首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background: Protein kinase Cs are a family of enzymes that transduce the plethora of signals promoting lipid hydrolysis. Here, we show that protein kinase C must first be processed by three distinct phosphorylations before it is competent to respond to second messengers.Results We have identified the positions and functions of the in vivo phosphorylation sites of protein kinase C by mass spectrometry and peptide sequencing of native and phosphatase-treated kinase from the detergent-soluble fraction of cells. Specifically, the threonine at position 500 (T500) on the activation loop, and T641 and S660 on the carboxyl terminus of protein kinase C βII are phosphorylated in vivo. T500 and S660 are selectively dephosphorylated in vitro by protein phosphatase 2A to yield an enzyme that is still capable of lipid-dependent activation, whereas all three residues are dephosphorylated by protein phosphatase 1 to yield an inactive enzyme. Biochemical analysis reveals that protein kinase C autophosphorylates on S660, that autophosphorylation on S660 follows T641 autophosphorylation, that autophosphorylation on S660 is accompanied by the release of protein kinase C into the cytosol, and that T500 is not an autophosphorylation site.Conclusion Structural and biochemical analyses of native and phosphatase-treated protein kinase C indicate that protein kinase C is processed by three phosphorylations. Firstly, trans-phosphorylation on the activation loop (T500) renders it catalytically competent to autophosphorylate. Secondly, a subsequent autophosphorylation on the carboxyl terminus (T641) maintains catalytic competence. Thirdly, a second autophosphorylation on the carboxyl terminus (S660) regulates the enzyme's subcellular localization. The conservation of each of these residues (or an acidic residue) in conventional, novel and atypical protein kinase Cs underscores the essential role for each in regulating the protein kinase C family.  相似文献   

2.
Sugar signaling pathways have been evolutionarily conserved among eukaryotes and are postulated to help regulate plant growth, development and responses to environmental cues. Forward genetic screens have identified sugar signaling or response mutants. Here we report the identification and characterization of Arabidopsis thaliana sugar insensitive8 (sis8) mutants, which display a sugar‐resistant seedling development phenotype. Unlike many other sugar insensitive mutants, sis8 mutants exhibit wild‐type responses to the inhibitory effects of abscisic acid and paclobutrazol (an inhibitor of gibberellin biosynthesis) on seed germination. Positional cloning of the SIS8 gene revealed that it encodes a putative mitogen‐activated protein kinase kinase kinase (MAPKKK; At1g73660). SIS8mRNA is expressed ubiquitously among Arabidopsis organs. A UDP‐glucosyltransferase, UGT72E1 (At3g50740), was identified as an interacting partner of SIS8 based on a yeast two‐hybrid screen and in planta bimolecular fluorescence complementation. Both SIS8–yellow fluorescent protein (YFP) and UGT72E1–YFP fusion proteins localize to the nucleus when transiently expressed in tobacco leaf cells. T‐DNA insertions in At3g50740 cause a sugar‐insensitive phenotype. These results indicate that SIS8, a putative MAPKKK, is a regulator of sugar response in Arabidopsis and interacts with a UDP‐glucosyltransferase in the nucleus.  相似文献   

3.
ZmMPK6, a Novel Maize MAP Kinase that Interacts with 14-3-3 Proteins   总被引:2,自引:0,他引:2  
Although an increasing body of evidence indicates that plant MAP kinases are involved in a number of cellular processes, such as cell cycle regulation and cellular response to abiotic stresses, hormones and pathogen attack, very little is known about their biochemical properties and regulation mechanism. In this paper we report on the identification and characterization of a novel member of the MAP kinase family from maize, ZmMPK6. The amino acid sequence reveals a high degree of identity with group D plant MAP kinases. Recombinant ZmMPK6, expressed in Escherichia coli, is an active enzyme able to autophosphorylate. Remarkably, ZmMPK6 interacts in vitro with GF14-6, a maize 14-3-3 protein and the interaction is dependent on autophosphorylation. The interacting domain of ZmMPK6 is on the C-terminus and is comprised between amino acid 337 and amino acid 467. Our results represent the first evidence of an interaction between a plant MAP kinase and a 14-3-3 protein. Possible functional roles of this association in vivo are discussed.  相似文献   

4.
The leucine-rich repeat kinase 2 (LRRK2) protein has both guanosine triphosphatase (GTPase) and kinase activities, and mutation in either enzymatic domain can cause late-onset Parkinson disease. Nucleotide binding in the GTPase domain may be required for kinase activity, and residues in the GTPase domain are potential sites for autophosphorylation, suggesting a complex mechanism of intrinsic regulation. To further define the effects of LRRK2 autophosphorylation, we applied a technique optimal for detection of protein phosphorylation, electron transfer dissociation, and identified autophosphorylation events exclusively nearby the nucleotide binding pocket in the GTPase domain. Parkinson-disease-linked mutations alter kinase activity but did not alter autophosphorylation site specificity or sites of phosphorylation in a robust in vitro substrate myelin basic protein. Amino acid substitutions in the GTPase domain have large effects on kinase activity, as insertion of the GTPase-associated R1441C pathogenic mutation together with the G2019S kinase domain mutation resulted in a multiplicative increase (∼ 7-fold) in activity. Removal of a conserved autophosphorylation site (T1503) by mutation to an alanine residue resulted in greatly decreased GTP-binding and kinase activities. While autophosphorylation likely serves to potentiate kinase activity, we find that oligomerization and loss of the active dimer species occur in an ATP- and autophosphorylation-independent manner. LRRK2 autophosphorylation sites are overall robustly protected from dephosphorylation in vitro, suggesting tight control over activity in vivo. We developed highly specific antibodies targeting pT1503 but failed to detect endogenous autophosphorylation in protein derived from transgenic mice and cell lines. LRRK2 activity in vivo is unlikely to be constitutive but rather refined to specific responses.  相似文献   

5.
The Per-Arnt-Sim (PAS) domain serine/threonine kinase PASKIN, or PAS kinase, links energy flux and protein synthesis in yeast, regulates glycogen synthesis and protein translation in mammals, and might be involved in insulin regulation in the pancreas. According to the current model, binding of a putative ligand to the PAS domain disinhibits the kinase domain, leading to PASKIN autophosphorylation and increased kinase activity. To date, only synthetic but no endogenous PASKIN ligands have been reported. In the present study, we identified a number of novel PASKIN kinase targets, including ribosomal protein S6. Together with our previous identification of eukaryotic elongation factor 1A1, this suggests a role for PASKIN in the regulation of mammalian protein translation. When searching for endogenous PASKIN ligands, we found that various phospholipids can bind PASKIN and stimulate its autophosphorylation. Interestingly, the strongest binding and autophosphorylation was achieved with monophosphorylated phosphatidylinositols. However, stimulated PASKIN autophosphorylation did not correlate with ribosomal protein S6 and eukaryotic elongation factor 1A1 target phosphorylation. Although autophosphorylation was enhanced by monophosphorylated phosphatidylinositols, di- and tri-phosphorylated phosphatidylinositols inhibited autophosphorylation. By contrast, target phosphorylation was always inhibited, with the highest efficiency for di- and tri-phosphorylated phosphatidylinositols. Because phosphatidylinositol monophosphates were found to interact with the kinase rather than with the PAS domain, these data suggest a multiligand regulation of PASKIN activity, including a still unknown PAS domain binding/activating ligand and kinase domain binding modulatory phosphatidylinositol phosphates.  相似文献   

6.
The EDR1 gene of Arabidopsis has previously been reported to encode a Raf-like mitogen-activated protein kinase kinase (MAPKK) kinase, and to function as a negative regulator of disease resistance. A phylogenetic analysis of plant and animal protein kinases revealed, however, that plant Raf-like kinases are more closely related to animal mixed lineage kinases (MLKs) than Raf-like kinases, and are deeply divergent from both classes of animal kinases, making inferences of substrate specificity questionable. We, therefore, assayed the kinase activity of recombinant EDR1 protein in vitro. The EDR1 kinase domain displayed autophosphorylation activity and phosphorylated the common MAP kinase substrate myelin basic protein. The EDR1 kinase domain also phosphorylated a kinase-deficient EDR1 protein, indicating that EDR1 autophosphorylation can occur via an intermolecular mechanism. Overexpression of a kinase-deficient full-length EDR1 gene (35S::dnEDR1) in wild-type Arabidopsis plants caused a dominant negative phenotype, conferring resistance to powdery mildew (Erysiphe cichoracearum) and enhancing ethylene-induced senescence. RNA-gel blot analyses showed that the 35S::dnEDR1 transgene was highly transcribed in transgenic plants. Western blot analysis, however, revealed that neither the wild-type nor mutant EDR1 protein could be detected in these lines, indicating that the dominant negative phenotype may be caused by a translational inhibition mechanism rather than by a protein level effect. Overexpression of orthologous dnEDR1 constructs may provide a novel strategy for controlling powdery mildew disease in crops.  相似文献   

7.
Calcium and Ca2+/calmodulin‐dependent protein kinase (CCaMK) plays a critical role in the signaling pathway that establishes root nodule symbiosis and arbuscular mycorrhizal symbiosis. Calcium‐dependent autophosphorylation is central to the regulation of CCaMK, and this has been shown to promote calmodulin binding. Here, we report a regulatory mechanism of Medicago truncatula CCaMK (MtCCaMK) through autophosphorylation of S344 in the calmodulin‐binding/autoinhibitory domain. The phospho‐ablative mutation S344A did not have significant effect on its kinase activities, and supports root nodule symbiosis and arbuscular mycorrhizal symbiosis, indicating that phosphorylation at this position is not required for establishment of symbioses. The phospho‐mimic mutation S344D show drastically reduced calmodulin‐stimulated substrate phosphorylation, and this coincides with a compromised interaction with calmodulin and its interacting partner, IPD3. Functional complementation tests revealed that the S344D mutation blocked root nodule symbiosis and reduced the mycorrhizal association. Furthermore, S344D was shown to suppress the spontaneous nodulation associated with a gain‐of‐function mutant of MtCCaMK (T271A), revealing that phosphorylation at S344 of MtCCaMK is adequate for shutting down its activity, and is epistatic over previously identified T271 autophosphorylation. These results reveal a mechanism that enables CCaMK to ‘turn off’ its function through autophosphorylation.  相似文献   

8.
We have amplified and cloned DNA sequences derived from a gene encoding a SNF1 (sucrose-non-fermenting 1)-related protein kinase which differs from that previously reported from barley. Northern blot and polymerase chain reaction (PCR) analysis of RNA populations, using specific probes and oligonucleotide primers, indicated that the two SNF1-related genes are differentially regulated. One is expressed in all tissues, whereas the other is expressed at high levels in the seed endosperm and aleurone, but at levels undetectable by northern blot analysis in other tissues. Comparisons with other plant SNF1-related protein kinase genes suggest that the form which is expressed at greatly enhanced levels in the seed is less similar to the other plant homologues which have been reported and may be unique to cereals.  相似文献   

9.
10.
Leafy spurge (Euphorbia esula L.) is a deep-rooted perennial weed that propagates both by seeds and underground adventitious buds located on the crown and roots. To enhance our understanding of growth and development during seed germination and vegetative propagation, a leafy spurge gene (Accession No. AF230740) encoding a CDK-activating kinase (Ee;CDKF;1) involved in cell-cycle progression was identified, and its function was confirmed based on its ability to rescue a yeast temperature-sensitive CAK mutant (GF2351) and through in vitro kinase assays. Site-directed mutagenesis of Ee;CDKF;1 indicated that two threonine residues (Thr291 and Thr296) were mutually responsible for intra-molecular autophosphorylation and for phosphorylating its substrate protein, cyclin-dependent kinase (CDK). Polyclonal antibodies generated against the Ee;CDKF;1 protein or against a phosphorylated Ee;CDKF;1 peptide [NERYGSL(pT)SC] were used to examine abundance and phosphorylation of CDKF;1 during seed germination and bud growth. The levels of CDKF;1 were lower in dry or imbibed seeds than in germinating seeds or seedlings. Differences in CDKF;1 were also observed during adventitious bud development; small buds appeared to have greater levels of CDKF;1 than large buds. Similar patterns of CDKF;1 expression were detected with either the polyclonal antibody developed using the CDKF;1 protein or the phosphorylated peptide. These results indicated that Thr291 is constitutively phosphorylated in vivo and associated with Ee;CDKF;1 activity. Our results further suggest that a certain level of CDKF;1 activity is maintained in most tissues and may be an important phenomenon for enzymes that regulate early steps in cell-cycle signaling pathways. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

11.
12.
A cDNA (cNPK2) that encodes a protein of 518 amino acids was isolated from a library prepared from poly(A)+ RNAs of tobacco cells in suspension culture. The N-terminal half of the predicted NPK2 protein is similar in amino acid sequence to the catalytic domains of kinases that activate mitogen-activated protein kinases (designated here MAPKKs) from various animals and to those of yeast homologs of MAPKKs. The N-terminal domain of NPK2 was produced as a fusion protein in Escherichia coli, and the purified fusion protein was found to be capable of autophosphorylation of threonine and serine residues. These results indicate that the N-terminal domain of NPK2 has activity of a serine/threonine protein kinase. Southern blot analysis showed that genomic DNAs from various plant species, including Arabidopsis thaliana and sweet potato, hybridized strongly with cNPK2, indicating that these plants also have genes that are closely related to the gene for NPK2. The structural similarity between the catalytic domain of NPK2 and those of MAPKKs and their homologs suggests that tobacco NPK2 corresponds to MAPKKs of other organisms. Given the existence of plant homologs of an MAP kinase and tobacco NPK1, which is structurally and functionally homologous to one of the activator kinases of yeast homologs of MAPKK (MAPKKKs), it seems likely that a signal transduction pathway mediated by a protein kinase cascade that is analogous to the MAP kinase cascades proposed in yeasts and animals, is also conserved in plants.  相似文献   

13.
Mek1 is a Chk2/Rad53/Cds1-related protein kinase that is required for proper meiotic progression of Schizosaccharomyces pombe. However, the molecular mechanisms of Mek1 regulation and Mek1 phosphorylation targets are unclear. Here, we report that Mek1 is phosphorylated at serine-12 (S12), S14 and threonine-15 (T15) by Rad3 (ATR) and/or Tel1 (ATM) kinases that are activated by meiotic programmed double-strand breaks (DSBs). Mutations of these sites by alanine replacement caused abnormal meiotic progression and recombination rates. Phosphorylation of these sites triggers autophosphorylation of Mek1; indeed, alanine replacement mutations of Mek1-T318 and -T322 residues in the activation loop of Mek1 reduced Mek1 kinase activity and meiotic recombination rates. Substrates of Mek1 include Mus81-T275, Rdh54-T6 and Rdh54-T673. Mus81-T275 is known to regulate the Mus81 function in DNA cleavage, whereas Rdh54-T6A/T673A mutant cells showed abnormal meiotic recombination. Taken together, we conclude that the phosphorylation of Mek1 by Rad3 or Tel1, Mek1 autophosphorylation and Mus81 or Rdh54 phosphorylation by Mek1 regulate meiotic progression in S. pombe.  相似文献   

14.
To study the metabolic interactions between mesophyll and bundle-sheath cells of C4 plants, protein kinases possibly involved in the regulatory processes and signal transduction pathways have been cloned and characterized. A receptor-like protein kinase (RLK) cDNA clone from the C4 plant Sorghum bicolor (L.) Moench has been identified. The deduced protein was designated SbRLK1 for receptor-like protein kinase from S. bicolor. The putative cytoplasmic domain of SbRLK1 contains all amino acids that are characteristic of protein kinases. The extracellular domain contains five leucine-rich repeats. The mRNA of the SbRLK1 gene accumulated to much higher levels in mesophyll cells than in the bundle-sheath and was almost undetectable in roots. This expression pattern indicates that SbRLK1 might be involved in the regulation of specific processes in mesophyll cells. Received: 13 August 1998 / Accepted: 22 December 1998  相似文献   

15.
The function of protein kinase C family members depends on two tightly coupled phosphorylation mechanisms: phosphorylation of the activation loop by the phosphoinositide-dependent kinase, PDK-1, followed by autophosphorylation at two positions in the COOH terminus, the turn motif, and the hydrophobic motif. Here we address the molecular mechanisms underlying the regulation of protein kinase C betaII by PDK-1. Co-immunoprecipitation studies reveal that PDK-1 associates preferentially with its substrate, unphosphorylated protein kinase C, by a direct mechanism. The exposed COOH terminus of protein kinase C provides the primary interaction site for PDK-1, with co-expression of constructs of the carboxyl terminus effectively disrupting the interaction in vivo. Disruption of this interaction promotes the autophosphorylation of protein kinase C, suggesting that the binding of PDK-1 to the carboxyl terminus protects it from autophosphorylation. Studies with constructs of the COOH terminus reveal that the intrinsic affinity of PDK-1 for phosphorylated COOH terminus is over an order of magnitude greater than that for unphosphorylated COOH terminus, contrasting with the finding that PDK-1 does not bind phosphorylated protein kinase C effectively. However, effective binding of the phosphorylated species can be induced by the activated conformation of protein kinase C. This suggests that the carboxyl terminus becomes masked following autophosphorylation, a process that can be reversed by the conformational changes accompanying activation. Our data suggest a model in which PDK-1 provides two points of regulation of protein kinase C: 1) phosphorylation of the activation loop, which is regulated by the intrinsic activity of PDK-1, and 2) phosphorylation of the carboxyl terminus, which is regulated by the release of PDK-1 to allow autophosphorylation.  相似文献   

16.
17.
18.
Pollen grains are covered by exine that protects the pollen from stress and facilitates pollination. Here we isolated a male sterile mutant s13283 in rice exhibiting aborted pollen with abnormal exine and defective aperture. The mutant gene encodes a novel plasma membrane‐localized legume‐lectin receptor kinase that we named OsLecRK‐S.7. OsLecRK‐S.7 was expressed at different levels in all tested tissues and throughout anther development. In vitro kinase assay showed OsLecRK‐S.7 capable of autophosporylation. Mutation in s13283 (E560K) and mutation of the conserved ATP binding site (K418E) both knocked out the kinase activity. Mass spectrometry showed Thr376, Ser378, Thr386, Thr403, and Thr657 to be the autophosphorylation sites. Mutation of individual autophosphorylation site affected the in vitro kinase activity to different degrees, but did not abolish the gene function in fertility complementation. oslecrk‐s.7 mutant plant overexpressing OsLecRK‐S.7 recovered male fertility but showed severe growth retardation with reduced number of tillers, and these phenotypes were abolished by E560K or K418E mutation. The results indicated that OsLecRK‐S.7 was a key regulator of pollen development.  相似文献   

19.
A cDNA clone (cNPK15) was isolated from tobacco cells in suspension culture, which encodes a predicted protein kinase of 422 amino acids. The predicted NPK15 protein consists of a hydrophobic region near the amino-terminus, a linker domain and the catalytic domain of a protein-serine/threonine kinase in the carboxyl-half. NPK15 was not found to be closely related to any reported protein, but its putative catalytic domain shares some structural similarity with those of receptor-like protein kinases of plants, such as ZmPK1 from Zea mays and TMK1 from Arabidopsis, even though no receptor-like domain is found in NPK15. Recombinant NPK15 expressed in Escherichia coli as a fusion protein was found capable of autophosphorylation and of phosphorylation of the histone H1 protein on both serine and threonine residues. Upon overexpression of cNPK15 under control of the promoter of cauliflower mosaic virus 35S RNA in tobacco cells, into which it had been introduced by Agrobacterium-mediated transformation, the NPK15 gene acted as a suicide gene and blocked proliferation of the host cells. By contrast, such a suicide effect was not observed with the gene for a kinase-negative mutant protein in which the nucleotide sequence for the ATP-binding site had been mutated or with a mutant derivative encoding a protein in which the hydrophobic region had been deleted. Thus, the protein kinase activity of NPK15 and the hydrophobic region of the protein are responsible for the suicide effect. The NPK15 protein kinase seems to be associated with specific cellular functions. Southern blot analysis with cNPK15 as the probe detected several fragments in restriction digests of genomic DNAs from both tobacco and other members of the Solanaceae. This result suggests that NPK15-related genes constitute a small gene family in the genomes of Solanaceae.  相似文献   

20.
3-Phosphoinositide-dependent protein kinase-1 (PDK-1)is a serine/threonine kinase that has been found to phosphorylate and activate several members of the AGC protein kinase family including protein kinase B (Akt), p70 S6 kinase, and protein kinase Czeta. However, the mechanism(s) by which PDK-1 is regulated remains unclear. Here we show that mouse PDK-1 (mPDK-1) undergoes autophosphorylation in vitro on both serine and threonine residues. In addition, we have identified Ser(399) and Thr(516) as the major mPDK-1 autophosphorylation sites in vitro. Furthermore, we have found that these two residues, as well as Ser(244) in the activation loop, are phosphorylated in cells and demonstrated that Ser(244) is a major in vivo phosphorylation site. Abolishment of phosphorylation at Ser(244), but not at Ser(399) or Thr(516), led to a significant decrease of mPDK-1 autophosphorylation and kinase activity in vitro, indicating that autophosphorylation at Ser(399) or Thr(516) is not essential for mPDK-1 autokinase activity. However, overexpression of mPDK-1(T516E), but not of mPDK-1(S244E) or mPDK-1(S399D), in Chinese hamster ovary and HEK293 cells was sufficient to induce Akt phosphorylation at Thr(308) to a level similar to that of insulin stimulation. Furthermore, this increase in phosphorylation was independent of the Pleckstrin homology domain of Akt. Taken together, our results suggest that mPDK-1 undergoes autophosphorylation at multiple sites and that this phosphorylation may be essential for PDK-1 to interact with and phosphorylate its downstream substrates in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号