首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The interactive effects of ozone and light on leaf structure, carbon dioxide uptake and short-term carbon allocation of sugar maple ( Acer saccharum Marsh.) seedlings were examined using gas exchange measurements and 14C-macroautoradiographic techniques. Two-year-old sugar maple seedlings were fumigated from budbreak for 5 months with ambient or 3 × ambient ozone in open-top chambers, receiving either 35% (high light) or 15% (low light) of full sunlight. Ozone accelerated leaf senescence, and reduced net photosynthesis, 14CO2 uptake and stomatal conductance, with the effects being most pronounced under low light. The proportion of intercellular space increased in leaves of seedlings grown under elevated ozone and low light, possibly enhancing the susceptibility of mesophyll cells to ozone by increasing the cumulative dose per mesophyll cell. Indeed, damage to spongy mesophyll cells in the elevated ozone × low light treatment was especially frequent. 14C macroautoradioraphy revealed heterogeneous uptake of 14CO2 in well defined areole regions, suggesting patchy stomatal behaviour in all treatments. However, in seedlings grown under elevated ozone and low light, the highest 14CO2 uptake occurred along larger veins, while interveinal regions exhibited little or no uptake. Although visible symptoms of ozone injury were not apparent in these seedlings, the cellular damage, reduced photosynthetic rates and reduced whole-leaf chlorophyll levels corroborate the visual scaling of whole-plant senescence, suggesting that the ozone × low light treatment accelerated senescence or senescence-like injury in sugar maple.  相似文献   

2.
Physiological and chemical responses of 17 birch (Betula pendula Roth) clones to 1.5–1.7 × ambient ozone were studied in an open‐field experiment over two growing seasons. The saplings were studied for growth, foliar visible injuries, net photosynthesis, stomatal conductance, and chlorophyll, carotenoid, Rubisco, total soluble protein, macronutrient and phenolic concentrations in leaves. Elevated ozone resulted in growth enhancement, changes in shoot‐to‐root (s/r) ratio, visible foliar injuries, reduced stomatal conductance, lower late‐season net photosynthesis, foliar nutrient imbalance, changes in phenolic composition, and reductions in pigment, Rubisco and soluble protein contents indicating accelerated leaf senescence. Majority of clones responded to ozone by changing C allocation towards roots, by stomatal closure (reduced ozone uptake), and by investment in low‐cost foliar antioxidants to avoid and tolerate ozone stress. A third of clones, showing increased s/r ratio, relied on inducible efficient high‐cost antioxidants, and enhanced leaf production to compensate ozone‐caused decline in leaf‐level net photosynthesis. However, the best ozone tolerance was found in two s/r ratio‐unaffected clones showing a high constitutive amount of total phenolics, investment in low‐cost antioxidants and N distribution to leaves, and lower stomatal conductance under ozone stress. The results highlight the importance of phenolic compounds in ozone defence mechanisms in the birch population. Depending on the genotype, ozone detoxification was improved by an increase in either efficient high‐cost or less efficient low‐cost antioxidative phenolics, with close connections to whole‐plant physiology.  相似文献   

3.
We investigated the individual effect of null mutations of each of the four sucrose‐phosphate synthase (SPS) genes in Arabidopsis (SPSA1, SPSA2, SPSB and SPSC) on photosynthesis and carbon partitioning. Null mutants spsa1 and spsc led to decreases in maximum SPS activity in leaves by 80 and 13%, respectively, whereas null mutants spsa2 and spsb had no significant effect. Consistently, isoform‐specific antibodies detected only the SPSA1 and SPSC proteins in leaf extracts. Leaf photosynthesis at ambient [CO2] was not different among the genotypes but was 20% lower in spsa1 mutants when measured under saturating [CO2] levels. Carbon partitioning at ambient [CO2] was altered only in the spsa1 null mutant. Cold treatment of plants (4 °C for 96 h) increased leaf soluble sugars and starch and increased the leaf content of SPSA1 and SPSC proteins twofold to threefold, and of the four null mutants, only spsa1 reduced leaf non‐structural carbohydrate accumulation in response to cold treatment. It is concluded that SPSA1 plays a major role in photosynthetic sucrose synthesis in Arabidopsis leaves, and decreases in leaf SPS activity lead to increased starch synthesis and starch turnover and decreased Ribulose 1,5‐bisphosphate regeneration‐limited photosynthesis but not ribulose 1·5‐bisphosphate carboxylase/oxygenase (Rubisco)‐limited photosynthesis, indicating a limitation of triose‐phosphate utilization (TPU).  相似文献   

4.
We studied the impact of ozone enrichment and late frost, singly and interactively, on four birch (Betula pendula Roth) families selected from a naturally regenerated birch stand in southeastern Finland. Seedlings were exposed to 1.5× ambient ozone over one and a half growing seasons using free-air ozone enrichment system. Simulated springtime frost was implemented at the beginning of the second study year, 4 weeks after the bud burst. Plants were measured for timing of bud burst, visible ozone injuries, chlorophyll fluorescence, net photosynthesis and concentrations of photosynthetic pigments, as well as for growth and carbon allocation. Frost treatment caused a rapid 60% decline in net photosynthesis. The recovery of net photosynthesis from acute frost treatment was not complete during the subsequent 3 weeks, which led to significant growth reductions, decreased shoot/root ratio and accumulation of excess nitrogen in the leaves. Photosynthetic responses to ozone were very variable and family-specific. Concentrations of photosynthetic pigments were sensitive to both stress factors, while the maximum quantum yield of PSII was unaffected. Ozone exacerbated the effect of frost only on diameter increment. However, ozone and frost affected different seedling characters, e.g., ozone reduced pigments and frost collapsed net photosynthesis, and these effect combined appear to damage birch seedlings more than a single stress situation.  相似文献   

5.
The balance between carbon assimilation, storage and utilisation during photosynthesis is dependent on partitioning of photoassimilate between starch and sucrose, and varies in response to changes in the environment. However, the extent to which the capacity to modulate carbon partitioning rapidly through short‐term allosteric regulation may contribute to plant performance is unknown. Here we examine the physiological role of fructose 2,6‐bisphosphate (Fru‐2,6‐P2) during photosynthesis, growth and reproduction in Arabidopsis thaliana (L.). In leaves this signal metabolite contributes to coordination of carbon assimilation and partitioning during photosynthesis by allosterically modulating the activity of cytosolic fructose‐1,6‐bisphosphatase. Three independent T‐DNA insertional mutant lines deficient in 6‐phosphofructo‐2‐kinase/fructose‐2,6‐bisphosphatase (F2KP), the bifunctional enzyme responsible for both the synthesis and degradation of Fru‐2,6‐P2, lack Fru‐2,6‐P2. These plants have normal steady‐state rates of photosynthesis, but exhibit increased partitioning of photoassimilate into sucrose and have delayed photosynthetic induction kinetics. The F2KP‐deficient plants grow normally in constant environments, but show reduced growth and seed yields relative to wildtype plants in fluctuating light and/or temperature. We conclude that Fru‐2,6‐P2 is required for optimum regulation of photosynthetic carbon metabolism under variable growth conditions. These analyses suggest that the capacity of Fru‐2,6‐P2 to modulate partitioning of photoassimilate is an important determinant of growth and fitness in natural environments.  相似文献   

6.
Plant growth involves the coordinated distribution of carbon resources both towards structural components and towards storage compounds that assure a steady carbon supply over the complete diurnal cycle. We used 14CO2 labelling to track assimilated carbon in both source and sink tissues. Source tissues exhibit large variations in carbon allocation throughout the light period. The most prominent change was detected in partitioning towards starch, being low in the morning and more than double later in the day. Export into sink tissues showed reciprocal changes. Fewer and smaller changes in carbon allocation occurred in sink tissues where, in most respects, carbon was partitioned similarly, whether the sink leaf assimilated it through photosynthesis or imported it from source leaves. Mutants deficient in the production or remobilization of leaf starch exhibited major alterations in carbon allocation. Low‐starch mutants that suffer from carbon starvation at night allocated much more carbon into neutral sugars and had higher rates of export than the wild type, partly because of the reduced allocation into starch, but also because of reduced allocation into structural components. Moreover, mutants deficient in the plant's circadian system showed considerable changes in their carbon partitioning pattern suggesting control by the circadian clock.  相似文献   

7.
Field‐grown yellow‐poplar (Liriodendron tulipifera L.) werefumigated from May to October in 1992–96 within open‐topchambers to determine the impact of ozone (O3) aloneor combined with elevated carbon dioxide (CO2) on saplinggrowth. Treatments were replicated three times and included: charcoal‐filteredair (CF); 1 × ambient ozone (1 × O3);1·5 × ambient ozone (1·5 × O3);1·5 × ambient ozone plus 350 p.p.m.carbon dioxide (1·5 × O3 + CO2)(target of 700 p.p.m. CO2); and open‐air chamberlessplot (OA). After five seasons, the total cumulative O3 exposure (SUM00 = sumof hourly O3 concentrations during the study) rangedfrom 145 (CF) to 861 (1·5 × O3) p.p.m. × h (partsper million hour). Ozone had no statistically significant effecton yellow‐poplar growth or biomass, even though total root biomasswas reduced by 13% in the 1·5 × O3‐exposedsaplings relative to CF controls. Although exposure to 1·5 × O3 + CO2 hada stimulatory effect on yearly basal area growth increment aftertwo seasons, significant increases in shoot and root biomass (~ 60% increaserelative to all others) were not detected until the fifth season.After five seasons, the yearly basal area growth increment of saplingsexposed to 1·5 × O3 + CO2‐air increasedby 41% relative to all others. Based on this multi‐yearstudy, it appears that chronic O3 effects on yellow‐poplargrowth are limited and slow to manifest, and are consistent withprevious studies that show yellow‐poplar growth is not highly responsiveto O3 exposure. In addition, these results show thatenriched CO2 may ameliorate the negative effects of elevatedO3 on yellow‐poplar shoot growth and root biomass underfield conditions.  相似文献   

8.
The effects of low‐level ozone exposure and suppression of natural mycorrhizas on the above‐ground chemical quality of Scots pine (Pinus sylvestris L.) needles and insect herbivore performance were studied in a two‐year field experiment. Seedlings were fumigated with the ozone doses 1.5–1.7 times the ambient, and natural mycorrhizal infection level was about 35% reduced in roots with fungicide propiconazole. On ozone‐exposed seedlings the mean relative growth rate (MRGR) of Lygus rugulipennis Popp. nymphs was lower than on ambient ozone seedlings, but Gilpinia pallida Klug sawfly larvae grew better on elevated ozone seedlings than on ambient ozone seedlings. MRGR of Schizolachnus pineti Fabr. and Cinara pinea L. aphid nymphs or Neodiprion sertifer Geoffr. sawfly larvae or the oviposition of L. rugulipennis and N. sertifer were not affected by ozone exposure. Although ozone exposure did not affect total phenolics, total terpene, total or individual resin acid, total free amino acid, nutrient or sugar concentrations in needles, MRGR of L. rugulipennis positively correlated with total terpenes and MRGR of G. pallida positively with total amino acids. In addition, ozone exposure increased serine and proline concentration and marginally also starch concentration in needles. When mycorrhizas were reduced with fungicide, only MRGR of L. rugulipennis nymphs increased, but performance of other insect herbivores studied was not changed. However, number of L. rugulipennis eggs correlated positively with mycorrhizal infection level and also with total sugars. Reduction of mycorrhizas did not strongly affect the concentrations of analysed compounds in needles, because only phosphorus and potassium and some individual resin acids were reduced by fungicide treatment. These results suggest that low‐level ozone exposure and moderately declined mycorrhizal infection do not drastically affect either the above‐ground chemical quality of Scots pine seedlings or performance of studied insect herbivores.  相似文献   

9.
Direct and interactive effects of CO2 and light on tree phytochemistry and insect fitness parameters were examined through experimental manipulations of plant growth conditions and performance of insect bioassays. Three species of deciduous trees (quaking aspen, Populus tremuloides; paper birch, Betula papyrifera; sugar maple, Acer saccharum) were grown under ambient (387±8 μL/L) and elevated (696±2 μL/L) levels of atmospheric CO2, with low and high light availability (375 and 855 μmol×m?2×s?1 at solar noon). Effects on the population and individual performance of a generalist phytophagous insect, the white‐marked tussock moth (Orgyia leucostigma) were evaluated. Caterpillars were reared on experimental trees for the duration of the larval stage, and complementary short‐term (fourth instar) feeding trials were conducted with insects fed detached leaves.
Phytochemical analyses demonstrated strong effects of both CO2 and light on all foliar nutritional variables (water, starch and nitrogen). For all species, enriched CO2 decreased water content and increased starch content, especially under high light conditions. High CO2 availability reduced levels of foliar nitrogen, but effects were species specific and most pronounced for high light aspen and birch. Analyses of secondary plant compounds revealed that levels of phenolic glycosides (salicortin and tremulacin) in aspen and condensed tannins in birch and maple were positively influenced by levels of both CO2 and light. In contrast, levels of condensed tannins in aspen were primarily affected by light, whereas levels of ellagitannins and gallotannins in maple responded to light and CO2, respectively.
The long‐term bioassays showed strong treatment effects on survival, development time, and pupal mass. In general, CO2 effects were pronounced in high light and decreased along the gradient aspen birch maple. For larvae reared on high light aspen, enriched CO2 resulted in 62% fewer survivors, with increased development time, and reduced pupal mass. For maple‐fed insects, elevated CO2 levels had negative effects on survival and pupal mass in low light. For birch, the only negative CO2 effects were observed in high light, where female larvae showed prolonged development. Fourth instar feeding trials demonstrated that low food conversion efficiency reduced insect performance. Elevated levels of CO2 significantly reduced total consumption, especially by insects on high light aspen and low light maple.
This research demonstrates that effects of CO2 on phytochemistry and insect performance can be strongly light‐dependent, and that plant responses to these two environmental variables differ among species. Overall, increased CO2 availability appeared to increase the defensive capacity of early‐successional species primarily under high light conditions, and of late‐successional species under low light conditions. Due to the interactive effects of tree species, light, CO2, and herbivory, community composition of forests may change in the future.  相似文献   

10.
Effects of elevated carbon dioxide (CO2) and ozone (O3) on wood properties of two initially 7‐year‐old silver birch (Betula pendula Roth) clones were studied after a fumigation during three growing seasons. Forty trees, representing two fast‐growing clones (4 and 80), were exposed in open‐top chambers to the following treatments: outside control, chamber control, 2 × ambient [CO2], 2 × ambient [O3] and 2 × ambient [CO2]+2 × ambient [O3]. After the 3‐year exposure, the trees were felled and wood properties were analyzed. The treatments affected both stem wood structure and chemistry. Elevated [CO2] increased annual ring width, and concentrations of extractives and starch, and decreased concentrations of cellulose and gravimetric lignin. Elevated O3 decreased vessel percentage and increased cell wall percentage in clone 80. In vessel percentage, elevated CO2 ameliorated the O3‐induced decrease. In clone 4, elevated O3 decreased nitrogen concentration of wood. The two clones had different wood properties. In clone 4, the concentrations of extractives, starch, soluble sugars and nitrogen were greater than in clone 80, while in clone 80 the concentrations of cellulose and acid‐soluble lignin were higher. Clone 4 also had slightly longer fibres, greater vessel lumen diameter and vessel percentage than clone 80, while in clone 80 cell wall percentage was greater. Our results show that wood properties of young silver birch trees were altered under elevated CO2 in both clones, whereas the effects of O3 depended on clone.  相似文献   

11.
Variation in tolerance to nutrient limitations may contribute to the differential success of sugar maple ( Acer saccharum Marsh.) and red maple ( Acer rubrum L.) on acid soils. The objectives of this study were to examine these relationships as influenced by light environment and test whether sensitivity to nutrient stress is mediated by oxidative stress. First-year sugar maple and red seedlings were grown on forest soil cores contrasting in nutrient availability under high or low light intensity. Foliar nutrition, photosynthesis, growth and antioxidant enzyme activity were assessed. Photosynthesis and growth of sugar maple were significantly lower on nutrient-poor soils and were correlated with leaf nutrient status with Ca and P having the strongest influence. For red maple, only chlorophyll content showed sensitivity to the nutrient-poor soils. High light exacerbated the negative effects of nutrient imbalances on photosynthesis and growth in sugar maple. Antioxidant enzyme activity in sugar maple was highest in seedlings growing on nutrient-poor soils and was inversely correlated with photosynthesis, Ca, P, and Mg concentrations. These results suggest that: (1) sugar maple is more sensitive to nutrient stresses associated with low pH soils than red maple; (2) high light increases sugar maple sensitivity to nutrient stress; (3) the negative effects of nutrient imbalances on sugar maple may be mediated by oxidative stress.  相似文献   

12.
Acclimation of cyanobacteria to ambient fluctuations in inorganic carbon (Ci) and temperature requires reorganization of the major protein complexes involved in photosynthesis. We grew cultures of the picoplanktonic cyanobacterium Synechococcus elongatus Naegeli across most of its range of tolerable temperatures from 23 to 35°C at both low (<0.1 mM) and high Ci (approximately 4 mM). Over that range of temperatures, the chl‐based doubling time did not differ between low and high Ci grown cells but did increase with decreasing temperature. Cells grown at 23°C high Ci showed an elongated morphology, which was not present in 23°C low Ci cells nor at 35°C high and low Ci. Furthermore, 23°C high Ci cells showed premature senescence and death compared with all other treatments. Phycocyanin per cell was greater in high Ci grown cells at all temperatures but showed a characteristic decrease with decreasing temperature. Functional PSII determination showed that 23°C high Ci cells had 1.5 × 105 PSII·cell–1 compared with only 6.9 × 104 PSII·cell–1 for 23°C low Ci. The 35°C high and low Ci cells had 7.7 × 104 and 6.4 × 104 PSII·cell–1, respectively. These data were supported by immunoblot determinations of PsbA content·cell–1. As a result of their high PSII·cell–1, 23°C high Ci cells generated more reductant from PSII than could be accommodated by downstream assimilative metabolism, resulting in early senescence and death of 23°C high Ci cells, probably as a result of the generation of reactive byproducts of electron transport.  相似文献   

13.
A link between senescence‐induced decline in photosynthesis and activity of β‐glucosidase is examined in the leaves of Arabidopsis. The enzyme is purified and characterized. The molecular weight of the enzyme is 58 kDa. It shows maximum activity at pH 5.5 and at temperature of 50°C. Photosynthetic measurements and activity of the enzyme are conducted at different developmental stages including senescence of leaves. Senescence causes a significant loss in total chlorophyll, stomatal conductance, rate of evaporation and in the ability of the leaves for carbon dioxide fixation. The process also brings about a decline in oxygen evolution, quantum yield of photosystem II (PS II) and quantum efficiency of PS II photochemistry of thylakoid membrane. The loss in photosynthesis is accompanied by a significant increase in the activity of the cell wall‐bound β‐glucosidase that breaks down polysaccharides to soluble sugars. The loss in photosynthesis as a signal for the enhancement in the activity of the enzyme is confirmed from the observation that incubation of excised mature leaves in continuous dark or in light with a photosynthesis inhibitor 3‐(3,4‐dichlorophenyl)‐1, 1‐dimethylurea (DCMU) that leads to sugar starvation enhances the activity of the enzyme. The work suggests that in the background of photosynthetic decline, the polysaccharides bound to cell wall that remains intact even during late phase of senescence may be the last target of senescing leaves for a possible source of sugar for remobilization and completion of the energy‐dependent senescence program.  相似文献   

14.
Carbon allocation and partitioning were investigated in the first internode of light-grown Sinapís alba L. seedlings exposed to white light (WL) with or without supplementary far-red light (FR). In the internode, supplementary FR increased the rates of extension-growth and the accumulation of radiolabeled carbon (fed through the leaves), reducing sugars (even per unit volume), starch, hemicellulose and cellulose, but had no effect on the levels of sucrose and ammonium oxalate-solubilised cell wall carbohydrates, on invertase activity or on the use of additional sucrose fed through the leaves. In source leaves, supplementary FR had no effect on photosynthesis rates and reduced the accumulation of radiolabeled carbon. Mechanical reduction of stem extension-growth responses to supplementary FR did not affect internode carbohydrate or carbon accumulation responses. Supplementary FR provided only to one leaf had no effect on internode extension growth but increased carbon accumulation in the internode. provided that supplementary FR and radiolabeled carbon were both given to the same leaf. Phytochrome-mediated effects on carbon partitioning are not the mere consequence of internode extension-growth responses. Some additional control point(s) (e.g. leaf-source strength) must be under the direct influence of phytochrome.  相似文献   

15.
We used instantaneous temperature responses of CO2‐respiration to explore temperature acclimation dynamics for Eucalyptus grandis grown with differing nitrogen supply. A reduction in ambient temperature from 23 to 19 °C reduced light‐saturated photosynthesis by 25% but increased respiratory capacity by 30%. Changes in respiratory capacity were not reversed after temperatures were subsequently increased to 27 °C. Temperature sensitivity of respiration measured at prevalent ambient temperature varied little between temperature treatments but was significantly reduced from ~105 kJ mol?1 when supply of N was weak, to ~70 kJ mol?1 when it was strong. Temperature sensitivity of respiration measured across a broader temperature range (20–40 °C) could be fully described by 2 exponent parameters of an Arrhenius‐type model (i.e., activation energy of respiration at low reference temperature and a parameter describing the temperature dependence of activation energy). These 2 parameters were strongly correlated, statistically explaining 74% of observed variation. Residual variation was linked to treatment‐induced changes in respiration at low reference temperature or respiratory capacity. Leaf contents of starch and soluble sugars suggest that respiratory capacity varies with source‐sink imbalances in carbohydrate utilization, which in combination with shifts in carbon‐flux mode, serve to maintain homeostasis of respiratory temperature sensitivity at prevalent growth temperature.  相似文献   

16.
In the first experiment, saplings of ozone-sensitive and a more tolerant clone of Betula pendula Roth were exposed to ambient ozone (control treatment, accumulated exposure over a threshold 40 nmol mol ? 1 (AOT40) exposure of 1·0 μmol mol ? 1 h) and 1·5 × ambient ozone (elevated-ozone treatment, AOT40 of 17·3 μmol mol ? 1 h) over one growing season, 1996. After over-wintering, the dormant elevated-ozone saplings were transferred to the control blocks and assessed for short-term carry-over effects during the following growing season. In the second experiment, three sensitive, four intermediate and three tolerant clones were grown under ambient ozone (control treatment, AOT40 of 0·5–0·8 μmol mol ? 1 h per growing season) and 1·6–1·7 × ambient ozone (elevated-ozone treatment, AOT40 of 18·3–18·6 μmol mol ? 1 h per growing season) from May 1994 until May 1996, and were assessed for long-term carry-over effects during growing season 1997, after a 12–16 months recovery period. Deleterious short-term carry-over effects of ozone exposure included reduced contents of Rubisco, chlorophyll, carotenoids, starch and nutrients in leaves, lower stomatal conductance, and decreased new shoot growth and net assimilation rate, followed by a 7·5% (shoot dry weight (DW)), 15·2% (root DW) and 23·2% (foliage area) decreased biomass accumulation and yield over the long term, including a reduced root : shoot ratio. However, a slow recovery of relative growth rates during the following two seasons without elevated ozone was apparent. Several long-lasting structural, biochemical and stomatal acclimation, stress-defence and compensation reactions were observed in the ozone-tolerant clone, whereas in the sensitive clone allocation shifted from growth towards defensive phenolics such as chlorogenic acid. The results provide evidence of persistent deleterious effects of ozone which remain long after the ozone episode.  相似文献   

17.
Global climate change is expected to affect how plants respond to their physical and biological environments. In this study, we examined the effects of elevated CO2 ([CO2]) and low soil moisture on the physiological responses of mountain maple (Acer spicatum L.) seedlings to light availability. The seedlings were grown at ambient (392 µmol mol−1) and elevated (784 µmol mol−1) [CO2], low and high soil moisture (M) regimes, at high light (100%) and low light (30%) in the greenhouse for one growing season. We measured net photosynthesis (A), stomatal conductance (g s), instantaneous water use efficiency (IWUE), maximum rate of carboxylation (V cmax), rate of photosynthetic electron transport (J), triose phosphate utilization (TPU)), leaf respiration (R d), light compensation point (LCP) and mid-day shoot water potential (Ψx). A and g s did not show significant responses to light treatment in seedlings grown at low soil moisture treatment, but the high light significantly decreased the C i/C a in those seedlings. IWUE was significantly higher in the elevated compared with the ambient [CO2], and the effect was greater at high than the low light treatment. LCP did not respond to the soil moisture treatments when seedlings were grown in high light under both [CO2]. The low soil moisture significantly reduced Ψx but had no significant effect on the responses of other physiological traits to light or [CO2]. These results suggest that as the atmospheric [CO2] rises, the physiological performance of mountain maple seedlings in high light environments may be enhanced, particularly when soil moisture conditions are favourable.  相似文献   

18.
The capacity of forests to mitigate global climate change can be negatively influenced by tropospheric ozone that impairs both photosynthesis and stomatal control of plant transpiration, thus affecting ecosystem productivity and watershed hydrology. We have evaluated individual and interactive effects of ozone and climate on late season streamflow for six forested watersheds (38–970 000 ha) located in the Southeastern United States. Models were based on 18–26 year data records for each watershed and involved multivariate analysis of interannual variability of late season streamflow in response to physical and chemical climate during the growing season. In all cases, some combination of ozone variables significantly improved model performance over climate‐only models. Effects of ozone and ozone × climate interactions were also consistently negative and were proportional to variations in actual ozone exposures, both spatially across the region and over time. Conservative estimates of the influence of ozone on the variability (R2) of observed flow ranged from 7% in the area of lowest ozone exposure in West Virginia to 23% in the areas of highest exposure in Tennessee. Our results are supported by a controlled field study using free‐air concentration enrichment methodology which indicated progressive ozone‐induced loss of stomatal control over tree transpiration during the summer in mixed aspen‐birch stands. Despite the frequent assumption that ozone reduces tree water loss, our findings support increasing evidence that ozone at near ambient concentrations can reduce stomatal control of leaf transpiration, and increase water use. Increases in evapotranspiration and associated streamflow reductions in response to ambient ozone exposures are expected to episodically increase the frequency and severity of drought and affect flow‐dependent aquatic biota in forested watersheds. Regional and global models of hydrologic cycles and related ecosystem functions should consider potential interactions of ozone with climate under both current and future warmer and ozone‐enriched climatic conditions.  相似文献   

19.
An assessment of the effects of arbuscular mycorrhizal (AM) infection on photosynthesis, carbon (C) allocation, translocation and biomass production of cucumber, grown in sand culture, was made using a previously determined phosphorus (P) supply (0·13 mol m?3 P) which had a significant impact on AM infection. Separation of a direct effect of AM infection from an indirect one due to an enhanced leaf P status was achieved using a comparable non‐mycorrhizal treatment (NAM + P) supplemented with extra P (0·19 mol m?3 P). Total leaf P concentration, specific leaf mass, photosynthetic capacity, and incorporation of 14C into non‐structural carbohydrate pools were dependent on leaf age. Both maximum and ambient photosynthetic rates were significantly higher in the youngest fully expanded leaves from AM and NAM + P plants which also had the higher leaf P concentrations. There were no differences in the total concentrations of starch, sucrose, raffinose or stachyose in young or old leaves among AM, non‐mycorrhizal (NAM) and NAM + P treatments. However, younger leaves of NAM plants showed a shift in 14C‐partitioning from stachyose and raffinose synthesis to starch accumulation. Determination of ADP‐glucose pyrophosphorylase (AGPase), sucrose synthase and sucrose phosphate synthase enzyme activities revealed that only AGPase activity was correlated with the increased incorporation rate of 14C into starch in young leaves of NAM plants. Although there were significant AM‐specific effects on C translocation to the root system, AM plants had similar rate of photosynthesis to NAM + P plants. These results suggest that the increase in photosynthetic rate in leaves of AM‐infected cucumber was due to an increased P status, rather than a consequence of a mycorrhizal ‘sink’ for assimilates.  相似文献   

20.
Aims Some shade-tolerant understory tree species such as mountain maple (Acer spicatum L.) exhibit light-foraging growth habits. Changes in environmental conditions, such as the rise of carbon dioxide concentration ([CO2]) in the atmosphere and soil warming, may affect the performance of these species under different light environments. We investigated how elevated [CO2] and soil warming influence the growth and biomass responses of mountain maple seedlings to light availability.Methods The treatments were two levels of light (100% and 30% of the ambient light in the greenhouse), two [CO2] (392 μmol mol-1 (ambient) and 784 μmol mol-1 (elevated)) and two soil temperatures (T soil) (17 and 22°C). After one growing season, we measured seedling height, root collar diameter, leaf biomass, stem biomass and root biomass.Important findings We found that under the ambient [CO2], the high-light level increased seedlings height by 70% and 56% at the low T soil and high T soil, respectively. Under the elevated [CO2], however, the high-light level increased seedling height by 52% and 13% at the low T soil and high T soil, respectively. The responses of biomasses to light generally followed the response patterns of height growth under both [CO2] and T soil and the magnitude of biomass response to light was the lowest under the elevated [CO2] and warmer T soil. The results suggest that the elevated [CO2] and warmer T soil under the projected future climate may have negative impact on the colonization of open sites and forest canopy gaps by mountain maple.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号