首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spinach plastocyanin was converted into the apoprotein. CuSO4 and oxidized Cu(II)- thionein reacted with the apoprotein to Cu(II) plastocyanin. Cu(I) transfer from Cu(I)0-thionein was only 15%. The structural analogue of the copper thiolate chromophore [Cu(I)(thiourea)3]Cl as well as [Cu(CH3CN)4]ClO4 successfully formed the Cu(I)- holoprotein. Characteristic circular dichroism bands at θ284 (?5300 deg·cm2·dmol?1 and θ310 (+3300 deg·cm2·dmol?1) were seen. Upon oxidation with ferricyanide and dialysis against phosphate buffer the correct Cu(II) binding into the active centre of Cu(II) plastocyanin was confirmed by EPR-measurements. The use of [Cu(I)(thiourea)3] Cl as a convenient Cu(I) source for reconstitution studies on copper proteins is highly recommended.  相似文献   

2.
The direct incorporation of Cu(I) from [Cu(I)(thiourea)3]Cl, a structural analogue of Cu-thionein, into apo-stellacyanin, was successful both aerobically and anaerobically. A characteristic c.d. band of Cu(I)-stellacyanin at 270 nm (0 = -12.5 X 10(3) degrees X cm2 X dmol-1) was seen. On oxidation with hexacyanoferrate(III) or by air, the correct Cu(II) binding into the active centre of this 'Type 1' Cu-protein was deduced from chiroptical measurements which were supported by e.p.r. data. Thus Cu-thiourea turned out to be an excellent Cu(I)-donor in aqueous systems for the complete reconstitution of mononuclear Blue copper proteins.  相似文献   

3.
A new quinolone-metal complex was prepared by a hydrothermal reaction in the presence of L-histidine that served as a reducing agent for a metal. The title compound [Cu(II)(cfH)(2)(Cu(I)Cl(2))(2)] (1) is a mixed-valence Cu(II)-Cu(I) complex, which contains two ciprofloxacin (cfH) molecules bonded to the central copper(II) atom and two almost planar [Cu(I)Cl(2)](-) moieties. Both metal centers are connected through two bridging atoms (chloride and quinolone oxygen). The electrochemical methods (differential-pulse polarography and cyclovoltammetric measurements) confirmed the presence of various copper-ciprofloxacin complex species in aqueous solution at low concentrations used in biological activity tests and also indicated that the equilibria in this system are very complex. The biological properties of the title compound and some previously isolated copper-ciprofloxacin complexes ([Cu(cfH)(2)Cl(2)].6H(2)O (2) and [CuCl(cfH)(phen)]Cl.2H(2)O (3)) (phen=1, 10-phenantroline) were determined and compared. The DNA gyrase inhibition tests and antibacterial activity tests have shown that the effect of copper complexes is comparable to that of free quinolone. Additionally, an interesting DNA cleavage activity of the title compound was also discovered.  相似文献   

4.
The hydroxo-bridged dinuclear copper (II)/phen complex [Cu(2)(phen)(2)(OH)(2)(H(2)O)(2)][Cu(2)(phen)(2)(OH)(2)Cl(2)]Cl(2).6H(2)O (phen=1,10-phenanthroline) has been prepared and characterized by single crystal X-ray diffraction. The coordinated area of the complex shows two distorted [CuN(2)O(2)O(w)] and [CuN(2)O(2)Cl] square-pyramidal and one strictly planar configuration CuO(2)Cu involving two O atoms of hydroxo-bridged, Cu(2+) cations, N atoms of two phen ligands and disorder solvate water and chlorine anions. In the presence of H(2)O(2), the complex of mono(1,10-phenanthroline)copper exhibits higher activity as a nuclease than bis(1,10-phenanthroline)copper.  相似文献   

5.
Thiabendazole (TBZH) reacts with iron(III) nitrate causing protonation of the ligand to yield the nitrate salt [TBZH(2)NO(3)] (1). Reaction of TBZH with copper(II) acetate results in the deprotonation of the ligand yielding [Cu(TBZ)2.(H2O)2] (2). Reactions of TBZH with the chloride, nitrate and butanedioate salts of copper(II) yields [Cu(TBZH)2Cl]Cl.H2O.EtOH (3), [Cu(TBZH)(2)(NO(3))(2)] (4) and [Cu(TBZH)(O(2)C-CH(2)CH(2)-CO(2))] (5), respectively. The TBZH acts as a neutral chelating ligand in 3-5. Molecular structures of 1 and 3 were determined crystallographically. In 1, the asymmetric unit contains one TBZH(2)(+) cation and one NO(3)(-) anion. The structure of 3 comprises a five coordinate copper centre with the metal bound to two chelating TBZH ligands and one chloride. The geometry is best described as trigonal bipyramidal. Hydrogen bonding connects the complex cation with the uncoordinated chloride anion and the water and ethanol solvate molecules. Compound 1 and the copper complexes 2-5, the metal free ligands and a number of simple copper(II) salts were each tested for their ability to inhibit the growth of Candida albicans. The metal free TBZH and its nitrate salt (1) exhibited very poor activity. Complex 2, in which the TBZH is present as an anionic ligand (TBZ(-)), exhibits moderate activity towards the pathogen. Chelation of the neutral TBZH to copper centres (complexes 3-5) results in potent anti-candida activity. The dimethyl sulphoxide (DMSO) soluble complexes 3 and 4, along with metal free TBZH were assessed for their cancer chemotherapeutic potential towards two human epithelial-derived cancer model cell lines. Complexes 3 and 4 displayed similar dose-dependent cytotoxicity in both cell lines with IC(50) values of approximately 50 microM, which were found to be significantly lower than that for metal free TBZH.  相似文献   

6.
After having set up the computational methodology for Cu(I)-sulfur systems as models for copper proteins, namely using the simple ligands H(2)S, HS(-), CH(3)SH, and CH(3)S(-), the Cu(I)-Cysteine systems have been investigated: [Cu(I)( S -H(2)Cys) (n) ](+) (H(2)Cys, cysteine, NH(2),SH,COOH) [Cu(I)( S -HCys) (n) ](1-) (n) (NH(2),S(-),COOH). Finally, the structures for bi-nuclear [Formula: see text] (Et, CH(2)CH(3)), [Formula: see text] and tri-nuclear [Cu(I)( S -SH)](3), [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] (NH(2),SH,COOH), [Formula: see text] (NH(2),S(-),COOH, and NH(2),SH,COO(-)), as well as [Formula: see text] (NH(2),S(-),COO(-)), were also optimized to mimic the active center for a metallo-chaperone copper transport protein (CopZ). The X-ray structures for the biomolecules were matched fairly well as regards the Cu-S bond distances and Cu…Cu contact distances in the case the model cysteine S atom is deprotonated. Upon protonation of ligand S atoms, the conformation of clusters is altered and might bring about the di- and tri-nuclear core breakage. These findings suggest that subtle protonation/deprotonation steps, i.e. small and/or local pH changes play a significant role for copper transport processes.  相似文献   

7.
The synthesis of a new tetrapyridyl ligand, bis[di-1,1-(2-pyridyl)ethyl]amine (BDPEA), is described. Complexation of this ligand with manganese(II), iron(III) or copper(II) chlorides afforded mononuclear complexes: Mn(BDPEA)Cl2 (1) [Fe (BDPEA)Cl2]Cl (2) and [Cu(BDPEA)Cl]Cl (3). In all cases, BDPEA is coordinated to the metal center by three pyridine nitrogen atoms and the secondary amine. The geometrical environments around the metals in Mn(BDPEA)Cl2 and [Fe(BDPEA)Cl2]Cl are best described as distorted octahedrals and in [Cu (BDPEA)Cl]Cl as a slightly distorted square pyramid. The DNA cleavage activities of manganese(II), iron (III) or copper(II) complexes of both BDPEA and another tetrapyridyl ligand, bis[di(2-pyridyl) methyl]amine (BDPMA), in the presence of an oxidant (H2O2) or a reducing agent (ascorbate) with air, are reported. The iron(III) complexes exhibited significantly enhanced efficiencies, compared to copper(II) complexes. [Fe(BDPEA)Cl2]Cl is found to be the most active DNA cleaver, in agreement with a better stability of BDPEA in oxidizing conditions.  相似文献   

8.
Copper(II) cations coordinated with PMDTA (pentamethyldiethylenetriamine) and TMEDA (tetramethylethylenediamine) possess a high synthetic potential. The synthesis of these cations was carried out by metathesis reactions with silver salts. The cationic copper(II) complexes, [Cu(PMDTA)(Me2CO)Cl]+, [Cu(PMDTA)(H2O)Cl]+, [Cu(PMDTA)(DMF)]+, [Cu(PMDTA)Cl]+, [Cu(PMDTA)OAc]+, [Cu(PMDTA)(MeCN)2]2+, [Cu2(TMEDA)2Cl3]+ and [Cu(TMEDA)(MeCN)3]2+ were synthesised as PF6 salts, crystallised and characterised by single-crystal X-ray diffraction.  相似文献   

9.
Two new 2,4-dihydro-1H-benzo[d][1,3]oxazines (L1 and L2) were prepared by condensation of 2-quinolinecarboxaldehyde and 2-amino-benzyl alcohols and tested as N,N’-bidentate ligands toward CuCl2. Treatment of the resulting copper(II) derivatives with Et3N promoted an oxidative dehydrogenation yielding the corresponding copper(I) [Cu(L-ox)Cl] complexes, 2, (L-ox = 4H-benzo[d][1,3]oxazine). The [Cu(L2-ox)Cl] species, 2b, was characterized by single crystal X-ray diffraction, showing a trigonal geometry at the metal center and reacted with PPh3 and CO, affording [Cu(L2-ox)(PPh3)Cl], 4b, and [Cu(L2-ox)(CO)Cl], 6b, respectively. The latter species, stable in the solid state, was structurally characterized by diffraction methods and showed tetrahedral coordination of the Cu(I) ion.  相似文献   

10.
To examine the potential role of methanobactin (mb) as the extracellular component of a copper acquisition system in Methylosinus trichosporium OB3b, the metal binding properties of mb were examined. Spectral (UV-visible, fluorescence, and circular dichroism), kinetic, and thermodynamic data suggested copper coordination changes at different Cu(II):mb ratios. Mb appeared to initially bind Cu(II) as a homodimer with a comparatively high copper affinity at Cu(II):mb ratios below 0.2, with a binding constant (K) greater than that of EDTA (log K = 18.8) and an approximate DeltaG degrees of -47 kcal/mol. At Cu(II):mb ratios between 0.2 and 0.45, the K dropped to (2.6 +/- 0.46) x 10(8) with a DeltaG degrees of -11.46 kcal/mol followed by another K of (1.40 +/- 0.21) x 10(6) and a DeltaG degrees of -8.38 kcal/mol at Cu(II):mb ratios of 0.45-0.85. The kinetic and spectral changes also suggested Cu(II) was initially coordinated to the 4-thiocarbonyl-5-hydroxy imidazolate (THI) and possibly Tyr, followed by reduction to Cu(I), and then coordination of Cu(I) to 4-hydroxy-5-thiocarbonyl imidazolate (HTI) resulting in the final coordination of Cu(I) by THI and HTI. The rate constant (k(obsI)) of binding of Cu(II) to THI exceeded that of the stopped flow apparatus that was used, i.e., >640 s(-)(1), whereas the coordination of copper to HTI showed a 6-8 ms lag time followed by a k(obsII) of 121 +/- 9 s(-)(1). Mb also solubilized and bound Cu(I) with a k(obsI) to THI of >640 s(-)(1), but with a slower rate constant to HTI (k(obsII) = 8.27 +/- 0.16 s(-)(1)), and appeared to initially bind Cu(I) as a monomer.  相似文献   

11.
Copper(I)/(II) complexes with the ligand 2-aminoethyl(2-pyridylmethyl)1,2-ethanediamine (apme, abbreviated as PDT in the literature as well) were prepared and characterized. Crystal structures of the copper(I) complexes, [Cu2(apme)2]X2 (1, 2; X = ClO4, CF3SO3), showed that they are dinuclear, in contrast to the trigonal bipyramidal copper(II) complexes [Cu(apme)Cl]BPh4 (3) and [Cu(apme)(DMF)](BPh4)2 (4). 1 and 2 could be investigated in solution by NMR spectroscopy and 3 and 4 by cyclovoltammetry. From the results of these studies it is clear that in solution equilibria between the dinuclear complexes 1/2 and another species exist, most likely the monomeric [Cu(apme)CH3CN]+. Time-resolved UV/vis spectra at low temperatures allowed the spectroscopic detection of dioxygen adduct complexes as reactive intermediates during the oxidation of 1/2 with dioxygen that seem to play an important role in copper enzymes such as peptidylglycine--hydroxylating monooxygenase (PHM).  相似文献   

12.
The reactivity of nitrite towards the copper(II) and copper(I) centers of a series of complexes with tridentate nitrogen donor ligands has been investigated. The ligands are bis[(1-methylbenzimidazol-2-yl)methyl]amine (1-bb), bis[2-(1-methylbenzimidazol-2-yl)ethyl]amine (2-bb), and bis[2-(3,5-dimethyl-1-pyrazolyl)ethyl]amine (ddah) and carry two terminal benzimidazole (1-bb, 2-bb) or pyrazole (ddah) rings and a central amine donor residue. While 2-bb and ddah form two adjacent six-membered chelate rings on metal coordination, 1-bb forms two smaller rings of five members. The binding affinity of nitrite and azide to the Cu(II) complexes (ClO4 as counterion) has been determined in solution. The association constants for the two ligands are similar, but nitrite is a slightly stronger ligand than azide when it binds as a bidentate donor. The X-ray crystal structure of the nitrite complex [Cu(ddah)(NO2)]ClO4 (final R=0.056) has been determined: triclinic P1ˉspace group, a=8.200(2) ?, b=9.582(3) ?, c=15.541(4) ?. It may be described as a perchlorate salt of a “supramolecular” species resulting from the assembly of two complex cations and one sodium perchlorate unit. The copper stereochemistry in the complex is intermediate between SPY and TBP, and nitrite binds to Cu(II) asymmetrically, with Cu-O distances of 2.037(2) and 2.390(3) ? and a nearly planar CuO2N cycle. On standing, solutions of [Cu(ddah)(NO2)]ClO4 in methanol produce the dinuclear complex [Cu(ddah)(OMe)]2(ClO4)2, containing dibridging methoxy groups. In fact the crystal structure analysis (final R=0.083) showed that the crystals are built up by dinuclear cations, arranged on a crystallographic symmetry center, and perchlorate anions. Electrochemical analysis shows that binding of nitrite to the Cu(II) complexes of 2-bb and ddah shifts the reduction potential of the Cu(II)/Cu(I) couple towards negative values by about 0.3 V. The thermodynamic parameters of the Cu(II)/Cu(I) electron transfer have also been analyzed. The mechanism of reductive activation of nitrite to nitric oxide by the Cu(I) complexes of 1-bb, 2-bb, and ddah has been studied. The reaction requires two protons per molecule of nitrite and Cu(I). Kinetic experiments show that the reaction is first order in [Cu(I)] and [H+] and exhibits saturation behavior with respect to nitrite concentration. The kinetic data show that [Cu(2-bb)]+ is more efficient than [Cu(1-bb)]+ and [Cu(ddah)]+ in reducing nitrite. Received: 19 November 1999 / Accepted: 20 January 2000  相似文献   

13.
In order to better understand copper mediated oxidative chemistry via ligand-Cu(I)/O(2) reactivity employing S-donor ligands for copper, O(2)-reactivity studies of the copper(I) complexes (1 and 2, Chart 2) have been carried out with a tridentate N(2)S thiol ligand (1-(N-methyl-N-(2-(pyridin-2-yl)ethyl)amino)propane-2-thiol; L(SH)) or its oxidized disulfide form (L(SS)). Reactions of [L(SH)Cu(I)](+) (1) and [L(SS)(Cu(I))(2)(X)(2)](2+) (2) with O(2) give approximately 90% and approximately 70% yields of [L(SO3)Cu(II)(MeOH)(2)](+) (3), respectively, where L(SO3) is S-oxygenated sulfonate; 3 was characterized by electrospray ionization (ESI) mass spectrometry and X-ray crystallography. Mimicking TyrCys galactose oxidase cofactor biogenesis, a new C-S bond is formed (within new thioether moiety L(SPhOH)) from cuprous complex (both 1 and 2) dioxygen reactivity in the presence of 2,4-tBu(2)-phenolate. In addition, the disulfide ligand (L(SS)) reacts with 2equiv. cupric ion salts and the phenolate to efficiently give the cross-linked product L(SPhOH) in high yield (>90%) under anaerobic conditions. Separately, complex [L(SPhO)Cu(II)(ClO(4))] (4), possessing the cross-linked L(SPhOH), was characterized by ESI mass spectrometry and X-ray crystallography.  相似文献   

14.
By using p-substituted benzenethiolate ligands, the novel three-coordinate copper(I) and silver(I) thiolato complexes (NEt4)2[Cu(SC6H4-p-X)3] (X=Cl (1) and Br (2)), (NEt4)2[Ag(SC6H4-p-X)3] (X=Cl (3) and Br (4)) and novel clusters (NEt4)2[M4(mu-SC6H4-p-Cl)6] (M=Cu (5) and Ag(6)) have been prepared and structurally characterized by single crystal X-ray diffraction. All the complexes have three-coordinate sites having point-group D3h symmetry. The three-coordinate mononuclear silver(I) complexes 3 and 4 are the first examples. The M-S stretching bands were determined by far-IR and FT-Raman spectroscopies; nu(Cu-S) 363-372 cm(-1) and nu(Ag-S) 353-363 cm(-1). These results indicate that M-S stretching vibration energy in the three-coordinate metal(I) site of the mononuclear compounds or clusters is around 340-380 cm(-1), and it is a useful tool for determining their coordination modes.  相似文献   

15.
A dimeric copper complex of the unsubstituted pyridoxal thiosemicarbazone (H(2)L), [[Cu(HL)(OH(2))](2)]Cl(2).2H(2)O, previously tested on Friend murine cell lines has been recently resynthesized to evaluate its behavior on different murine and human leukemic cell lines and has been compared, in vitro and in vivo, with its monomeric counterpart [Cu(H(2)L)(OH(2))Cl]Cl. On TS/A murine adenocarcinoma cell line in vitro, both compounds significantly inhibit cell proliferation at micromolar concentrations, although the dimeric compound is more active. Despite this cytotoxicity they lack in vivo activity on TLX5 lymphoma. The unsubstituted dimeric [[Cu(HL)(OH(2))](2)]Cl(2).2H(2)O induces apoptosis on CEM and U937 human cell lines, with IC(50) concentrations of 1.2 x 10(-5) and 6.7 x 10(-6) M, respectively, but it is inactive on K562. Moreover, it alters significantly the cell cycle of U937 and CEM lines and decreases the telomerase activity of U937. To verify if other dimeric copper complexes show relevant biological activity new complexes with N-substituted pyridoxal thiosemicarbazones have been synthesized and characterized using spectroscopic techniques. Three of them, namely [Cu(Me(2)-HL)Cl](2).6H(2)O (Me(2)-H(2)L=pyridoxal N1,N1-dimethylthiosemicarbazone) (1), [Cu(MeMe-HL)Cl](2)Cl(2).4H(2)O (MeMe-HL=pyridoxal N1,N2-dimethylthiosemicarbazone) (2), [Cu(Et-H(2)L)Cl](2)Cl(2).2H(2)O (Et-H(2)L=pyridoxal N1-ethylthiosemicarbazone) (3), were also characterized by X-ray diffractometry. These complexes are dimeric and all three present a square pyramidal coordinative geometry with the ligand showing an SNO tridentate behavior. Their biological activities have been tested in vitro on U937, CEM and K562 cell lines to ascertain their effectiveness in comparison to the corresponding unsubstituted complex [[Cu(HL)(OH(2))](2)]Cl(2).2H(2)O. Compound 1 shows weak proliferation inhibition on all three cell lines, but it does not induce apoptosis and it does not inhibit telomerase activity, compound 2 is not effective at low concentration and is toxic at higher doses; compound 3 inhibits CEM cell growth better than complex 1 but it does not exert any other biological effect.  相似文献   

16.
The reaction of dioxygen with the copper(I) complex of the tridentate ligand 1,1,4,7,7-pentamethyldiethylenetriamine (Me5dien) has been investigated using low-temperature stopped-flow techniques. The formation of a bis(μ-oxo)copper(III) complex as a reactive intermediate could be detected spectroscopically at low temperatures and a quantitative kinetic analysis was performed for this system. Crystal structures of the copper(II) complexes [(Me-bpa)Cu(Cl)2] (1), [{(Me-bpa)Cu(Cl)(ClO4)}2] (2), [{(MeL)Cu(Cl)(ClO4)}2] (3), and [(MeL)Cu(NCS)2] (4) (Me-bpa = N-methyl-[bis(2-pyridyl)methyl]amine; MeL = N-methyl-[(2-pyridyl)ethyl(2-pyridyl)methyl]amine) are reported.  相似文献   

17.
The facultative potentially tetradentate thioether ligands 1,2-bis(methylthioethylthio)ethane (2,2,2), 1,3-bis(2-methylthioethylthio)propane (2,3,2) and 1,2-bis(3-methylthiopropylthio)ethane (3,2,3) react with copper(II) salts to form Cu2(2,2,2)Cl4, Cu3(ligand)X6 (ligand = 2,3,2 and 3,2,3 X = Cl; ligand = 2,2,2 2,3,2 and 3,2,3 X = Br), and Cu(ligand)(ClO4)2. The stoichiometry and structures of these complexes are discussed in terms of the steric demands of the ligand and the nature of the halide. The [Cu(2,3,2)(ClO4)] ClO4 and [Cu(3,2,3)(ClO4) [ClO4 complexes have electronic spectra which exhibit the intense 600 nm band characteristic of the "blue" copper proteins. In fact, the spectrum of [Cu(2,3,2)(ClO4)]ClO4 is very similar to that of pseudomonas aeroginosa azurin.  相似文献   

18.
Preparations of copper(II) and palladium(II) complexes of 4-amino-5-methylthio-3-(2-pyridyl)-1,2,4-triazole (L(1)) and the copper(II) complex of 1,4-dihydro-4-amino-3-(2-pyridyl)-5-thioxo-1,2,4-triazole (HL) are described. These complexes have been characterized by means of spectroscopy and microanalysis. Molecular structures of HL (1), [CuCl(2)(H(2)L)]Cl.2H(2)O (2a), cis-[CuCl(2)(L(1))] (3), and cis-[PdCl(2)(L(1))] (4) have been determined by single-crystal X-ray diffraction. The HL ligand acts as a N,S bidentate through the thioxo moiety and the exo-amino group whilst the ligand L(1) forms N,N coordination complexes through the pyridine and triazole nitrogen atoms. Speciation in solution of the systems Cu/HL and Cu/L(1) have been determined by means of potentiometry and spectrophotometry as well as for the Cu/L(1)/A (HA=glycine) system in order to determine species present at physiological pH. Antiproliferative activity of these complexes and their ligands was evaluated, using the AlamarBlue Assay, on normal human fibroblasts (HF) and human fibrosarcoma tumor (HT1080) cells. The copper compounds cis-[CuCl(2)(H(2)L)]Cl and cis-[CuCl(2)(L(1))] exerted significant antiproliferative activity of both normal and neoplastic cells; although dose-response experiments revealed that the HT1080 cell line was more sensitive to the tested drugs than normal fibroblasts.  相似文献   

19.
The hydrolysis of glycylglycine (GylGly), glycyl-L-leucine (GlyLeu), L-leucylglycine (LeuGly) and glycyl-DL-serine (GlySer) promoted by a copper(II)- cis, cis-1,3,5-triaminocyclohexane complex [Cu(II)TACH] was investigated at 70 degrees C and pH 7-10, using HPLC. The observed pseudo-first-order rate constants (k(obs)) and rate enhancing factors (REF) were as follows: 4.1x10(-3 )h(-1)(REF=23) for GylGly, 1.6x10(-3 )h(-1)(REF=21) for GlyLeu, 5.1x10(-3 )h(-1)(REF=64) for LeuGly and 9.2x10(-2 )h(-1)(REF=47) for GlySer [pH 8.1, dipeptide 2 mM, copper(II) 2 mM and TACH 2 mM]. Based on the pH dependence and dipeptide concentration dependence of the initial rates and speciation of the Cu(II)-TACH-dipeptide system at 25 degrees C and I=0.1, the reactions proceed via the formation of a ternary complex [Cu(TACH)(dipeptide)](+) as an intermediate followed by OH(-)-dependent and OH(-)-independent paths to give amino acid(s). GylGly, GlyLeu and LeuGly preferred the OH(-)-dependent path, while GlySer preferred the OH(-)-independent path. The latter can be explained by the intramolecular attack of the amide carbonyl group coordinated with its oxygen atom by the OH group in the serine residue. The X-ray crystal structure of [Cu(TACH)(GlyGly)]BPh(4).MeOH confirmed that GlyGly coordinates to copper(II) ion with its terminal amino N and amide O atoms. The crystal structures of [Cu(TACH)(Gly)]BPh(4) and [Cu(2)(TACH)(2)(OH)(2)](ClO(4))(2).NaClO(4).H(2)O are also reported.  相似文献   

20.
The in vitro cytotoxic studies of a series of salicylaldehyde semicarbazones, HOC?H?CH=N-NHCONR? (H?R?) and their Cu(II) complexes on a number of human tumor cell lines were conducted and it was observed that their cytotoxicities were enhanced following complexation to copper. These copper(II) complexes also demonstrated higher in vitro activities than the reference drug, cisplatin, on the tumor cell lines at micro molar range. Apoptotic assays and cell cycle analysis of the copper complexes, [Cu(HBnz?)Cl] and [Cu(HBu?)Cl] revealed that they mediated cytotoxicity in MOLT-4 cells via apoptosis. Further proteomic investigation of [Cu(HBnz?)Cl] and [Cu(HBu?)Cl] with respect to their protein expression profiles associated with their mode of action was conducted. By comparing the expression levels of 33 identified protein spots amongst the respective compound-treated profiles, we identified similarities in protein expression patterns between the two copper(II) complexes. The possible roles of the identified proteins in the execution of apoptosis by these copper(II) complexes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号