首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Outer membrane materials prepared from three independently isolated spontaneous Escherichia coli tolF mutants contained no detectable protein Ia. The loss of this protein was nearly completely compensated for by an increase in other major outer membrane proteins, Ib and II. Thus, the major outer membrane proteins accounted for 40% of the total cell envelope protein in both tol+ and tolF strains. No changes were found in the levels of inner membrane proteins prepared from tolF strains when compared with similar preparations from the tol+ strain. Phage-resistant mutants were selected starting with a tolF strain by using either phage TuIb or phage PA2. These phage-resistant tolF strains contained neither protein Ia nor protein Ib. The mutation leading to the loss of protein Ib in these strains is independent of the tolF mutation and is located near malP on the E. coli genetic map.  相似文献   

2.
Protein interactions in the outer membrane of Escherichia coli.   总被引:5,自引:0,他引:5  
Specific protein interactions in Escherichia coli outer membrane were analyzed using chemical cross-linking with truly cleavable reagents and symmetrical two-dimensional sodium dodecyl sulphate/polyacrylamide gel electrophoresis. The major outer membrane proteins were shown to form cross-linked complexes. These include multimers of lambda receptor, protein I, II, III and the free form of lipoprotein. Lipoprotein was also found to be cross-linked to proteins II and III. The identity of many of these complexes was verified using appropriate mutants missing the proteins in question. No new protein interactions were detected in the mutants even when three of the major proteins were missing. Proteins II, III and the free form of lipoprotein could also be cross-linked to the peptidoglycan layer of the cell wall.  相似文献   

3.
Summary Protein I, one of the major outer membrane proteins ofE. coli, in a number of strains exists as two electrophoretically separable species Ia and Ib. Two phages, TuIa and TuIb, have been found which use, as receptors, proteins Ia and Ib, respectively. Selection for resistance to phage TuIb yielded mutants still possessing protein Ia and missing protein Ib (Ia+ Ib-). Selection in this background, for resistance to phage TuIa yielded one class of mutants missing both species of protein I and another synthesizing a new species of protein I, polypeptide Ic.Tryptic fingerprints of Ia and Ic are very similar and the sequence of 8 N-terminal amino acids is identical for Ia and Ic. Yet, Ic showed an entirely different pattern of cyanogen bromide fragments than that of protein Ia. With another example (cyanogen bromide fragments of protein II*, with and without performic acid oxidation) it is shown that protein modification can lead to gross changes of the electrophoretic mobility of cyanogen bromide fragments. It is not unlikely that all protein I species observed so far represent in vivo modifications of one and the same polypeptide chain.A genetic analysis together with data from other laboratories revealed that at least 4 widely separated chromosomal loci are involved in the expression of the protein I species known to date.  相似文献   

4.
Summary Mutants of E. coli resistant to bacteriophage T2 have lowered amounts of protein Ia in their outer membrane. Bacteriophage T2 was inactivated by a mixture of protein Ia-lipopolysaccharide. Protein Ia or lipopolysaccharide alone had no neutralizing activity. However, only protein Ia was required to inactivate a T2 host range mutant. In the presence of polymyxin B T2 receptor activity of protein Ia — lipopolysaccharide mixtures could not be restored. E. coli strains missing protein Ib were resistant against the lambdoid phage 434. Purified protein Ib inactivated 434 and virh 434. Addition of lipopolysaccharide did not enhance the neutralizing activity of protein Ib, indicating that lipopolysaccharide may not be necessary for the inactivation of the phage.  相似文献   

5.
Summary Protein I, one of the major outer membrane proteins of E. coli in most K12 strains is represented by two very similar polypeptides Ia and Ib. Sequential mutations (involving selections for phage resistance) can lead to loss of proteins Ia and Ib. Among revertants of such Ia- Ib- mutants clones exist that instead of Ia or Ib produce a third species of protein I, polypeptide Ic.Ichihara and Mizushima [J. Biochem. 83, 1095–1100 (1978)] have shown that proteins Ia and Ib exhibit differences in primary structure. Here evidence is presented indicating that protein Ic also is not identical in primary structure with Ia or Ib. Thus, 3 very similar structural genes appear to exist for the protein I species known to date, and that for Ic normally is silent. Introduction of a functional Ic locus into a Ia+ Ib+ strain caused expression of all three proteins with a reduced rate of synthesis of protein Ia.  相似文献   

6.
Cell envelopes prepared from an Escherichia coli tolF strain selected as resistant to phage TuIb contained a new major outer membrane protein related to outer membrane proteins Ia and Ib. The strain that produces this protein is a tolF par double mutant but contains an additional mutation leading to the production of the new major outer membrane protein. Antibiotic sensitivity lost as a result of the tolF mutation is regained in strains that contain the new major outer membrane protein. This indicates that this protein functions to restore the selective permeability of the outer membrane to low-molecular-weight hydrophilic molecules.  相似文献   

7.
Three Escherichia coli phages, TuIa, TuIb, and TuII, were isolated from local sewage. We present evidence that they use the major outer membrane proteins Ia, Ib, and II, respectively, as receptors. In all cases the proteins, under the experimental conditions used, required lipopolysaccharide to exhibit their receptor activity. For proteins Ia and II, an approximately two- to eightfold molar excess of lipopolysaccharide (based on one diglucosamine unit) was necessary to reach maximal receptor activity. Lipopolysaccharide did not appear to possess phage-binding sites. It seemed that the lipopolysaccharide requirement reflected a protein-lipopolysaccharide interaction in vivo, and lipopolysaccharide may thus cause the specific localization of these proteins. Inactivation of phage TuII by a protein II-lipopolysaccharide complex was reversible as long as the complex was in solution. Precipitation of the complex with Mg2+ led to irreversible phage inactivation with an inactivation constant (37 degrees C)K = 7 X 10-2 ml/min per microgram. With phages TuIa and TuIb and their respective protein-lipopolysaccharide complexes, only irreversible inactivation was found at 37 degrees C. The activity of the three proteins as phage receptors shows that part of them must be located at the cells surface. In addition, the association of proteins Ia and Ib with the murein layer of the cell envelope makes this pair trans-membrane proteins.  相似文献   

8.
Mutant of Escherichia coli have been analyzed which miss two of the major proteins of the outer cell envelope membrane. The two proteins I and II1, normally are present at high concentrations (about 105 copies per cell).In such mutants, as compared with wild type, the phospholipid-to-protein ratio in the outer membrane has increased by a factor of 2.3 causing a considerable difference in density between wild type and mutant membranes. The concentrations of two other major components of the outer membrane, lipopolysaccharide and Braun's lipoprotein, did not change.The protein-deficient mutants do not exhibit gross functional defects in vitro. An increased sensitivity to EDTA and a slight such increase to dodecyl sulfate (but not to deoxycholate or Triton X-100) was observed, loss of so-called periplasmic enzymes was not found, and other differences to wild type are marginal. The mutants can grow with normal morphology. It is not possible, however, to prepare “ghosts” (particles of size and shape of the cell without murein, surrounded by a derivative of the outer membrane, and posssessing the major proteins of this membrane) from them. This fact confirms our earlier suggestion that the proteins in question are required for the shape maintenance phenomenon in ghosts, and the mutants reject the speculation that these proteins are involved in the expression of the genetic information specifying cellular shape.Freeze-fracturing showed that in mutant cells, and in sharp contrast to wild type, the far predominant fracture plane is within the outer membrane. The concentration of the well known densely packed particles at the outer, concave leaflet of this fracture plane is greatly reduced. It was not possible, however, to clearly establish that one or the other protein is part of these particles because these ultrastructural differences were not apparent in mutants missing either one of the proteins only. The biochemical and ultrastructural data allow the conclusion that the loss of two major proteins and the concomitant increase of phospholipid concentration has changed the architecture of the outer membrane from a highly oriented structure. with a large fraction of protein-protein interaction, to one predominantly exhibiting planar lipid bilayer characteristics. E. coli thus can assemble rather different outer membranes, afact excluding that outer membrane formatin constitutes a highly ordered or strictly sequential assembly-line process.  相似文献   

9.
Murein lipoprotein from the outer membrane of Escherichia coli could be fixed to erythrocytes without pretreatment of the erythrocytes. Passive hemagglutination or immune hemolysis could thus be used as sensitive assays to determine antibodies against lipoprotein. In rabbit antisera prepared against whole cells of E. coli, Salmonella, Arizona, and Shigella antibodies against lipoprotein were present. The respective titers were lowest in encapsulated smooth strains and highest in rough mutants. Antisera against deep rough mutants showed even higher anti-lipoprotein titers than anti-R-lipopolysaccharide titers. Correspondingly,absorption of lipoprotein antibodies with enterobacterial strains was most pronounced with deep rough mutants and lowest with smooth strains. Lipoprotein becomes increasingly an immunogen as well as an antigen the more sugar residues are missing in the lipolysaccharide on the cell surface. In wild-type cells lipoprotein is buried in the outer membrane; its exposure in mutant cells is related to defects at the cell surface.  相似文献   

10.
We have compared the rate of assembly of outer membrane proteins including the lipoprotein in a pair of isogenic mlpA+ (lpp+) and mlpA (lpp) strains by pulse-chase experiments. The rate of assembly of the mutant prolipoprotein into the outer membrane was slightly slower than that of the wild-type lipoprotein. The rate of assembly of protein I and protein H-2 was similar in the wild type and the mutant, whereas the rate of assembly of protein II into the outer membrane was slightly reduced in the mutant strain. The organization of outer membrane was slightly reduced in the mutant strain. The organization of outer membrane proteins in the mutant cells appeared not to be grossly altered, based on the apparent resistance (or susceptibility) of these proteins toward trypsin treatment and their resistance to solubilization by Sarkosyl. Like the wild-type lipoprotein, the mutant prolipoprotein in the outer membrane was resistant to trypsin. On the other hand, the prolipoprotein in the cytoplasmic membrane fraction of the mutant cell envelope was susceptible to trypsin digestion. We conclude from these data that proteolytic cleavage of prolipoprotein is not essential for the translocation and proper assembly of lipoprotein into outer membrane.  相似文献   

11.
A method is described for the preparation of outer and cytoplasmic membranes of Pseudomonas aeruginosa, and the outer membrane proteins characterized. Isolated outer and cytoplasmic membranes differed markedly in the content of 2-keto-3-deoxyoctonate (lipopolysaccharide) and phospholipid as well as in the localization of certain enzymes (NADH oxidase, succinate dehydrogenase, D-lactate dehydrogenase, malate dehydrogenase, and phospholipase), and also in the microscopic morphology. The outer membrane preparation showed activity neutralizing a certain bacteriocin or bacteriophages, whereas the cytoplasmic membrane preparation showed no neutralizing activity. The protein composition of membrane preparations from five different strains of P. aeruginosa [P14, M92 (PAO1), PAC1, P15, and M2008 (PAT)] were determined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. More than 50 protein bands were detected in the cytoplasmic membrane preparation. The protein compositions of outer membranes from the five different strains were very similar: at least 6 major bands were found (apparent molecular weights: Band D, 50,000; band E, 45,000; band F, 33,000; bands G and H, 21,000; and band I, 8,000). The protein composition of outer membranes was affected by some physiological growth conditions. Some features of major outer membrane proteins were also studied. Band F showed anomalous migration on SDS polyacrylamide gel electrophoresis depending on the solubilizing conditions or pretreatment with TCA. Band I seemed to be a protein analogous to the lipoprotein which had been found in the outer membrane of Escherichia coli.  相似文献   

12.
EDTA-induced outer membrane losses from whole cells of wild-type Escherichia coli (O111:B4) and several lipopolysaccharide (LPS) mutants derived from E. coli K-12 D21 were analyzed. EDTA treatment induced losses of LPS (up to 40%), outer membrane proteins OmpA, OmpF/C, and lipoprotein, periplasmic proteins, and phosphatidylethanolamine. The extent of these releases was strain specific. Successively more EDTA was necessary to induce these losses from strains containing LPS with increasing polysaccharide chain length. An additional heat shock immediately following the EDTA treatment had no effect on LPS release, but it decreased the release of outer membrane proteins and reduced the leakage of periplasmic proteins, suggesting that the temporary increase in outer membrane "permeability" caused by Ca2+-EDTA treatment was rapidly reversed by the redistribution of outer membrane components, a process which is favored by a mild heat shock. The fact that the material released from E. coli C600 showed a constant ratio of lipoprotein, OmpA, and phosphatidylethanolamine at all EDTA concentrations tested suggests that the material is lost as specific outer membrane patches. The envelope alterations caused by EDTA did not result in cell lysis.  相似文献   

13.
Seventy independent mutants have been analyzed affecting a major protein, polypeptide II, of the outer cell envelope membrane from Escherichia coli K12. They were classified as nonsense mutants of the amber type (20%), mutants most likely of the missense type possessing the protein at normal concentrations (9%), and mutants either missing the protein or harboring it at much reduced concentrations for unknown reasons (71%). Forty of the mutants were analyzed genetically and all were found to map at or near ompA, the structural gene for protein II. Two-dimensional electrophoretic analyses of envelopes from such mutants revealed an unusual heterogeneity of the protein which on such patterns appeared as at least 12 well separated spots, and the majority of these is due to artifacts of the method but apparently specific for this protein. In no case was a polypeptide fragment found in envelopes from the nonsense mutants. The results are discussed regarding two different phages which use the protein as a receptor and concerning the biosynthetic incorporation of the protein into the outer membrane.  相似文献   

14.
Two families of Escherichia coli mutants with altered outer membrane protein components were examined for sensitivity to freezing and thawing and other stresses. A mutant unable to make the lipoprotein (lpo) was extremely sensitive to freezing and thawing in water or saline and to challenge with detergent, while the mutant unable to make the porin proteins (ompB) was more resistant than the isogenic wild type; strains unable to make the tsx and ompA proteins were slightly more sensitive to the stresses. Similarly, the lpo deficient strain exhibited more and the ompB less wall and membrane damage than the wild-type strains. Little difference in the extent of wall damage, but more membrane damage, was seen for the two tsx and the ompA strains when compared with the wild-type strain. The roles of the specific proteins in determining sensitivity to freeze-thaw are discussed.  相似文献   

15.
The barrier function of the Escherichia coli outer membrane against low concentrations of maltose in strains missing the lambda receptor was partially overcome by treating the cells for 3 h with 25 mM Ca2+. Kinetic analysis of maltose-transport revealed a Ca2+-induced shift of the apparent Km of the system from about 100 microM in cells pretreated with Tris to about 15 microM in cells pretreated with Tris plus Ca2+. In contrast to maltose transport in untreated cells, that of Ca2+-treated lamB cells was inhibited by molecules with a high molecular weight, such as amylopectin (molecular weight, 20,000), and anti-maltose-binding protein antibodies. In addition, lysozyme was shown to attack Ca2+-treated cells in contrast to untreated cells. The Ca2+-induced permeability increase of the outer membrane allowed reconstitution of maltose transport in a mutant missing the maltose-binding protein with osmotic shock fluid containing the maltose-binding protein. Even though Ca2+-treatment allowed the entry of large molecules, the release of the periplasmic maltose-binding protein or alkaline phosphatase was negligible.  相似文献   

16.
Protein compositions of the inner and outer membranes of Escherichia coli K-12 have been analyzed by two-dimensional gel electrophoresis in which proteins are separated according to apparent isoelectric point (first dimension) and to apparent molecular weight (second dimension). Membrane proteins except for a pair of major outer membrane proteins (proteins Ia and Ib) were found to be solubilized effectively by lysis buffer containing urea, Triton X-100, ampholines and 2-mercaptoethanol. The latter two proteins could be solubilized after precipitation of membrane fraction with trichloroacetic acid; they formed a pair of spots at an acidic region on the electropherogram. Another major protein of the outer membrane, protein II, was also identified. Most of the inner and outer membrane proteins were shown to be focused at a pH range between 4 and 6.5. Specific protein patterns characteristic for both the inner and outer membranes could thous be visualized by the present system. At least 120 and 50 protein species were detected for the inner and outer membranes, respectively.  相似文献   

17.
Colicin Ia can be cleaved by isolated outer membranes prepared from sensitive and resistant (lacking the colicin Ia receptor) strains of Escherichia coli. Both active and heat-denatured colicin Ia are extensively fragmented. Such proteolysis does not occur when colicin Ia is added to whole sensitive or resistant cells. These results demonstrate that cleavage of colicin Ia is not mediated by its outer membrane receptor.  相似文献   

18.
Outer membrane materials prepared from an Escherichia coli ompA (tolG) strain do not contain one of the major outer membrane proteins found in ompA+ strains. This protein has been purified in high yield from detergent-solubilized cell envelope material prepared from an ompA+ strain by preparative electrophoresis in polyacrylamide gels containing sodium dodecyl sulfate. The purified protein is homogeneous in three electrophoretic systems, contains 2 mol of reducing sugar/mol of peptide and has alanine as the N-terminal amino acid. The amino acid composition is nearly identical to outer membrane protein II or B purified by others from incompletely solubilized cell envelope material. Thus, the fraction of outer membrane protein II or B that is difficult to solubilize is identical with the more readily solubilized fraction.  相似文献   

19.
The involvement of lipopolysaccharide and outer membrane proteins in the binding ofEscherichia coli to cellulose was investigated. Cellulose binding was assayed in defined strains with or without O-antigenic polysaccharide and in mutants with defects in lipopolysaccharide core synthesis. Binding was also tested in strains lacking major outer membrane proteins. Optimal cellulose binding was exhibited by rough strains and was reduced to various extents in the presence of different O-antigens. Core defects also reduced but did not abolish binding to cellulose. Reduced binding was also found in mutants lacking OmpC protein, but OmpC/OmpA double mutants orompB mutants lacking OmpC and OmpF were not affected. Mutants with reduced cellulose binding were also isolated directly through selection of nonbinding populations after chromatography on cellulose columns. Each of the independent isolates derived fromE. coli K12 with reduced cellulose binding had multiple mutations, with additional phenotypic changes such as phage resistance, increased sensitivity to bile salts, or altered patterns of outer membrane proteins. These results suggest that no single receptor that could be altered by mutation was responsible for the binding ofE. coli to cellulose. Rather, the nonspecific binding of cellulose was more likely to be due to interaction with, or the combined activity of, several integral outer membrane components that could be masked by O-antigen.  相似文献   

20.
We report a novel strategy for selecting mutations that mislocalize lipoproteins within the Escherichia coli cell envelope and describe the mutants obtained. A strain carrying a deletion of the chromosomal malE gene, coding for the periplasmic maltose-binding protein (MalE), cannot use maltose unless a wild-type copy of malE is present in trans. Replacement of the natural signal peptide of preMalE by the signal peptide and the first four amino acids of a cytoplasmic membrane-anchored lipoprotein resulted in N-terminal fatty acylation of MalE (lipoMalE) and anchoring to the periplasmic face of the cytoplasmic membrane, where it could still function. When the aspartate at position +2 of this protein was replaced by a serine, lipoMalE was sorted to the outer membrane, where it could not function. Chemical mutagenesis followed by selection for maltose-using mutants resulted in the identification of two classes of mutations. The single class I mutant carried a plasmid-borne mutation that replaced the serine at position +2 by phenylalanine. Systematic substitutions of the amino acid at position +2 revealed that, besides phenylalanine, tryptophan, tyrosine, glycine and proline could all replace classical cytoplasmic membrane lipoprotein sorting signal (aspartate +2). Analysis of known and putative lipoproteins encoded by the E. coli K-12 genome indicated that these amino acids are rarely found at position +2. In the class II mutants, a chromosomal mutation caused small and variable amounts of lipoMalE to remain associated with the cytoplasmic membrane. Similar amounts of another, endogenous outer membrane lipoprotein, NlpD, were also present in the cytoplasmic membrane in these mutants, indicating a minor, general defect in the sorting of outer membrane lipoproteins. Four representative class II mutants analysed were shown not to carry mutations in the lolA or lolB genes, known to be involved in the sorting of lipoproteins to the outer membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号