首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apoptosis signal-regulating kinase (ASK) 1 was recently identified as a mitogen-activated protein (MAP) kinase kinase kinase which activates the c-Jun N-terminal kinase (JNK) and p38 MAP kinase pathways and is required for tumor necrosis factor (TNF)-alpha-induced apoptosis; however, the mechanism regulating ASK1 activity is unknown. Through genetic screening for ASK1-binding proteins, thioredoxin (Trx), a reduction/oxidation (redox)-regulatory protein thought to have anti-apoptotic effects, was identified as an interacting partner of ASK1. Trx associated with the N-terminal portion of ASK1 in vitro and in vivo. Expression of Trx inhibited ASK1 kinase activity and the subsequent ASK1-dependent apoptosis. Treatment of cells with N-acetyl-L-cysteine also inhibited serum withdrawal-, TNF-alpha- and hydrogen peroxide-induced activation of ASK1 as well as apoptosis. The interaction between Trx and ASK1 was found to be highly dependent on the redox status of Trx. Moreover, inhibition of Trx resulted in activation of endogenous ASK1 activity, suggesting that Trx is a physiological inhibitor of ASK1. The evidence that Trx is a negative regulator of ASK1 suggests possible mechanisms for redox regulation of the apoptosis signal transduction pathway as well as the effects of antioxidants against cytokine- and stress-induced apoptosis.  相似文献   

2.
Recent works have shown the importance of reduction/oxidation (redox) regulation in various biological phenomena. Thioredoxin (TRX) is one of the major components of the thiol reducing system and plays multiple roles in cellular processes such as proliferation, apoptosis, and gene expression. To investigate the molecular mechanism of TRX action, we used a yeast two-hybrid system to identify TRX-binding proteins. One of the candidates, designated as thioredoxin-binding protein-2 (TBP-2), was identical to vitamin D(3) up-regulated protein 1 (VDUP1). The association of TRX with TBP-2/VDUP1 was observed in vitro and in vivo. TBP-2/VDUP1 bound to reduced TRX but not to oxidized TRX nor to mutant TRX, in which two redox active cysteine residues are substituted by serine. Thus, the catalytic center of TRX seems to be important for the interaction. Insulin reducing activity of TRX was inhibited by the addition of recombinant TBP-2/VDUP1 protein in vitro. In COS-7 and HEK293 cells transiently transfected with TBP-2/VDUP1 expression vector, decrease of insulin reducing activity of TRX and diminishment of TRX expression was observed. These results suggested that TBP-2/VDUP1 serves as a negative regulator of the biological function and expression of TRX. Treatment of HL-60 cells with 1alpha, 25-dihydroxyvitamin D(3) caused an increase of TBP-2/VDUP1 expression and down-regulation of the expression and the reducing activity of TRX. Therefore, the TRX-TBP-2/VDUP1 interaction may be an important redox regulatory mechanism in cellular processes, including differentiation of myeloid and macrophage lineages.  相似文献   

3.
Vitamin D3 up-regulated protein 1 (VDUP1) is a key mediator of oxidative stress on various cellular processes via downstream effects on apoptosis signaling kinase 1 (ASK1) and p38 mitogen-activated protein kinase (MAPK). Here, we report that VDUP1 expression is significantly increased in rat hearts following acute myocardial ischemia, suggesting it may have important regulatory effects on cardiac physiological processes during periods of oxidative stress. Transfection of H9C2 cardiomyoblasts with a sequence-specific VDUP1 DNA enzyme to down-regulate VDUP1 mRNA expression significantly reduced apoptosis and enhanced cell survival under conditions of H(2)O(2) stress, and these effects involved inhibition of ASK1 activity. Direct intracardiac injection of the DNA enzyme at the time of acute myocardial infarction reduced myocardial VDUP1 mRNA expression and resulted in prolonged reduction in cardiomyocyte apoptosis and ASK1 activity. Moreover, down-regulation of VDUP1 was accompanied by significant reduction in cardiac expression of pro-collagen type I alpha2 mRNA level, as well as marked reduction in myocardial scar formation. These features were accompanied by significant improvement in cardiac function. Together, these results suggest a direct role for VDUP1 in the adverse effects of ischemia and oxidative stress on cardiomyocyte survival, left ventricular collagen deposition, and cardiac function. Strategies to inhibit VDUP1 expression and/or function during acute ischemic events may be beneficial to cardiac functional recovery and prevention of left ventricular remodeling.  相似文献   

4.
Apoptosis is a major mechanism of cancer cell destruction by chemotherapy and radiotherapy. The anthracycline class of antitumor drugs undergoes redox cycling in living cells producing increased amounts of reactive oxygen species and semiquinone radical, both of which can cause DNA damage, and consequently trigger apoptotic death of cancer cells. We show here that MCF-7 cells overexpressing thioredoxin (Trx) were more apoptotic in response to daunomycin. Trx overexpression in MCF-7 cells increased the generation of superoxide anion (O2*-) in anthracycline-treated cell extracts. Enhanced generation of O2- in response to daunomycin inTrx-overexpressing MCF-7 cells was inhibited by diphenyleneiodonium chloride, a general NADPH reductase inhibitor, demonstrating that Trx provides reducing equivalents to a bioreductive enzyme for redox cycling of daunomycin. Additionally Trx increased p53-DNA binding and expression in response to anthracyclines. MCF-7 cells expressing mutant redox-inactive Trx showed decreased superoxide generation, apoptosis, and p53 protein and DNA binding. In addition, down-regulation of endogenous Trx expression by small interfering RNA resulted in decreased expression of caspase-7 and cleaved poly(ADP-ribose) polymerase expression in response to daunomycin. These results suggest that endogenous Trx is required for anthracycline-mediated apoptosis of breast cancer cells. Taken together, our data demonstrate a novel pro-oxidant and proapoptotic role of Trx in anthracycline-mediated apoptosis in anthracycline chemotherapy.  相似文献   

5.
As one of the common and serious chronic complications of diabetes mellitus (DM), the related mechanism of diabetic retinopathy (DR) has not been fully understood. Müller cell reactive gliosis is one of the early pathophysiological features of DR. Therefore, exploring the manner to reduce diabetes-induced Müller cell damage is essential to delay DR. Thioredoxin 1 (Trx1), one of the ubiquitous redox enzymes, plays a vital role in redox homeostasis via protein–protein interactions, including apoptosis signal-regulating kinase 1 (ASK1). Previous studies have shown that upregulation of Trx by some drugs can attenuate endoplasmic reticulum stress (ERS) in DR, but the related mechanism was unclear. In this study, we used DM mouse and high glucose (HG)-cultured human Müller cells as models to clarify the effect of Trx1 on ERS and the underlying mechanism. The data showed that the diabetes-induced Müller cell damage was increased significantly. Moreover, the expression of ERS and reactive gliosis was also upregulated in diabetes in vivo and in vitro. However, it was reversed after Trx1 overexpression. Besides, ERS-related protein expression, reactive gliosis, and apoptosis were decreased after transfection with ASK1 small-interfering RNA in stable Trx1 overexpression Müller cells after HG treatment. Taken together, Trx1 could protect Müller cells from diabetes-induced damage, and the underlying mechanism was related to inhibited ERS via ASK1.  相似文献   

6.
7.
In estrogen receptor (ER) positive breast cancer cells such as MCF-7 cells, the anti-tumor effects of 1,25(OH)(2)D(3) (1,25D(3)) may be secondary to disruption of estrogen mediated survival signals. If so, then sensitivity to 1,25D(3) mediated growth arrest could be reduced in estrogen independent breast cancer cells. The aim of these studies was to determine the effects of 1,25D(3) and EB1089 on the ER negative, invasive human breast cancer cell line SUM-159PT. 1,25D(3) and EB1089 reduced SUM-159PT cell growth subsequent to elevation of p27 and p21 levels. 1,25D(3) mediated apoptosis of SUM-159PT cells was associated with an enrichment of membrane bound bax, a redistribution of cytochome c from the mitochondria to the cytosol and PARP cleavage. 1,25D(3) and EB1089 also inhibited SUM-159PT cell invasion through an 8 microM Matrigel membrane. In pre-clinical studies, EB1089 dramatically reduced the growth of SUM-159PT xenografts in nude mice. The decreased size of tumors from EB1089 treated mice was associated with decreased proliferation and increased DNA fragmentation. Our data support the concept that Vitamin D(3) compounds trigger apoptosis by mechanisms independent of estrogen signaling. These studies indicate that Vitamin D(3) based therapeutics may be beneficial, alone or in conjunction with other agents, for the treatment of estrogen independent breast cancer.  相似文献   

8.
Narvaez CJ  Zinser G  Welsh J 《Steroids》2001,66(3-5):301-308
This review examines the role of 1alpha,25(OH)(2)D(3) (1,25D) and the vitamin D(3) receptor in growth regulation of normal and transformed mammary epithelial cells. 1,25D exerts both anti-proliferative and pro-apoptotic functions in transformed mammary cells such as MCF-7. The anti-proliferative effects of 1,25D have been linked to suppression of growth stimulatory signals and potentiation of growth inhibitory signals, which lead to changes in cell cycle regulators such as p21, p27, cyclins and Rb. The pro-apoptotic effects of 1,25D involve alterations in the relative ratios of the bcl-2 family members which regulate mitochondrial integrity. In MCF-7 human breast cancer cells, 1,25D mediated apoptosis is associated with translocation of the pro-apoptotic protein Bax to the mitochondria, generation of reactive oxygen species, dissipation of the mitochondrial membrane potential and release of cytochrome c. These mitochondrial events trigger apoptosis in a caspase-independent manner, since caspase inhibitors do not rescue 1,25D treated cells from death. The potential role of 1,25D in growth and differentiation of normal mammary epithelial cells has been examined in VDR null mice. Initial data indicates a significant decrease in ductal differentiation in VDR null mice compared to age matched wild type mice, reflected as an increased number of undifferentiated terminal end buds in the VDR null mouse. These data suggest that 1,25D promotes differentiation during early mammary gland development. In summary, our studies suggest an expanding role for the vitamin D(3) endocrine system in control of proliferation, differentiation and apoptosis of mammary epithelial cells.  相似文献   

9.
Breast cancer is a leading cause of death for women. The estrogen receptors (ERs) ratio is important in the maintenance of mitochondrial redox status, and higher levels of ERβ increases mitochondrial functionality, decreasing ROS production. Our aim was to determine the interaction between the ERα/ERβ ratio and the response to cytotoxic treatments such as cisplatin (CDDP), paclitaxel (PTX) and tamoxifen (TAM). Cell viability, apoptosis, autophagy, ROS production, mitochondrial membrane potential, mitochondrial mass and mitochondrial functionality were analyzed in MCF-7 (high ERα/ERβ ratio) and T47D (low ERα/ERβ ratio) breast cancer cell lines. Cell viability decreased more in MCF-7 when treated with CDDP and PTX. Apoptosis was less activated after cytotoxic treatments in T47D than in MCF-7 cells. Nevertheless, autophagy was increased more in CDDP-treated MCF-7, but less in TAM-treated cells than in T47D. CDDP treatment produced a raise in mitochondrial mass in MCF-7, as well as the citochrome c oxidase (COX) and ATP synthase protein levels, however significantly reduced COX activity. In CDDP-treated cells, the overexpression of ERβ in MCF-7 caused a reduction in apoptosis, autophagy and ROS production, leading to higher cell survival; and the silencing of ERβ in T47D cells promoted the opposite effects. In TAM-treated cells, ERβ-overexpression led to less cell viability by an increment in autophagy; and the partial knockdown of ERβ in T47D triggered an increase in ROS production and apoptosis, leading to cell death. In conclusion, ERβ expression plays an important role in the response of cancer cells to cytotoxic agents, especially for cisplatin treatment.  相似文献   

10.
11.
Metal toxicity often includes the generation of reactive oxygen species (ROS) and subsequent oxidative stress, but whether metals have different effects on the major thiol antioxidant systems is unknown. Here, we examine the effects of arsenic, cadmium, cesium, copper, iron, mercury, nickel, and zinc on glutathione (GSH), cytoplasmic thioredoxin-1 (Trx1), and mitochondrial thioredoxin-2 (Trx2) redox states. GSH/GSSG redox states were determined by HPLC, and Trx1 and Trx2 redox states were determined by Redox Western blot methods. Copper, iron, and nickel showed significant oxidation of GSH but relatively little oxidation of either Trx1 or Trx2. Arsenic, cadmium, and mercury showed little oxidation of GSH but significantly oxidized both Trx1 and Trx2. The magnitude of effects of arsenic, cadmium, and mercury was greater for the mitochondrial Trx2 (>60 mV) compared to the cytoplasmic Trx1 (20 to 40 mV). Apoptosis signal-regulating kinase 1 (ASK1) may be activated by two different pathways, one dependent upon GSH and glutaredoxin and the other independent of GSH and dependent upon thioredoxin. ASK1 activation and cell death were observed with metals that oxidized thioredoxins but not with metals that oxidized GSH. These findings show that metals have differential oxidative effects on the major thiol antioxidant systems and that activation of apoptosis may be associated with metal ions that oxidize thioredoxin and activate ASK1. The differential oxidation of the major thiol antioxidant systems by metal ions suggest that the distinct thiol/disulfide redox couples represented by GSH/GSSG and the thioredoxins may convey different levels of control in apoptotic and toxic signaling pathways.  相似文献   

12.
Apoptosis signal-regulating kinase 1 (ASK1) was recently discovered as a typical member of the mitogen-activated protein (MAP) kinase kinase kinase family, which induces apoptosis by activation of c-Jun-N-terminal kinase/p38 MAP kinase pathways. In normal cells ASK1 is directly inhibited by thioredoxin (Trx), a 12-kDa protein ubiquitously expressed in all living cells, which has a variety of biological functions related to cell proliferation and apoptosis. Here we found that purified Trx is sensitive to S-nitrosylation. Stimulation of HEK-293 cells with S-nitrosoglutathione (GSNO) for 2, 4, 8, and 16h also caused Trx S-nitrosylation, which showed straight correlation with ASK1 activation based on Western blot detection of the enzyme, immunoprecipitation assay, and measurement of its catalytic activity. These results suggest that S-nitrosylation of Trx induces ASK1 activation. Treatment of cells with N-acetyl-cysteine for 2h after 8h of pretreatment with GSNO caused an increase in glutathione and nullified ASK1 activation.  相似文献   

13.
Apoptosis signal-regulating kinase 1 (ASK1), a member of the mitogen-activated protein kinase kinase kinase family, plays pivotal roles in reactive oxygen species (ROS)-induced cellular responses. In resting cells, endogenous ASK1 constitutively forms a homo-oligomerized but still inactive high-molecular-mass complex including thioredoxin (Trx), which we designated the ASK1 signalosome. Upon ROS stimulation, the ASK1 signalosome unbinds from Trx and forms a fully activated higher-molecular-mass complex, in part by recruitment of tumor necrosis factor receptor-associated factor 2 (TRAF2) and TRAF6. However, the precise mechanisms by which Trx inhibits and TRAF2 and TRAF6 activate ASK1 have not been elucidated fully. Here we demonstrate that the N-terminal homophilic interaction of ASK1 through the N-terminal coiled-coil domain is required for ROS-dependent activation of ASK1. Trx inhibited this interaction of ASK1, which was, however, enhanced by expression of TRAF2 or TRAF6 or by treatment of cells with H2O2. Furthermore, the H2O2-induced interaction was reduced by double knockdown of TRAF2 and TRAF6. These findings demonstrate that Trx, TRAF2, and TRAF6 regulate ASK1 activity by modulating N-terminal homophilic interaction of ASK1.  相似文献   

14.
Acute myeloid leukemia (AML) cell lines treated by genotoxic agents or by Tumor Necrosis Factor alpha (TNFalpha) acquire potent cytotoxicity towards myeloid cells through activation of granzyme B (GrB)/perforin (PFN) system. Here we first extend this observation to another death receptor activator, Fas Ligand (FasL). Moreover, we analyzed GrB induction signalling pathway in TNFalpha- and FasL-stimulated AML cells. The effects of TNFalpha and FasL on GrB expression were specifically mediated by p38MAPK (Mitogen-activated-protein-kinase) activation. Otherwise, TNFalpha and FasL stimulation led to radical oxygen species (ROS) generation and ASK1 (Apoptosis-signal-regulating-kinase-1) activation. Endogenous activation of ASK1 by either H2O2 or thioredoxin (Trx) reductase inhibition had the same effects as TNFalpha and FasL on GrB up regulation. Altogether, our results suggest that TNFalpha- and FasL-stimulated AML cell lytic induction is regulated by a signalling pathway involving sequentially, ROS generation, Trx oxidation, ASK1 activation, p38MAPK stimulation and GrB induction at mRNA and protein levels.  相似文献   

15.
Withaferin A (WA), a promising anticancer constituent of Ayurvedic medicinal plant Withania somnifera, inhibits growth of MDA-MB-231 and MCF-7 human breast cancer cells in culture and MDA-MB-231 xenografts in vivo in association with apoptosis induction, but the mechanism of cell death is not fully understood. We now demonstrate, for the first time, that WA-induced apoptosis is mediated by reactive oxygen species (ROS) production due to inhibition of mitochondrial respiration. WA treatment caused ROS production in MDA-MB-231 and MCF-7 cells, but not in a normal human mammary epithelial cell line (HMEC). The HMEC was also resistant to WA-induced apoptosis. WA-mediated ROS production as well as apoptotic histone-associated DNA fragment release into the cytosol was significantly attenuated by ectopic expression of Cu,Zn-superoxide dismutase in both MDA-MB-231 and MCF-7 cells. ROS production resulting from WA exposure was accompanied by inhibition of oxidative phosphorylation and inhibition of complex III activity. Mitochondrial DNA-deficient Rho-0 variants of MDA-MB-231 and MCF-7 cells were resistant to WA-induced ROS production, collapse of mitochondrial membrane potential, and apoptosis compared with respective wild-type cells. WA treatment resulted in activation of Bax and Bak in MDA-MB-231 and MCF-7 cells, and SV40 immortalized embryonic fibroblasts derived from Bax and Bak double knockout mouse were significantly more resistant to WA-induced apoptosis compared with fibroblasts derived from wild-type mouse. In conclusion, the present study provides novel insight into the molecular circuitry of WA-induced apoptosis involving ROS production and activation of Bax/Bak.  相似文献   

16.
The role of H2O2 as a second messenger in signal transduction pathways is well established. We show here that the NADPH oxidase-dependent production of O2*(-) and H2O2 or respiratory burst in alveolar macrophages (AM) (NR8383 cells) is required for ADP-stimulated c-Jun phosphorylation and the activation of JNK1/2, MKK4 (but not MKK7) and apoptosis signal-regulating kinase-1 (ASK1). ASK1 binds only to the reduced form of thioredoxin (Trx). ADP induced the dissociation of ASK1/Trx complex and thus resulted in ASK1 activation, as assessed by phosphorylation at Thr845, which was enhanced after treatment with aurothioglucose (ATG), an inhibitor of Trx reductase. While dissociation of the complex implies Trx oxidation, protein electrophoretic mobility shift assay detected oxidation of Trx only after bolus H2O2 but not after ADP stimulation. These results demonstrate that the ADP-stimulated respiratory burst activated the ASK1-MKK4-JNK1/c-Jun signaling pathway in AM and suggest that transient and localized oxidation of Trx by the NADPH oxidase-mediated generation of H2O2 may play a critical role in ASK1 activation and the inflammatory response.  相似文献   

17.
Malignant cells were assayed for 1,25(OH)2D3 receptors and for the effects of 1,25(OH)2D3 on cell proliferation. The established lines studied were human promyelocytic leukemia (HL-60), T-cell lymphocytic leukemias (Molt-4, RPMI-8402, CEM), mouse leukemia (L1210), breast cancers (HT-39 and MCF-7) and a glioma (C-6) cultures. A TSK 3000 SW (0.75 X 60 cm) HPLC size exclusion column was used to characterize specific 1,25(OH)2D3 binding. We show for the first time that this column is capable of resolving the 3.2-3.5S 1,25(OH)2D3 mammalian receptor (Rs = 32 A) from the 5.5-6.0S form of the mammalian serum 25(OH)D3 transport receptor (Rs = 40 A). The molecular size of the 1,25(OH)2D3 receptors from these cancer cell lines was identical to that from rabbit intestine. HT-39, HL-60, MCF-7, Molt-4, C-6, RPMI-8402 and L1210 cells demonstrated specific 1,25(OH)2[3H]D3 binding (120, 90, 80, 45, 30 and 18 fmoles of sites/mg protein, respectively). Receptors were not detected in the CEM line. 1,25(OH)2D3 inhibited cell proliferation of HT-39, HL-60, MCF-7 and Molt-4 cells by 20% to 70%. In contrast, mouse leukemia (L1210) cells were stimulated to proliferate by this hormone. Proliferation of RPMI and CEM cells was not affected by 1,25(OH)2D3. We demonstrate that size-exclusion HPLC of 1,25(OH)2D3 binding proteins from mammalian intestine and cancer cells provided a rapid method for identification of specific 1,25(OH)2D3 receptors. Furthermore, in the cells studied, the presence and concentration of 1,25(OH)2D3 receptors qualitatively predicted the potency of this hormone to alter cell proliferation. We believe this assay will be useful for rapid analysis of human tumor receptor concentrations.  相似文献   

18.
HL-60 leukemic cells were differentiated along the neutrophilic pathway with retinoic acid (RA) or along the monocytic pathway with 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). Using a high-resolution two-dimensional electrophoresis technique and subsequent silver staining, differentiation-dependent changes in cytosolic protein pattern of HL-60 cells were analysed and were compared with the cytosolic protein pattern of human neutrophils. The amount of 64 and 50 out of a total of 632 proteins studied was increased or decreased in RA- and 1,25(OH)2D3-differentiated HL-60 cells, respectively, in comparison to undifferentiated HL-60 cells. Thirty-three of these proteins were similarly altered in RA- and 1,25(OH)2D3-differentiated HL-60 cells. Twenty-two and 25 of the proteins altered in amount in RA- or 1,25(OH)2D3-differentiated HL-60 cells versus undifferentiated HL-60 cells were similarly altered in human neutrophils in comparison to undifferentiated HL-60 cells. Seven and 10 of the proteins altered in amount in RA- or 1,25(OH)2D3-differentiated HL-60 cells had specific equivalents in neutrophil cytosol. Our results show (i) that neutrophilic and monocytic differentiation is associated with decreases and increases in amount of cytosolic proteins; (ii) that both differentiation processes share a common set of alterations; and (iii) are associated with specific alterations in protein amount.  相似文献   

19.
The stress-activated protein kinases (SAPKs, also called c-Jun NH(2)-terminal kinases) and the p38s, two mitogen-activated protein kinase (MAPK) subgroups activated by cytokines of the tumor necrosis factor (TNF) family, are pivotal to the de novo gene expression elicited as part of the inflammatory response. Apoptosis signal-regulating kinase 1 (ASK1) is a MAPK kinase kinase (MAP3K) that activates both the SAPKs and p38s in vivo. Here we show that TNF receptor (TNFR) associated factor 2 (TRAF2), an adapter protein that couples TNFRs to the SAPKs and p38s, can activate ASK1 in vivo and can interact in vivo with the amino- and carboxyl-terminal noncatalytic domains of the ASK1 polypeptide. Expression of the amino-terminal noncatalytic domain of ASK1 can inhibit TNF and TRAF2 activation of SAPK. TNF can stimulate the production of reactive oxygen species (ROS), and the redox-sensing enzyme thioredoxin (Trx) is an endogenous inhibitor of ASK1. We also show that expression of TRAF2 fosters the production of ROS in transfected cells. We demonstrate that Trx significantly inhibits TRAF2 activation of SAPK and blocks the ASK1-TRAF2 interaction in a reaction reversed by oxidants. Finally, the mechanism of ASK1 activation involves, in part, homo-oligomerization. We show that expression of ASK1 with TRAF2 enhances in vivo ASK1 homo-oligomerization in a manner dependent, in part, upon the TRAF2 RING effector domain and the generation of ROS. Thus, activation of ASK1 by TNF requires the ROS-mediated dissociation of Trx possibly followed by the binding of TRAF2 and consequent ASK1 homo-oligomerization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号