首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Failure to respond to antifungal therapy could be due to in vitro resistance (intrinsic or developed during therapy) or clinical resistance. In vitro resistance is mostly due to genetic mutations (resistance mechanisms), and it is associated with high minimal inhibitory concentrations (MICs), minimal effective concentrations (MECs), and/or clinical failure. Clinical breakpoints (CBPs) and/or epidemiologic cutoff values (ECVs) are useful to detect the in vitro antifungal resistance when isolates are tested by standardized methods. ECVs are available from the Clinical and Laboratory Standards Institute (CLSI) for Candida spp. versus echinocandins (anidulafungin, caspofungin, and micafungin) and triazoles (fluconazole, posaconazole, and voriconazole). Lately, the CLSI has adjusted to species-specific CBPs for Candida spp. versus fluconazole, similar to those of the European Committee on Antimicrobial Susceptibility Testing (EUCAST), and versus echinocandins. However, the available voriconazole EUCAST and CLSI CBPs differ. In the absence of CBPs, EUCAST and CLSI assigned ECVs for various Aspergillus spp. and triazoles. This article reviews emerging resistance, laboratory detection, and clinical relevance as reported in the literature in the past 3 to 4 years.  相似文献   

2.

Purpose of Review

Resistance to antifungal drugs amongst Candida species is a growing concern, and azole resistance may be emerging in Cryptococcus species. This review provides a contemporary perspective, relevant to the clinical mycology laboratory, of antifungal susceptibility testing of these fungi, focussing on the challenges of phenotypic and genotypic methodologies to detect drug resistance.

Recent Findings

Standardised CLSI and EUCAST broth microdilution (BMD) susceptibility testing methods are the benchmark to determine clinical breakpoints (CBPs) and/or epidemiological cut-off values (ECVs) MICs for Candida and Cryptococcus spp. Commercial methods may be used but caution is required when employing BMD CBPs/ECVs to interpret results. Species-specific CBPs/ECVs for Candida spp. generally correlate well with predicting likelihood of therapeutic failure or of presence of a drug resistance mechanism with the exception of the echinocandins where the presence of specific FKS gene mutations and not the MIC correlates most accurately with clinical outcome. The relationship of presence of one or more mechanisms of azole resistance and drug MICs is uncertain. Next generation sequencing technology is offering insights into the relationships between susceptibility results obtained by phenotypic and genotypic methods. For Cryptococcus spp., CBPs are not established but species- and genetic type-specific EVCs are useful for guiding therapy where clinically indicated. Isolates of genotype VGII appear to exhibit the highest MICs.

Summary

Antifungal susceptibility testing of yeasts is important to detect drug resistance. For Candida spp., MICs have clinical utility for the azoles but detecting echinocandin resistance by genotypic methods is preferred. For Cryptococcus spp., ECVs are useful in guiding therapy.
  相似文献   

3.

Purpose of Review

The purpose of this review is to provide a current view of the importance of the determination and use of epidemiological cutoff values (ECVs) for Cryptococcus neoformans, since there are no clinical breakpoints (CBPs).

Recent Findings

ECVs have been proposed for some antifungal agents and C. neoformans, using standardized methodologies by the Clinical and Laboratory Standards Institute (CLSI) and by the European Committee for Antimicrobial Susceptibility Testing (EUCAST), based on the distribution of minimum inhibitory concentrations (MICs). There is no sufficient evidence for the determination of ECVs for C. neoformans using commercial methods; however, as these methods are routinely used in the microbiology laboratory, it is recommended for the establishment of local ECVs using these methods and following the criteria for their determination.

Summary

Due to the geographic and genetic variations inherent to C. neoformans, it is important to calculate ECVs, since they are useful in clinical practice to guide therapy in the absence of CBPs.
  相似文献   

4.
Antifungal susceptibility testing of Candida against fluconazole has been standardized by both the Clinical and Laboratory Standards Institute (CLSI) and the European Committee on Antimicrobial Susceptibility Testing (EUCAST). Both CLSI and EUCAST have developed clinical breakpoint (CBP) criteria for fluconazole, but these differ in both magnitude and target species. Studies using the EUCAST method have also defined wild-type minimum inhibitory concentration (MIC) distributions and epidemiologic cutoff values (ECVs or ECOFFs) for the common species of Candida. The ECVs serve as a sensitive means of discriminating wild-type strains from those with acquired resistance mechanisms and include MICs of 1 μg/mL for C. albicans, 2 μg/mL for C. tropicalis and C. parapsilosis, 32 μg/mL for C. glabrata, and 128 μg/mL for C. krusei. Because the CLSI CBPs may be too insensitive to detect emerging resistance among strains of C. albicans, C. tropicalis, and C. parapsilosis, and bisect the WT MIC distribution of C. glabrata, we sought to establish the wild-type MIC distribution and ECVs for fluconazole and Candida spp. The establishment of the wild-type MIC distributions and ECVs for fluconazole using CLSI methods will be useful in resistance surveillance and may prove to be an important step in the development of species-specific CBPs for this important antifungal agent.  相似文献   

5.
The role of antimicrobial susceptibility testing is to aid in selecting the best agent for the treatment of bacterial and fungal diseases. This has been best achieved by the setting of breakpoints by Clinical Laboratory Standards Institute (CLSI) for prevalent Candida spp. versus anidulafungin, caspofungin, micafungin, fluconazole, and voriconazole. The European Committee on Antimicrobial Susceptibility Testing (EUCAST) also has set breakpoints for prevalent and common Candida and Aspergillus species versus amphotericin B, itraconazole, and posaconazole. Recently, another interpretive category, the epidemiological cut off value, could aid in the early identification of strains with acquired resistance mechanisms. CLSI has postulated that epidemiological cut off values may, with due caution, aid physicians in managing mycosis by species where breakpoints are not available. This review provides (1) the criteria and statistical approach to establishing and estimating epidemiological cut off values (ECVs), (2) the role of the epidemiological cut off value in establishing breakpoints, (3) the potential role of epidemiological cut off values in clinical practice, (4) and the wide range of CLSI-based epidemiological cut off values reported in the literature as well as EUCAST and Sensititre Yeast One-ECVs. Additionally, we provide MIC/MEC (minimal inhibitory concentrations/minimum effective concentrations) ranges/modes of each pooled distribution used for epidemiological cut off value calculation. We focus on the epidemiological cut off value, the new interpretive endpoint that will identify the non-wild type strains (defined as potentially harboring resistance mechanisms). However, we emphasize that epidemiological cut off values will not categorize a fungal isolate as susceptible or resistant as breakpoints do, because the former do not account for the pharmacology of the antifungal agent or the findings from clinical outcome studies.  相似文献   

6.
Antifungal susceptibility testing of Candida has been standardized and refined and now may play an important role in managing Candida infections. Important new developments include the establishment of species-specific epidemiological cutoff values (ECVs) for the systemically active antifungal agents and both common and uncommon species of Candida. The clinical breakpoints (CBPs) for fluconazole, voriconazole, and the echinocandins have been revised to provide species-specific interpretive criteria for the six most common species that not only are predictive of clinical outcome but also provide a more sensitive means of identifying those strains with acquired or mutational resistance mechanisms. Collaborative work by the CLSI and EUCAST organizations has made major advances in the harmonization of these two international standards. The impact of the recent changes in the CBPs on commercial MIC methods does not appear to be major but additional studies with well defined resistant populations are necessary to confirm the ability of these systems to detect emerging resistance.  相似文献   

7.
Although reference broth microdilution protocol is currently available for filamentous fungi antifungal susceptibility testing (AFST), simpler alternatives as Etest® tend to be favoured in clinical routine, making their validation of utmost importance. In this study, Etest® method using 2 % glucose supplemented Muller–Hinton agar was compared to the Clinical and Laboratory Standards Institute (CLSI) M38-A2 protocol for filamentous fungi AFST. The echinocandins, caspofungin and anidulafungin, the azoles voriconazole and posaconazole, and the polyene amphotericin B were tested against 48 Aspergillus spp., seven Fusarium spp., one Beauveria bassiana and three Paecilomyces lilacinus isolates. The majority of the isolates were susceptible to the antifungals tested, and the overall level of agreement between the CLSI and Etest methods was 71.9 % for one dilution and 99.7 % when using two dilutions. Since interpretative breakpoints for filamentous fungi employing the CLSI or Etest methods are not available yet, the established epidemiological cut-off values for Aspergillus spp. were used to distinguish wild-type isolates from those with acquired resistance mechanisms. Forty-five Aspergillus strains did not evidence resistance mutations.  相似文献   

8.
Antifungal susceptibility testing of Candida against the echinocandin antifungal agents (anidulafungin [ANF], caspofungin [CSF], micafungin [MCF]) has been standardized by the Clinical and Laboratory Standards Institute (CLSI) Subcommittee on Antifungal Testing. The CLSI proposed a single set of clinical breakpoints (CBPs) for all three echinocandins and all species of Candida: susceptible, minimum inhibitory concentration (MIC) ≤ 2 μg/mL; nonsusceptible, MIC > 2 μg/mL. Subsequently, these CBPs have been shown to lack sensitivity in detecting strains of Candida with acquired resistance mechanisms associated with treatment failure. Studies using the CLSI method have defined wild-type (WT) MIC distributions and epidemiologic cutoff values (ECVs) for each echinocandin and the common species of Candida. The ECVs serve as a sensitive means of discriminating WT strains from those with acquired resistance mechanisms. WT MIC distributions revealed ECV ranges of 0.03 to 0.25 μg/mL for all major species except C. parapsilosis (1–4 μg/mL) and C. guilliermondii (4–16 μg/mL). These ECVs reliably differentiate WT strains of each species from non-WT strains containing fks mutations. These data, coupled with additional biochemical, clinical, pharmacokinetic, and pharmacodynamic considerations, have resulted in new CBPs of ≤0.25 μg/mL (susceptible), 0.5 μg/mL (intermediate), and ≥1 μg/mL (resistant) for ANF, CSF, and MCF for C. albicans, C. tropicalis, and C. krusei. For these agents and C. parapsilosis, the new CBPs are ≤2 μg/mL (susceptible), 4 μg/mL (intermediate), and ≥8 μg/mL (resistant). For C. glabrata, the CBPs for ANF and CSF are ≤0.12 μg/mL (susceptible), 0.25 μg/mL (intermediate), and ≥0.5 μg/mL (resistant), whereas those for MCF are ≤0.06 μg/mL, 0.12 μg/mL, and ≥0.25 μg/mL, respectively. Application of both ECVs and the lower species-specific CBPs for the echinocandins has proven useful in both resistance surveillance and clinical care and will serve as an important step in international harmonization of in vitro susceptibility testing of this important antifungal class.  相似文献   

9.
Methods developed for testing filamentous fungi (molds) include standardized broth microdilution (Clinical and Laboratory Standards Institute [CLSI] and European Committee for Antimicrobial Susceptibility Testing [AFST-EUCAST]) methods and disk diffusion (CLSI) methods. Quality control limits also are available from CLSI for MIC (minimal inhibitory concentration), MEC (minimal effective concentration), and zone diameters. Although clinical breakpoints based on correlations of in vitro results with clinical outcome have not been established, epidemiologic cutoff values have been defined for six Aspergillus species and the triazoles, caspofungin, and amphotericin B. The link between resistance molecular mechanisms, elevated MICs, and clinical treatment failure has also been documented, especially for Aspergillus and the triazoles. Other insights into the potential clinical value of high MICs have also been reported. Various commercial methods (e.g., YeastOne, Etest, and Neo-Sensitabs) have been evaluated in comparison with reference methods. This review summarizes and discusses these developments.  相似文献   

10.
The azoles are first-line agents for the treatment of aspergillosis. A number of recent studies have shown increasing rates of resistance in A. fumigatus. Consequently, reliable in vitro susceptibility testing and breakpoints that appropriately classify resistant isolates are of paramount importance. The European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the Clinical Laboratory Standards Institute (CLSI) have developed susceptibility testing standards, but so far no breakpoints have been defined. The following aspects are evaluated during the process of developing EUCAST breakpoints: the most common dosage, the definition of the wild-type population and epidemiologic cutoff values, pharmacokinetic and pharmacodynamic properties, and the correlation between the minimum inhibitory concentration (MIC) and clinical outcome. This article reviews the issues to be considered before breakpoints can be established for azole drugs and Aspergillus and describes how MICs can be interpreted until clinical breakpoints have been defined.  相似文献   

11.

Objective

We studied whether the change in antibiotic susceptibility testing (AST) guidelines from CLSI to EUCAST influenced cumulative antibiograms in a tertiary care hospital in Switzerland.

Methods

Antibiotic susceptibilities of non-duplicate isolates collected within a one-year period before (period A) and after (period B) changing AST interpretation from CLSI 2009 to EUCAST 1.3 (2011) guidelines were analysed. In addition, period B isolates were reinterpreted according to the CLSI 2009, CLSI 2013 and EUCAST 3.1 (2013) guidelines.

Results

The majority of species/drug combinations showed no differences in susceptibility rates comparing periods A and B. However, in some gram-negative bacilli, decreased susceptibility rates were observed when comparing CLSI 2009 with EUCAST 1.3 within period B: Escherichia coli / cefepime, 95.8% (CLSI 2009) vs. 93.1% (EUCAST 1.3), P=0.005; Enterobacter cloacae / cefepime, 97.0 (CLSI 2009) vs. 90.5% (EUCAST 1.3), P=0.012; Pseudomonas aeruginosa / meropenem, 88.1% (CLSI 2009) vs. 78.3% (EUCAST 1.3), P=0.002. These differences were still evident when comparing susceptibility rates according to the CLSI 2013 guideline with EUCAST 3.1 guideline. For P. aeruginosa and imipenem, a trend towards a lower antibiotic susceptibility rate in ICUs compared to general wards turned into a significant difference after the change to EUCAST: 87.9% vs. 79.8%, P=0.08 (CLSI 2009) and 86.3% vs. 76.8%, P=0.048 (EUCAST 1.3).

Conclusions

The change of AST guidelines from CLSI to EUCAST led to a clinically relevant decrease of susceptibility rates in cumulative antibiograms for defined species/drug combinations, particularly in those with considerable differences in clinical susceptibility breakpoints between the two guidelines.  相似文献   

12.

Objective

The main objective of this study was to comparatively evaluate the performance of M.I.C.E. and Etest methodologies to that of agar dilution for determining the antimicrobial susceptibility profile of oxacillin-resistant Staphylococcus spp.

Methods

A total of 100 oxacillin-resistant Staphylococcus spp. isolates were collected from hospitalized patients at a teaching hospital. Antimicrobial susceptibility testing for vancomycin, teicoplanin and linezolid was performed using the reference CLSI agar dilution method (2009), Etest and M.I.C.E. methodologies. The MIC values were interpreted according to CLSI susceptibility breakpoints and compared by regression analysis.

Results

In general, the essential agreement (±1-log2) between M.I.C.E. and CLSI agar dilution was 93.0%, 84.0% and 77.0% for linezolid, teicoplanin and vancomycin, respectively. Essential agreement rates between M.I.C.E. and Etest were excellent (>90.0%) for all antibiotics tested. Both strips (M.I.C.E. and Etest) yielded two very major errors for linezolid. Unacceptable minor rates were observed for teicoplanin against CoNS and for vancomycin against S. aureus.

Conclusions

According to our results, linezolid and teicoplanin MICs against all staphylococci and S. aureus, respectively, were more accurately predicted by M.I.C.E. strips. However, the Etest showed better performance than M.I.C.E. for predicting vancomycin MICs against all staphylococci. Thus, microbiologists must be aware of the different performance of commercially available gradient strips against staphylococci.  相似文献   

13.
The opportunistic pathogens belonging to the Aspergillus genus are present in almost all seasons of the year, and their concentration is related to meteorological conditions. The high density of Aspergillus spp. conidia in a haematological hospital ward may be a significant risk factor for developing invasive fungal diseases in immunocompromised patients. Aim of the present study was to evaluate the variability of airborne Aspergillus spp. conidia contamination in a Haematological Unit (HU) within a period of 16 months in relation with some meteorological parameters. An environmental Aspergillus surveillance was conducted in the HU in four rooms and their bathrooms, in the corridor and in three external sites using an agar impact sampler. During each sampling, temperature and relative humidity at each site were recorded and current wind speed and rainfall events were taken from the official weather service. Aspergillus spp. conidia concentration differed significantly across the sampling sites. Internal Aspergillus spp. loads were significantly dependent on temperature, internal relative humidity and rain. External conidia concentrations were significantly influenced by outdoor temperature and relative humidity. A suitable indicator was introduced to evaluate the seasonal distribution of Aspergillus spp. conidia in the sampling sites, and a significant dependence on this indicator was observed inside the HU. Seventeen different fungal species belonging to the Aspergillus genus were detected during the sampling period. Aspergillus fumigatus was the most frequently isolated species and its distribution depended significantly on the seasonal indicator both inside and outside the hospital ward.  相似文献   

14.
Aspergillus spp. are emerging causative agents of non-dermatophyte mould onychomycosis (NDMO). New Aspergillus spp. have recently been described to cause nail infections. The following criteria are required to diagnose onychomycosis due to Aspergillus spp.: (1) positive direct microscopy and (2) repeated culture or molecular detection of Aspergillus spp., provided no dermatophyte was isolated. A review of 42 epidemiological studies showed that onychomycosis due to Aspergillus spp. varies between < 1 and 35% of all cases of onychomycosis in the general population and higher among diabetic populations accounting for up to 71% and the elderly; it is very uncommon among children and adolescence. Aspergillus spp. constitutes 7.7–100% of the proportion of NDMO. The toenails are involved 25 times more frequently than fingernails. A. flavus, A. terreus and A. niger are the most common aetiologic species; other rare and emerging species described include A. tubingensis, A. sydowii, A. alliaceus, A. candidus, A. versicolor, A. unguis, A. persii, A. sclerotiorum, A. uvarum, A. melleus, A. tamarii and A. nomius. The clinical presentation of onychomycosis due to Aspergillus spp. is non-specific but commonly distal–lateral pattern of onychomycosis. A negative culture with a positive KOH may point to a NDM including Aspergillus spp., as the causative agent of onychomycosis. Treatment consists of systemic therapy with terbinafine or itraconazole.  相似文献   

15.
16.
The Clinical and Laboratory Standards Institute (CLSI) has standardized broth microdilution and disk diffusion methodology for testing filamentous fungi (molds) that cause invasive disease. Quality control MIC (minimal inhibitory concentration) and MEC (minimal effective concentration; echinocandins only) limits are also available in the recently published CLSI M38-A2 document. Although breakpoints based on correlations of in vitro results and clinical outcome have not been established, MIC or MEC and zone diameter categories for five antifungal agents and various mold species, as well as epidemiologic cutoffs for Aspergillus fumigatus versus the triazoles, have been recently documented. Some insights of the potential clinical value of reference methods also have been reported. During the past few years, the potential utility of various commercial methods has been evaluated by comparing them with reference methodology. This review summarizes and discusses the advantages and disadvantages of these developments.  相似文献   

17.
The aims of this study were to evaluate the epidemiology of nosocomial candidemia in a large teaching hospital in Brescia, Italy, and the in vitro antifungal susceptibility of isolates. We analyzed 196 isolates causing fungemia in patients admitted in our hospital, between January 2009 and December 2015. Strains were identified by VITEK 2 and MALDI-TOF MS. MICs were determined by Sensititre Yeast OneTM. The resistance was defined by using the revised CLSI breakpoints/epidemiological cutoff values to assign susceptibility or wild type to systemic antifungal agents. Most infections were caused by Candida albicans (60%), Candida parapsilosis (15%), Candida glabrata (12%) and Candida tropicalis (6%). The susceptibility rate for fluconazole was 96.5%. Non-Candida species isolates exhibited full susceptibilities to echinocandins according to CLSI breakpoints. Amphotericin B demonstrated excellent activity against all Candida species. Local epidemiological and antifungal susceptibility studies are necessary in order to improve empirical treatment guidelines.  相似文献   

18.
Systemic mycoses in killer whales (Orcinus orca) are rare diseases, but have been reported. Two killer whales died by fungal infections at the Port of Nagoya Public Aquarium in Japan. In this study, the fungal flora of the pool environment at the aquarium was characterized. Alternaria spp., Aspergillus spp. (A. fumigatus, A. niger, A. versicolor), Fusarium spp. and Penicillium spp. were isolated from the air and the pool surroundings. The other isolates were identified as fungal species non-pathogenic for mammals. However, the species of fungi isolated from the environmental samples in this study were not the same as those isolated from the cases of disease in killer whales previously reported.  相似文献   

19.

Background

Acute exacerbations of COPD (AECOPD) are often associated with infectious agents, some of which may be non-usual, including Aspergillus spp. However, the importance of Aspergillus spp. in the clinical management of AECOPD still remains unclear.

Objectives

The aims of the study were to analyze the prevalence and risk factors associated with Aspergillus spp. isolation in AECOPD, and to investigate the associated clinical outcomes during a 1-year follow-up period.

Methods

Patients presenting with an AECOPD requiring hospitalization were prospectively included from four hospitals across Spain. Clinical, radiological and microbiological data were collected at admission and during the follow-up period (1, 6 and 12 months after discharge), and re-admissions and mortality data collected during the follow-up.

Results

A total of 240 patients with severe AECOPD were included. Valid sputum samples were obtained in 144 (58%) patients, and in this group, the prevalence of Aspergillus spp. isolation was 16.6% on admission and 14.1% at one-year follow-up. Multivariate logistic-regression showed that AECOPD in the previous year (OR 12.35; 95% CI, 1.9-29.1; p < 0.001), concurrent isolation of pathogenic bacteria (OR 3.64; 95% CI 1.65-9.45, p = 0.001) and concomitant isolation of Pseudomonas aeruginosa (OR 2.80; 95% IC, 1.81-11.42; p = 0.001) were the main risk factors for Aspergillus spp. isolation.

Conclusions

The main risk factors for Aspergillus spp. isolation were AECOPD in the previous year and concomitant isolation of Pseudomonas aeruginosa. However, although Aspergillus spp. is often isolated in sputum samples from patients with AECOPD, the pathogenic and clinical significance remains unclear.  相似文献   

20.
Mycotic/fungal keratitis is a suppurative, generally ulcerative infection of the cornea. The filamentous fungi, Aspergillus spp. are the second leading cause of mycotic keratitis, particularly in India. Aspergillus spp. produce a range of extracellular enzymes that are used to break down complex molecules and used for growth and reproduction, also for survival on/in host organism. The current study was designed with an objective to screen in vitro extracellular enzyme activity of Fusarium and Aspergillus isolates from mycotic keratitis patients and to correlate the same as a putative virulence factor. Extracellular enzymes viz., deoxyribonuclease (DNase), protease, lipase, elastase, keratinase, etc., produced by Aspergillus have key role in keratomycosis and hence their (n = 85) in vitro activities were investigated. It was found that, the majority of the Aspergillus isolates produced protease (n = 75; 88% of 85) followed by lipase (n = 59; 69% of 85), DNase (n = 35; 41% of 85), elastase (n = 26; 31% of 85) and keratinase (n = 13; 15% of 85). The enzyme activity indices (EAI) for DNase, elastase, protease and lipase ranged between 1.01 and 1.98, whereas elastase EAI varied between 1.26 and 1.92. DNase, protease and lipase showed a maximum EAI of 1.98 and lowest EAI value of 1.01, respectively. Extracellular enzymes of Aspergillus spp. may have potential role in the onset and progression of keratitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号