher right skewness (toward small‐sized species) compared to local communities. In addition, historical factors can also affect the size distribution slopes, which are significantly steeper, in South American mammal assemblages (probably due to stronger megafauna extinction events in South America) than those in North America and Africa.  相似文献   

18.
Aim  We studied elevational species richness patterns of Schizothorax fishes and identified the roles of ecological and evolutionary factors in shaping the patterns of elevational diversity.
Location  The Tibetan Plateau and its adjacent regions.
Methods  We assembled distribution and altitude data for all Schizothorax species using the literature. We merged ecological and evolutionary approaches to test the relationships between species richness and ecological factors (climate, area, the mid-domain effect) or evolutionary factors (diversification rates and time of colonization).
Results  We found that species richness of Schizothorax fishes peaked at mid-elevations. Rainfall, area, the mid-domain effect and diversification rate were weak predictors of the richness pattern. Temperature showed a nonlinear relationship with species richness. Temperature and time of colonization were the most important variables in explaining the elevational diversity pattern.
Main conclusion  Our findings indicate that the time-for-speciation effect and niche conservatism play important roles in variation of species richness.  相似文献   

19.

Background

The extraordinary diversification of angiosperm plants in the Cretaceous and Tertiary periods has produced an estimated 250,000–300,000 living angiosperm species and has fundamentally altered terrestrial ecosystems. Interactions with animals as pollinators or seed dispersers have long been suspected as drivers of angiosperm diversification, yet empirical examples remain sparse or inconclusive. Seed dispersal by ants (myrmecochory) may drive diversification as it can reduce extinction by providing selective advantages to plants and can increase speciation by enhancing geographical isolation by extremely limited dispersal distances.

Methodology/Principal Findings

Using the most comprehensive sister-group comparison to date, we tested the hypothesis that myrmecochory leads to higher diversification rates in angiosperm plants. As predicted, diversification rates were substantially higher in ant-dispersed plants than in their non-myrmecochorous relatives. Data from 101 angiosperm lineages in 241 genera from all continents except Antarctica revealed that ant-dispersed lineages contained on average more than twice as many species as did their non-myrmecochorous sister groups. Contrasts in species diversity between sister groups demonstrated that diversification rates did not depend on seed dispersal mode in the sister group and were higher in myrmecochorous lineages in most biogeographic regions.

Conclusions/Significance

Myrmecochory, which has evolved independently at least 100 times in angiosperms and is estimated to be present in at least 77 families and 11 000 species, is a key evolutionary innovation and a globally important driver of plant diversity. Myrmecochory provides the best example to date for a consistent effect of any mutualism on large-scale diversification.  相似文献   

20.
The fossil record is our primary window onto the diversification of ancient life, but there are widespread concerns that sampling biases may distort observed palaeodiversity counts. Such concerns have been reinforced by numerous studies that found correlations between measures of sampling intensity and observed diversity. However, correlation does not necessarily mean that sampling controls observed diversity: an alternative view is that both sampling and diversity may be driven by some common factor (e.g. variation in continental flooding driven by sea level). The latter is known as the ‘common cause’ hypothesis. Here, we present quantitative analyses of the relationships between dinosaur diversity, sampling of the dinosaur fossil record, and changes in continental flooding and sea level, providing new insights into terrestrial common cause. Although raw data show significant correlations between continental flooding/sea level and both observed diversity and sampling, these correlations do not survive detrending or removal of short-term autocorrelation. By contrast, the strong correlation between diversity and sampling is robust to various data transformations. Correlations between continental flooding/sea level and taxic diversity/sampling result from a shared upward trend in all data series, and short-term changes in continental flooding/sea level and diversity/sampling do not correlate. The hypothesis that global dinosaur diversity is tied to sea-level fluctuations is poorly supported, and terrestrial common cause is unsubstantiated as currently conceived. Instead, we consider variation in sampling to be the preferred null hypothesis for short-term diversity variation in the Mesozoic terrestrial realm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号