首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
BirA catalyzes the adenylation and subsequent covalent attachment of biotin to the biotin carboxyl carrier protein (BCCP). In the absence of apo-BCCP, biotin-5'-AMP acts as a co-repressor that induces BirA dimerization and binding to the bio operator to repress biotin biosynthesis. The crystal structures of apo-BirA, and BirA in complex with biotin have been reported. We here describe the 2.8A resolution crystal structure of BirA in complex with the co-repressor analog biotinol-5'-AMP. It was previously shown that the structure of apo-BirA is monomeric and that binding of biotin weakly induces a dimeric structure in which three disordered surface loops become organized to form the dimer interface. The structure of the co-repressor complex is also a dimer, clearly related to the BirA.biotin structure, but with several significant conformational changes. A hitherto disordered "adenylate binding loop" forms a well-defined structure covering the co-repressor. The co-repressor buttresses the dimer interface, resulting in improved packing and a 12 degrees change in the hinge-bending angle along the dimer interface relative to the BirA.biotin structure. This helps explain why the binding of the co-repressor is necessary to optimize the binding of BirA to the bioO operator. The structure reveals an unexpected use of the nucleotide-binding motif GXGXXG in binding adenylate and controlling the repressor function. Finally, based on structural analysis we propose that the class of adenylating enzymes represented by BirA, lipoate protein ligase and class II tRNA synthetases diverged early and were selected based on their ability to sequester co-factors or amino acid residues, and adenylation activity arose independently through functional convergence.  相似文献   

3.
4.
Cooperative association of the Escherichia coli biotin repressor with the biotin operator is allosterically activated by binding of the corepressor, bio-5'-AMP. The corepressor function of the adenylate is due, in part, to its ability to induce repressor dimerization. Since a high-resolution structure of only the apo or unliganded repressor is currently available, the location of the dimerization interface on the protein structure is not known. Here, five mutants in the corepressor-binding domain of the repressor have been analyzed with respect to their DNA-binding and self-assembly properties. Results of these studies reveal that four of the mutant proteins exhibit defects in DNA binding. These same proteins are compromised in self-assembly. Furthermore, in the three-dimensional structure of the apo protein the mutations all lie in partially disordered surface loops, one of which is known to participate directly in corepressor binding. These results suggest that multiple disordered surface loops function in the corepressor-induced dimerization required for sequence-specific DNA binding by the biotin repressor.  相似文献   

5.
6.
7.
Biotin protein ligase of Escherichia coli, the BirA protein, catalyses the covalent attachment of the biotin prosthetic group to a specific lysine of the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase. BirA also functions to repress the biotin biosynthetic operon and synthesizes its own corepressor, biotinyl-5'-AMP, the catalytic intermediate in the biotinylation reaction. We have previously identified two charge substitution mutants in BCCP, E119K, and E147K that are poorly biotinylated by BirA. Here we used site-directed mutagenesis to investigate residues in BirA that may interact with E119 or E147 in BCCP. None of the complementary charge substitution mutations at selected residues in BirA restored activity to wild-type levels when assayed with our BCCP mutant substrates. However, a BirA variant, in which K277 of the C-terminal domain was substituted with Glu, had significantly higher activity with E119K BCCP than did wild-type BirA. No function has been identified previously for the BirA C-terminal domain, which is distinct from the central domain thought to contain the ATP binding site and is known to contain the biotin binding site. Kinetic analysis of several purified mutant enzymes indicated that a single amino acid substitution within the C-terminal domain (R317E) and located some distance from the presumptive ATP binding site resulted in a 25-fold decrease in the affinity for ATP. Our data indicate that the C-terminal domain of BirA is essential for the catalytic activity of the enzyme and contributes to the interaction with ATP and the protein substrate, the BCCP biotin domain.  相似文献   

8.
The biotin repressor is an allosterically regulated, site-specific DNA-binding protein. Binding of the small ligand bio-5′-AMP activates repressor dimerization, which is a prerequisite to DNA binding. Multiple disorder-to-order transitions, some of which are known to be important for the functional allosteric response, occur in the vicinity of the ligand-binding site concomitant with effector binding to the repressor monomer. In this work, the extent to which these local changes are coupled to additional changes in the structure/dynamics of the repressor was investigated using hydrogen/deuterium exchange coupled to mass spectrometry. Measurements were performed on the apo-protein and on complexes of the protein bound to four different effectors that elicit a range of thermodynamic responses in the repressor. Global exchange measurements indicate that binding of any effector to the intact protein is accompanied by protection from exchange. Mass spectrometric analysis of pepsin-cleavage products generated from the exchanged complexes reveals that the protection is distributed throughout the protein. Furthermore, the magnitude of the level of protection in each peptide from hydrogen/deuterium exchange correlates with the magnitude of the functional allosteric response elicited by a ligand. These results indicate that local structural changes in the binding site that occur concomitant with effector binding nucleate global dampening of dynamics. Moreover, the magnitude of dampening of repressor dynamics tracks with the magnitude of the functional response to effector binding.  相似文献   

9.
10.
11.
12.
Biotin protein ligase (EC 6.3.4.15) catalyses the synthesis of an activated form of biotin, biotinyl-5'-AMP, from substrates biotin and ATP followed by biotinylation of the biotin carboxyl carrier protein subunit of acetyl-CoA carboxylase. The three-dimensional structure of biotin protein ligase from Pyrococcus horikoshii OT3 has been determined by X-ray diffraction at 1.6A resolution. The structure reveals a homodimer as the functional unit. Each subunit contains two domains, a larger N-terminal catalytic domain and a smaller C-terminal domain. The structural feature of the active site has been studied by determination of the crystal structures of complexes of the enzyme with biotin, ADP and the reaction intermediate biotinyl-5'-AMP at atomic resolution. This is the first report of the liganded structures of biotin protein ligase with nucleotide and biotinyl-5'-AMP. The structures of the unliganded and the liganded forms are isomorphous except for an ordering of the active site loop upon ligand binding. Catalytic binding sites are suitably arranged to minimize the conformational changes required during the reaction, as the pockets for biotin and nucleotide are located spatially adjacent to each other in a cleft of the catalytic domain and the pocket for biotinyl-5'-AMP binding mimics the combination of those of the substrates. The exact locations of the ligands and the active site residues allow us to propose a general scheme for the first step of the reaction carried out by biotin protein ligase in which the positively charged epsilon-amino group of Lys111 facilitates the nucleophilic attack on the ATP alpha-phosphate group by the biotin carboxyl oxygen atom and stabilizes the negatively charged intermediates.  相似文献   

13.
14.
The Escherichia coli biotin operon repressor protein (BirA) has been overexpressed at the level of 0.5-1% of the total cellular protein from the plasmid pMBR10. Four lines of evidence demonstrated that authentic BirA protein was produced. First, birA plasmids complemented birA mutants for both the repressor and biotin holoenzyme synthetase activities of BirA. Second, biotin holoenzyme synthase activity was increased in strains containing the overproducing plasmids. Third, deletion of sequences flanking the birA gene did not alter production of the 35-kDa BirA protein, but insertion of oligonucleotide linkers within the birA coding region abolished it. Fourth, the 35-kDa protein copurified with the biotin binding activity normally associated with BirA. The birA protein has been purified to homogeneity in a three-step process involving chromatography on phosphocellulose and hydroxyapatite columns.  相似文献   

15.
16.
17.
The kinetics of coupling of protein dimerization and DNA binding have been investigated in the biotin repressor system. Two repressor monomers bind to the 40 base-pair biotin operator sequence. In previous analyses of equilibrium-binding data the weak dimerization of the repressor has justified using a model in which two protein monomers bind cooperatively to the operator site. Here, rapid kinetic methods have been used to directly determine the binding mechanism. Results of rapid-mixing DNaseI footprinting measurements of association of the repressor with operator indicate that the binding process involves at least two steps. Results of measurements of the unimolecular dissociation of the complex reveal a half-life of approximately 400 seconds. Analysis of the data using a combination of simulation and global non-linear least-squares analysis provides support for a binding model in which a preformed repressor dimer associates with the biotin operator. This kinetic model is consistent with the previously proposed model for regulation of the functional switch in the repressor from enzyme to site-specific DNA-binding protein.  相似文献   

18.
Biotin functions as a covalently bound cofactor of biotindependent carboxylases. Biotin attachment is catalyzed by biotin protein ligases, called holocarboxylase synthetase in mammals and BirA in prokaryotes. These enzymes show a high degree of sequence similarity in their biotinylation domains but differ markedly in the length and sequence of their N terminus. BirA is also the repressor of the biotin operon, and its DNA attachment site is located in its N terminus. The function of the eukaryotic N terminus is unknown. Holocarboxylase synthetase with N- and C-terminal deletions were evaluated for the ability to catalyze biotinylation after expression in Escherichia coli using bacterial and human acceptor substrates. We showed that the minimum functional protein is comprised of the last 349 of the 726-residue protein, which includes the biotinylation domain. Significantly, enzyme containing intermediate length, N-terminal deletions interfered with biotin transfer and interaction with different peptide acceptor substrates. We propose that the N terminus of holocarboxylase synthetase contributes to biotinylation through N- and C-terminal interactions and may affect acceptor substrate recognition. Our findings provide a rationale for the biotin responsiveness of patients with point mutations in the N-terminal sequence of holocarboxylase synthetase. Such mutant enzyme may respond to biotin-mediated stabilization of the substrate-bound complex.  相似文献   

19.
The binding of the Escherichia coli biotin holoenzyme synthetase to the two ligands, biotin and bio-5'-AMP, is coupled to disorder-to-order transitions in the protein. In the structure of the biotin complex, a "glycine-rich" loop that is disordered in the apo-enzyme is folded over the ligand. Mutations in three residues in this loop result in significant changes in the affinity of the enzyme for both biotin and bio-5'-AMP. The kinetic basis of these losses in the affinity resides primarily in changes in the unimolecular rates of dissociation of the complexes. In this work, isothermal titration calorimetry has been employed to examine the detailed thermodynamics of binding of three loop mutants to biotin and bio-5'-AMP. The energetic features of dissociation of the protein*ligand complexes also have been probed by measuring the temperature dependencies of the unimolecular dissociation rates. Analysis of the data using the Eyring formalism yielded entropic and enthalpic contributions to the energetic barrier to dissociation. The thermodynamic results coupled with the known structures of the apo-enzyme and biotin complex have been used to formulate a model for progression from the ground-state complex to the transition state in biotin dissociation. In this model, the transition-state is characterized by both partial disruption of noncovalent bonds and acquisition of some of the disorder that characterizes the glycine-rich loop in the absence of ligand.  相似文献   

20.
4,4'-bis(1-anilino-8-naphthalenesulfonic acid (Bis-ANS), an environment-sensitive fluorescent probe for hydrophobic region of proteins, binds specifically to the C-terminal domain of lambda repressor. The binding is characterized by positive cooperativity, the magnitude of which is dependent on protein concentration in the concentration range where dimeric repressor aggregates to a tetramer. In this range, positive cooperativity becomes more pronounced at higher protein concentrations. This suggests a preferential binding of Bis-ANS to the dimeric form of the repressor. Binding of single operator OR1 to the N-terminal domain of the repressor causes enhancement of fluorescence of the C-terminal domain bound Bis-ANS. The binding of single operator OR1 also leads to quenching of fluorescence of tryptophan residues, all of which are located in the hinge or the C-terminal domain. Thus two different fluorescent probes indicate an operator-induced conformational change which affects the C-terminal domain. The significance of this conformational change with respect to the function of lambda repressor has been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号