首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously reported that 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] protects primary human keratinocytes against ultraviolet (UV)B-induced apoptosis. Here, we confirmed the anti-apoptotic effect of 1,25(OH)2D3 in keratinocytes, using cisplatin and doxorubicin as apoptotic triggers. We further showed that 1,25(OH)2D3 activates two survival pathways in keratinocytes: the MEK/extracellular signal regulated kinase (ERK) and the phosphatidylinositol 3-kinase (PI-3K)/Akt pathway. Activation of ERK and Akt by 1,25(OH)2D3 was transient, required a minimal dose of 10(-9) M and could be blocked by actinomycin D and cycloheximide. Moreover, inhibition of Akt or ERK activity with respectively a PI-3K inhibitor (LY294002) or MEK inhibitors (PD98059, UO126), partially or totally suppressed the anti-apoptotic capacity of 1,25(OH)2D3. Finally, 1,25(OH)2D3 changed the expression of different apoptosis regulators belonging to the Bcl-2 family. Indeed, 1,25(OH)2D3 treatment increased levels of the anti-apoptotic protein Bcl-2 and decreased levels of the pro-apoptotic proteins Bax and Bad in a time- and dose-dependent way. Induction of Bcl-2 by 1,25(OH)2D3 was further shown to be mediated by ERK and, to a lesser extent, by Akt. In conclusion, 1,25(OH)2D3 clearly protects keratinocytes against apoptosis (1) by activating the MEK/ERK and the PI-3K/Akt survival pathways and (2) by increasing the Bcl-2 to Bax and Bad ratio.  相似文献   

2.
A finding commonly observed in human immunodeficiency virus type 1 (HIV-1)-infected patients is invasion of the brain by activated T cells and infected macrophages, eventually leading to the development of neurological disorders and HIV-1-associated dementia. The recruitment of T cells and macrophages into the brain is likely the result of chemokine expression. Indeed, earlier studies revealed that levels of different chemokines were increased in the cerebrospinal fluid of HIV-1-infected patients whereas possible triggers and cellular sources for chemokine expression in the brain remain widely undefined. As previous studies indicated that HIV-1 Tat, the retroviral transactivator, is capable of inducing a variety of cellular genes, we investigated its capacity to induce production of chemokines in astrocytes. Herein, we demonstrate that HIV-1 Tat(72aa) is a potent inducer of MCP-1, interleukin-8 (IL-8), and IP-10 expression in astrocytes. Levels of induced IP-10 protein were sufficiently high to induce chemotaxis of peripheral blood lymphocytes. In addition, Tat(72aa) induced IL-8 expression in astrocytes. IL-8 mRNA induction was seen less then 1 h after Tat(72aa) stimulation, and levels remained elevated for up to 24 h, leading to IL-8 protein production. Tat(72aa)-mediated MCP-1 and IL-8 mRNA induction was susceptible to inhibition by the MEK1/2 inhibitor UO126 but was only modestly decreased by the inclusion of the p38 mitogen-activated protein kinase (MAPK) inhibitor SB202190. In contrast, Tat-mediated IP-10 mRNA induction was suppressed by SB202190 but not by the MEK1/2 inhibitor UO126. These findings indicate that MAPKs play a major role in Tat(72aa)-mediated chemokine induction in astrocytes.  相似文献   

3.
4.
The effect of erythropoietin (Epo) on the expression of mitogen-activated protein kinase (MAPK) target genes egr-1 and c-fos was investigated in Epo-responsive murine erythroblastic cell line ELM-I-1. Epo induced a transient rise in egr-1 mRNA without a similar effect on c-fos expression. The induction of egr-1 correlated with a rapid ERK1/2 phosphorylation and was prevented with MEK1/2 inhibitors PD 98059 and UO126. The p38 inhibitor SB 203580 enhanced ERK1/2 phosphorylation and egr-1 mRNA levels. Longer incubations of ELM-I-1 cells with Epo revealed a second later phase of increase in egr-1 expression which was also prevented by MEK1/2 inhibitors, whereas SB 203580 had a stimulatory effect. In contrast, the beta-globin mRNA production was enhanced in the presence of PD 98059 and UO126 and reduced by SB 203580. The results suggest a regulatory role of egr-1 expression in Epo signal transduction and provide pharmacological evidence for the negative modulation of differentiation-specific gene expression by the ERK1/2 pathway in murine erythroleukemia cells.  相似文献   

5.
Hsp27 inhibits mitochondrial injury and apoptosis in both normal and cancer cells by an unknown mechanism. To test the hypothesis that Hsp27 decreases apoptosis by inhibiting Bax, Hsp27 expression was manipulated in renal epithelial cells before transient metabolic stress, an insult that activates Bax, induces mitochondrial injury, and causes apoptosis. Compared with control, enhanced Hsp27 expression inhibited conformational Bax activation, oligomerization, and translocation to mitochondria, reduced the leakage of both cytochrome c and apoptosis-inducing factor, and significantly improved cell survival by >50% after stress. In contrast, Hsp27 down-regulation using RNA-mediated interference promoted Bax activation, increased Bax translocation, and reduced cell survival after stress. Immunoprecipitation did not detect Hsp27-Bax interaction before, during, or after stress, suggesting that Hsp27 indirectly inhibits Bax. During stress, Hsp27 expression prevented the inactivation of Akt, a pro-survival kinase, and increased the interaction between Akt and Bax, an Akt substrate. In contrast, Hsp27 RNA-mediated interference promoted Akt inactivation during stress. Hsp27 up- or down-regulation markedly altered the activity of phosphatidylinositol 3-kinase (PI3-kinase), a major regulator of Akt. Furthermore, distinct PI3-kinase inhibitors completely abrogated the protective effect of Hsp27 expression on Akt activation, Bax inactivation, and cell survival. These data show that Hsp27 antagonizes Bax-mediated mitochondrial injury and apoptosis by promoting Akt activation via a PI3-kinase-dependent mechanism.  相似文献   

6.
Obesity is associated with adipose tissue remodeling, characterized by macrophage accumulation, adipocyte hypertrophy, and apoptosis. We previously reported that macrophage-conditioned medium (MacCM) protects preadipocytes from apoptosis, due to serum withdrawal, in a platelet-derived growth factor (PDGF)-dependent manner. We have now investigated the role of intracellular signaling pathways, activated in response to MacCM versus PDGF, in promoting preadipocyte survival. Exposure of 3T3-L1 preadipocytes to J774A.1-MacCM or PDGF strongly stimulated Akt and ERK1/2 phosphorylation from initially undetectable levels. Inhibition of the upstream regulators of Akt or ERK1/2, i.e. phosphoinositide 3-kinase (PI3K; using wortmannin or LY294002) or MEK1/2 (using UO126 or PD98509), abrogated the respective phosphorylation responses, and significantly impaired pro-survival activity. J774A.1-MacCM increased reactive oxygen species (ROS) levels by 3.4-fold, and diphenyleneiodonium (DPI) or N-acetyl cysteine (NAC) significantly inhibited pro-survival signaling and preadipocyte survival in response to J774A.1-MacCM. Serum withdrawal itself also increased ROS levels (2.1-fold), and the associated cell death was attenuated by DPI or NAC. In summary, J774A.1-MacCM-dependent 3T3-L1 preadipocyte survival requires the Akt and ERK1/2 signaling pathways. Furthermore, ROS generation by J774A.1-MacCM is required for Akt and ERK1/2 signaling to promote 3T3-L1 preadipocyte survival. These data suggest potential mechanisms by which macrophages may alter preadipocyte fate.  相似文献   

7.
Bovine carotid artery endothelial (BAE) cells are resistant to tumor necrosis factor-alpha (TNF), like most other cells. We examined if mitogen-activated protein (MAP) kinase and phosphatidylinositol-3 (PI3) kinase/Akt pathways are involved in this effect. In BAE cells, TNF activates MAP kinase in a MAP kinase kinase 1 (MEK1) manner and Akt in PI3-kinase-dependent manner. Pretreatment with either the MEK1 inhibitor U0126 or PI3-kinase inhibitor LY294002 sensitized BAE cells to TNF-induced apoptosis. Neither U0126 nor LY294002 pretreatment affected TNF-induced activation of NF-kappaB, suggesting that the MAP kinase or PI3-kinase/Akt-mediated anti-apoptotic effect induced by TNF was not relevant to NF-kappaB activation. Both MAP kinase and PI3-kinase/Akt -mediated signaling could prevent cytochrome c release and mitochondrial transmembrane potential (Deltapsi) decrease. PI3-kinase/Akt signaling attenuated caspase-8 activity, whereas MAP kinase signaling impaired caspase-9 activity. These results suggest that TNF-induced MAP kinase and PI3-kinase/Akt signaling play important roles in protecting BAE cells from TNF cytotoxicity.  相似文献   

8.
Two Ras effector pathways leading to the activation of Raf-1 and phosphatidylinositol 3-kinase (PI3K) have been implicated in the survival signaling by the interleukin 3 (IL-3) receptor. Analysis of apoptosis suppression by Raf-1 demonstrated the requirement for mitochondrial translocation of the kinase in this process. This could be achieved either by overexpression of the antiapoptotic protein Bcl-2 or by targeting Raf-1 to the mitochondria via fusion to the mitochondrial protein Mas p70. Mitochondrially active Raf-1 is unable to activate extracellular signal-related kinase 1 (ERK1) and ERK2 but suppresses cell death by inactivating the proapoptotic Bcl-2 family member BAD. However, genetic and biochemical data also have suggested a role for the Raf-1 effector module MEK-ERK in apoptosis suppression. We thus tested for MEK requirement in cell survival signaling using the interleukin 3 (IL-3)-dependent cell line 32D. MEK is essential for survival and growth in the presence of IL-3. Upon growth factor withdrawal the expression of constitutively active MEK1 mutants significantly delays the onset of apoptosis, whereas the presence of a dominant negative mutant accelerates cell death. Survival signaling by MEK most likely results from the activation of ERKs since expression of a constitutively active form of ERK2 was as effective in protecting NIH 3T3 fibroblasts against doxorubicin-induced cell death as oncogenic MEK. The survival effect of activated MEK in 32D cells is achieved by both MEK- and PI3K-dependent mechanisms and results in the activation of PI3K and in the phosphorylation of AKT. MEK and PI3K dependence is also observed in 32D cells protected from apoptosis by oncogenic Raf-1. Additionally, we also could extend these findings to the IL-3-dependent pro-B-cell line BaF3, suggesting that recruitment of MEK is a common mechanism for survival signaling by activated Raf. Requirement for the PI3K effector AKT in this process is further demonstrated by the inhibitory effect of a dominant negative AKT mutant on Raf-1-induced cell survival. Moreover, a constitutively active form of AKT synergizes with Raf-1 in apoptosis suppression. In summary these data strongly suggest a Raf effector pathway for cell survival that is mediated by MEK and AKT.  相似文献   

9.
17beta-estradiol (17beta-E2) protects against H2O2-mediated depletion of intracellular ATP and lessens the degree of depolarization of mitochondrial membrane potential (DeltaPsi(m)) in cultured lens epithelial cells consequential to oxidative insult. We now report that 17beta-E2 acts as a positive regulator of the survival signal transduction pathway, MAPK which, in turn, acts to stabilize DeltaPsi(m) in effect, attenuating the extent of depolarization of mitochondrial membrane potential in the face of acute oxidative stress. The SV-40 viral transformed human cell line, HLE-B3 was treated with 17beta-E2 over a time course of 60 min and phosphorylation of ERK1/2 was analyzed by Western blot. ERK1/2 was phosphorylated within 5-15 min in the presence of 17beta-E2. Cell cultures were exposed to the MEK1/2 inhibitor, UO126, subsequent to H2O2+/-17beta-E2 treatment and the DeltaPsi(m) examined using JC-1, a potentiometric dye which serves as an indicator for the state of mitochondrial membrane potential. UO126 treatment attenuated ERK1/2 phosphorylation irrespective of whether estradiol was administered. Mitochondrial membrane depolarization resulting from H2O2 stress was substantially greater in the presence of UO126. The greater the extent of depolarization, the less effective 17beta-E2 treatment was in checking mitochondrial membrane depolarization, indicating that the relative degree of ERK phosphorylation influences mitochondrial stability with oxidative insult. The data support a positive correlation between 17beta-E2 stimulation of ERK1/2 phosphorylation and mitochondrial stabilization that would otherwise cause a complete collapse of DeltaPsi(m).  相似文献   

10.
Cai Y  Liu Y  Zhang X 《Journal of virology》2007,81(2):446-456
We previously demonstrated that infection of cultured cells with murine coronavirus mouse hepatitis virus (MHV) resulted in activation of the mitogen-activated protein kinase (Raf/MEK/ERK) signal transduction pathway (Y. Cai et al., Virology 355:152-163, 2006). Here we show that inhibition of the Raf/MEK/ERK signaling pathway by the MEK inhibitor UO126 significantly impaired MHV progeny production (a reduction of 95 to 99% in virus titer), which correlated with the phosphorylation status of ERK1/2. Moreover, knockdown of MEK1/2 and ERK1/2 by small interfering RNAs suppressed MHV replication. The inhibitory effect of UO126 on MHV production appeared to be a general phenomenon since the effect was consistently observed in all six different MHV strains and in three different cell types tested; it was likely exerted at the postentry steps of the virus life cycle because the virus titers were similarly inhibited from infected cells treated at 1 h prior to, during, or after infection. Furthermore, the treatment did not affect the virus entry, as revealed by the virus internalization assay. Metabolic labeling and reporter gene assays demonstrated that translation of cellular and viral mRNAs appeared unaffected by UO126 treatment. However, synthesis of viral genomic and subgenomic RNAs was severely suppressed by UO126 treatment, as demonstrated by a reduced incorporation of [3H]uridine and a decrease in chloramphenicol acetyltransferase (CAT) activity in a defective-interfering RNA-CAT reporter assay. These findings indicate that the Raf/MEK/ERK signaling pathway is involved in MHV RNA synthesis.  相似文献   

11.
Apoptosis of tubular epithelial cells is a major feature of diabetic kidney disease, and hyperglycemia triggers the generation of free radicals and oxidant stress in tubular cells. Berberine (BBR) is identified as a potential anti-diabetic herbal medicine due to its beneficial effects on insulin sensitivity, glucose metabolism and glycolysis. In this study, the underlying mechanisms involved in the protective effects of BBR on high glucose-induced apoptosis were explored using cultured renal tubular epithelial cells (NRK-52E cells) and human kidney proximal tubular cell line (HK-2 cells). We identified the pivotal role of phosphatidylinositol 3-kinase (PI3K)/Akt in BBR cellular defense mechanisms and revealed the novel effect of BBR on nuclear factor (erythroid-derived 2)-related factor-2 (Nrf2) and heme oxygenase (HO)-1 in NRK-52E and HK-2 cells. BBR attenuated reactive oxygen species production, antioxidant defense (GSH and SOD) and oxidant-sensitive proteins (Nrf2 and HO-1), which also were blocked by LY294002 (an inhibitor of PI3K) in HG-treated NRK-52E and HK-2 cells. Furthermore, BBR improved mitochondrial function by increasing mitochondrial membrane potential. BBR-induced anti-apoptotic function was demonstrated by decreasing apoptotic proteins (cytochrome c, Bax, caspase3 and caspase9). All these findings suggest that BBR exerts the anti-apoptosis effects through activation of PI3K/Akt signal pathways and leads to activation of Nrf2 and induction of Nrf2 target genes, and consequently protecting the renal tubular epithelial cells from HG-induced apoptosis.  相似文献   

12.
CD4+CD8+ thymocytes are either positively selected and subsequently mature to CD4 single positive (SP) or CD8 SP T cells, or they die by apoptosis due to neglect or negative selection. This clonal selection is essential for establishing a functional self-restricted T cell repertoire. Intracellular signals through the three known mitogen-activated protein (MAP) kinase pathways have been shown to selectively guide positive or negative selection. Whereas the c-Jun N-terminal kinase and p38 MAP kinase regulate negative selection of thymocytes, the extracellular signal-regulated kinase (ERK) pathway is required for positive selection and T cell lineage commitment. In this paper, we show that the MAP/ERK kinase (MEK)-ERK pathway is also involved in negative selection. Thymocytes from newborn TCR transgenic mice were cultured with TCR/CD3epsilon-specific Abs or TCR-specific agonist peptides to induce negative selection. In the presence of the MEK-specific pharmacological inhibitors PD98059 or UO126, cell recovery was enhanced and deletion of DP thymocytes was drastically reduced. Furthermore, development of CD4 SP T cells was blocked, but differentiation of mature CD8 SP T cells proceeded in the presence of agonist peptides when MEK activity was blocked. Thus, our data indicate that the outcome between positively and negatively selecting signals is critically dependent on MEK activity.  相似文献   

13.
Placental blood flow, nitric-oxide (NO) levels, and endothelial NO synthase (eNOS) expression increase during human and ovine pregnancy. Shear stress stimulates NO production and eNOS expression in ovine fetoplacental artery endothelial (OFPAE) cells. Because eNOS is the rate-limiting enzyme essential for NO synthesis, its activity and expression are both closely regulated. We investigated signaling mechanisms underlying pulsatile shear stress-induced increases in eNOS phosphorylation and protein expression by OFPAE cells. The OFPAE cells were cultured at 3 dynes/cm2 shear stress, then exposed to 15 dynes/cm2 shear stress. Western blot analysis for phosphorylated ERK1/2, Akt, p38 mitogen activated protein kinase (MAPK), and eNOS showed that shear stress rapidly increased phosphorylation of ERK1/2 and Akt but not of p38 MAPK. Phosphorylation of eNOS Ser1177 under shear stress was elevated by 20 min, a response that was blocked by the phosphatidyl inositol-3-kinase (PI-3K)-inhibitors wortmannin and LY294002 but not by the mitogen activated protein kinase kinase (MEK)-inhibitor UO126. Basic fibroblast growth factor (bFGF) enhanced eNOS protein levels in static culture via a MEK-mediated mechanism, but it could not further augment the elevated eNOS protein levels otherwise induced by the 15 dynes/cm2 shear stress. Blockade of either signaling pathway changed the shear stress-induced increase in eNOS protein levels. In conclusion, shear stress induced rapid eNOS phosphorylation on Ser1177 in OFPAE cells through a PI-3K-dependent pathway. The bFGF-induced rise in eNOS protein levels in static culture was much less than those observed under flow and was blocked by inhibition of MEK. Prolonged shear stress-stimulated increases in eNOS protein were not affected by inhibition of MEK- or PI-3K-mediated pathways.  相似文献   

14.
Recent studies have shown that MEK/ERK-mediated signals play a major role in regulation of activity of p53 tumor suppressor protein. In this study, we investigated whether or not there is functional interaction between p53 and MEK/ERK pathways in epithelial breast cancer cells exposed to copper or zinc. We demonstrated that expression of wild-type p53 induced by copper or zinc significantly reduced phosphorylation of extracellular signal regulated kinase (ERK) in epithelial breast cancer MCF7 cells. Mutation or suppression of p53 in MDA-MB231 and MCF7-E6 cells, respectively, resulted in a strong ERK phosphorylation in the presence of metals. Weak ERK phosphorylation in MCF7 cells induced by copper or zinc was linked to mitochondrial disruption and apoptosis. Furthermore, inhibition of ERK through addition of PD98059 stimulated p53 activation in MCF7 cells and also led to upregulation of p53 downstream targets, p21 and Bax, which is a proapototic member of Bcl-2 family triggering mitochondrial pore opening. Moreover, blockage of the MEK/ERK pathway caused a breakdown of the mitochondrial membrane potential accompanied by an elevation in the ROS production. Disruption of p53 expression attenuated the depolarization of the mitochondrial membrane and ROS generation. Furthermore, PD98059 initiated apoptosis inducing factor (AIF) translocation from mitochondria to the nucleus in MCF7 cells; which are depleted in caspase 3. Interestingly, repression of MEK/ERK pathway did not intensify the cell stress caused by metal toxicity. Therefore, these findings demonstrate that MEK/ERK pathway plays an important role in downregulation of p53 and cell survival. Inhibition of ERK can lead to apoptosis via nuclear relocation of AIF. However, metal-induced activation of p53 and mitochondrial depolarization appears to be independent of ERK. Our data suggest that copper induces apoptosis through depolarization of mitochondrial membrane with release of AIF, and this process is MEK/ERK independent.  相似文献   

15.
p53 is activated by stress leading to oncogenic alteration, which induces either cell cycle arrest or apoptosis, although the mechanism involved in this decision has not been fully clarified as yet. This work was undertaken to change the cellular response by inducing apoptosis with PI3K inhibitors to Saos-2 cells that had been growth-arrested in both G1 and G2/M by the wild-type activity of temperature-sensitive (ts) p53. We found that the PI3K/Akt inhibitors LY294002 and wortmannin, but not the MEK inhibitor U0126, were capable of inducing apoptosis in growth-arrested Saos-2 cells, as assessed by an increase in the sub-G1 population, pyknotic nuclei, and DNA ladder formation. We detected the cleavage of caspases 9 and 3, and PARP after LY294002 addition, accompanied by a loss of cytochrome c from the mitochondria, and observed Bax translocation to the mitochondria and down-regulation of phospho-Akt, suggesting that blocking of survival signals triggered the apoptotic signal through the mitochondrial apoptotic pathway. It is thus suggested that the PI3K/Akt pathway played an important role in determining cell fate between growth arrest and apoptosis.  相似文献   

16.
Treatment of hematopoietic malignancies often requires allogeneic bone marrow transplantation, and the subsequent graft-versus-leukemia response is crucial for the elimination of malignant cells. Cytotoxic T lymphocytes and NK cells responsible for the immunoelimination express Fas ligand and strongly rely on the induction of Fas receptor-mediated apoptosis for their action. Although cancer cells are removed successfully by graft-versus-leukemia reactions in myeloid malignancies, their efficiency is low in T cell leukemias. This may be partially because of the ability of malignant T cells to escape apoptosis. Our work shows that Eph family receptor EphB3 is consistently expressed by malignant T lymphocytes, most frequently in combination with EphB6, and that stimulation with their common ligands, ephrin-B1 and ephrin-B2, strongly suppresses Fas-induced apoptosis in these cells. This effect is associated with Akt activation and with the inhibition of the Fas receptor-initiated caspase proteolytic cascade. Akt proved to be crucial for the prosurvival response, because inhibition of Akt, but not of other molecules central to T cell biology, including Src kinases, MEK1 and MEK2, blocked the antiapoptotic effect. Overall, this demonstrates a new role for EphB receptors in the protection of malignant T cells from Fas-induced apoptosis through Akt engagement and prevention of caspase activation. Because Fas-triggered apoptosis is actively involved in the graft-versus-leukemia response and cytotoxic T cells express ephrin-Bs, our observations suggest that EphB receptors are likely to support immunoevasivenes of T cell malignancies and may represent promising targets for therapies, aiming to enhance immunoelimination of cancerous T cells.  相似文献   

17.
Actopaxin is an actin and paxillin binding protein that localizes to focal adhesions. It regulates cell spreading and is phosphorylated during mitosis. Herein, we identify a role for actopaxin phosphorylation in cell spreading and migration. Stable clones of U2OS cells expressing actopaxin wild-type (WT), nonphosphorylatable, and phosphomimetic mutants were developed to evaluate actopaxin function. All proteins targeted to focal adhesions, however the nonphosphorylatable mutant inhibited spreading whereas the phosphomimetic mutant cells spread more efficiently than WT cells. Endogenous and WT actopaxin, but not the nonphosphorylatable mutant, were phosphorylated in vivo during cell adhesion/spreading. Expression of the nonphosphorylatable actopaxin mutant significantly reduced cell migration, whereas expression of the phosphomimetic increased cell migration in scrape wound and Boyden chamber migration assays. In vitro kinase assays demonstrate that extracellular signal-regulated protein kinase phosphorylates actopaxin, and treatment of U2OS cells with the MEK1 inhibitor UO126 inhibited adhesion-induced phosphorylation of actopaxin and also inhibited cell migration.  相似文献   

18.
Vaculová A  Hofmanová J  Soucek K  Kozubík A 《FEBS letters》2006,580(28-29):6565-6569
Epithelial cells can be manipulated to undergo apoptosis depending on the balance between pro-survival and apoptotic signals. We showed that TRAIL-induced apoptosis may be differentially regulated by inhibitors of MEK ERK (U0126) or PI3K/Akt (LY294002) pathway in TRAIL-sensitive (HT-29) and TRAIL-resistant (SW620) human epithelial colon cancer cells. U0126 or LY294002 significantly enhanced TRAIL-induced apoptosis in HT-29 cells, but not in SW620 cells. We report a different regulation of the level of an anti-apoptotic Mcl-1 protein under MEK/ERK or PI3K/Akt pathway inhibition and suggest the mechanisms involved. A special attention was paid to the role of the ERK1/2, Akt, and glycogen synthase kinase 3beta.  相似文献   

19.
MEK-1 is a dual threonine and tyrosine recognition kinase that phosphorylates and activates mitogen-activated protein kinase (MAPK). MEK-1 is in turn activated by phosphorylation. Raf and MAPK/extracellular signal-regulated kinase kinase (MEKK) independently phosphorylate and activate MEK-1. Recombinant MEK-1 is also capable of autoactivation. Purified recombinant wild type MEK-1 and a mutant kinase inactive MEK-1 were used as substrates for MEKK, Raf, and autophosphorylation. MEK-1 phosphorylation catalyzed by Raf, MEKK, or autophosphorylation resulted in activation of MEK-1 kinase activity measured by phosphorylation of a mutant kinase inactive MAPK. Phosphoamino acid analysis and peptide mapping identified similar MEK-1 tryptic phosphopeptides after phosphorylation by MEK kinase, Raf, or MEK-1 autophosphorylation. MEK-1 is phosphorylated by MAPK at sites different from that for Raf and MEKK. Phosphorylation of MEK-1 by MAPK does not affect MEK-1 kinase activity. Several phosphorylation sites present in MEK-1 immunoprecipitated from 32P-labeled cells after stimulation with epidermal growth factor were common to the in vitro phosphorylated enzyme. The major site of MAPK phosphorylation in MEK-1 is threonine 292. Mutation of threonine 292 to alanine eliminates 90% of MAPK catalyzed phosphorylation of MEK-1 but does not influence MEK-1 activity. The results demonstrate that MEKK and Raf regulate MEK-1 activity by phosphorylation of common residues and thus, two independent protein kinases converge at MEK-1 to regulate the activity of MAPK.  相似文献   

20.
Anchorage removal like growth factor removal induces apoptosis. In the present study we have characterized signaling pathways that can prevent this cell death using a highly growth factor- and anchorage-dependent line of lung fibroblasts (CCL39). After anchorage removal from exponentially growing cells, annexin V-FITC labeling can be detected after 8 h. Apoptosis was confirmed by analysis of sub-G1 DNA content and Western blotting of the caspase substrate poly (ADP-ribose) polymerase. Growth factor withdrawal accelerates and potentiates suspension-induced cell death. Activation of Raf-1 kinase in suspension cultures of CCL39 or Madin-Darby canine kidney cells stably expressing an estrogen-inducible activated-Raf-1 construct (DeltaRaf-1:ER) suppresses apoptosis induced by growth factor and/or anchorage removal. This protective effect appears to be mediated by the Raf, mitogen- or extracellular signal-regulated kinase kinase (MEK), and mitogen-activated protein kinase module because it is sensitive to pharmacological inhibition of MEK-1 and it can be mimicked by expression of constitutively active MEK-1 in CCL39 cells. Finally, apoptosis induced by disruption of the actin cytoskeleton with the Rho-directed toxin B (Clostridium difficile) is prevented by activation of the DeltaRaf-1:ER chimeric construct. These findings highlight the ability of p42/p44 mitogen-activated protein kinase to generate survival signals that counteract cell death induced by loss of matrix contact, cytoskeletal integrity, and extracellular mitogenic factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号