首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During skeletal growth and remodeling the mineralized bone matrix is resorbed by osteoclasts through the constant secretion of protons and proteases to the bone surface. This relies on the formation of specialized plasma membrane domains, the sealing zone and the ruffled border, and vectorial transportation of intracellular vesicles in bone-resorbing osteoclasts. Here we show that Rab7, a small GTPase that is associated with late endosomes, is highly expressed and is predominantly localized at the ruffled border in bone-resorbing osteoclasts. The decreased expression of Rab7 in cultured osteoclasts by antisense oligodeoxynucleotides disrupted the polarization of the osteoclasts and the targeting of vesicles to the ruffled border. These impairments caused a significant inhibition of bone resorption in vitro. The results indicate that the late endocytotic pathway is involved in the osteoclast polarization and bone resorption and underscore the importance of Rab7 in osteoclast function.  相似文献   

2.
A variety of intracellular membrane trafficking pathways are involved in establishing the polarization of resorbing osteoclasts and regulating bone resorption activities. Small GTP-binding proteins of rab family have been implicated as key regulators of membrane trafficking in mammalian cells. Here we used a RT-PCR-based cloning method and confocal laser scanning microscopy to explore the expression array and subcellular localization of rab proteins in osteoclasts. Rab1B, rab4B, rab5C, rab7, rab9, rab11B, and rab35 were identified from rat osteoclasts in this study. Rab5C may be associated with early endosomes, while rab11B is localized at perinuclear recycling compartments and may function in the ruffled border membrane turnover and osteoclast motility. Interestingly, late endosomal rabs, rab7, and rab9, were found to localize at the ruffled border membrane indicating a late endosomal nature of this specialized plasma membrane domain in resorbing osteoclasts. This also suggests that late endocytotic pathways may play an important role in the secretion of lysosomal enzymes, such as cathepsin K, during bone resorption.  相似文献   

3.
 Monospecific antibodies against two major glycoproteins of rat lysosomal membranes with apparent molecular masses of 96 and 85 kDa, termed LGP96 and LGP85, respectively, were used as probes to determine the expression and distribution of lysosomal membranes in rat osteoclasts. At the light microscopic level, the preferential immunoreactivity for both proteins was found at high levels at the side facing bone of actively bone-resorbing osteoclasts. Osteoclasts detached from bone surface were devoid of immunoreactivity for each protein. At the electron microscopic level, both proteins were exclusively confined to the apical plasma membrane at the ruffled border of active osteoclasts with well-developed ruffled border membrane. No immunolabeling for both proteins was observed in the basolateral membrane and the clear zone of bone-resorbing osteoclasts. The plasma membrane of preosteoclasts and post- and/or resting osteoclasts showed little or no reactivity against these two antibodies. The results indicate that lysosomal membrane glycoproteins are actively synthesized in active osteoclasts, rapidly transported to the ruffled border area, and contribute to the formation and maintenance of the acidic resorption lacuna of osteoclasts. Accepted: 9 December 1998  相似文献   

4.
Transcytotic membrane flow delivers degraded bone fragments from the ruffled border to the functional secretory domain, FSD, in bone resorbing osteoclasts. Here we show that there is also a FSD-to-ruffled border trafficking pathway that compensates for the membrane loss during the matrix uptake process and that rafts are essential for this ruffled border-targeted endosomal pathway. Replacing the cytoplasmic tail of the vesicular stomatitis virus G protein with that of CD4 resulted in partial insolubility in Triton X-100 and retargeting from the peripheral non-bone facing plasma membrane to the FSD. Recombinant G proteins were subsequently endosytosed and delivered from the FSD to the peripheral fusion zone of the ruffled border, which were both rich in lipid rafts as suggested by viral protein transport analysis and visualizing the rafts with fluorescent recombinant cholera toxin. Cholesterol depletion by methyl-beta-cyclodextrin impaired the ruffled border-targeted vesicle trafficking pathway and inhibited bone resorption dose-dependently as quantified by measuring the CTX and TRACP 5b secreted to the culture medium and by measuring the resorbed area visualized with a bi-phasic labeling method using sulpho-NHS-biotin and WGA-lectin. Thus, rafts are vital for membrane recycling from the FSD to the late endosomal/lysosomal ruffled border and bone resorption.  相似文献   

5.
Feng S  Deng L  Chen W  Shao J  Xu G  Li YP 《The Biochemical journal》2009,417(1):195-203
Bone resorption relies on the extracellular acidification function of V-ATPase (vacuolar-type proton-translocating ATPase) proton pump(s) present in the plasma membrane of osteoclasts. The exact configuration of the osteoclast-specific ruffled border V-ATPases remains largely unknown. In the present study, we found that the V-ATPase subunit Atp6v1c1 (C1) is highly expressed in osteoclasts, whereas subunits Atp6v1c2a (C2a) and Atp6v1c2b (C2b) are not. The expression level of C1 is highly induced by RANKL [receptor activator for NF-kappaB (nuclear factor kappaB) ligand] during osteoclast differentiation; C1 interacts with Atp6v0a3 (a3) and is mainly localized on the ruffled border of activated osteoclasts. The results of the present study show for the first time that C1-silencing by lentivirus-mediated RNA interference severely impaired osteoclast acidification activity and bone resorption, whereas cell differentiation did not appear to be affected, which is similar to a3 silencing. The F-actin (filamentous actin) ring formation was severely defected in C1-depleted osteoclasts but not in a3-depleted and a3(-/-) osteoclasts. C1 co-localized with microtubules in the plasma membrane and its vicinity in mature osteoclasts. In addition, C1 co-localized with F-actin in the cytoplasm; however, the co-localization chiefly shifted to the cell periphery of mature osteoclasts. The present study demonstrates that Atp6v1c1 is an essential component of the osteoclast proton pump at the osteoclast ruffled border and that it may regulate F-actin ring formation in osteoclast activation.  相似文献   

6.
Subosteoclastic bone resorption is a result of HCl and proteinase secretion through a late endosome-like bone facing membrane domain called ruffled border. As bone matrix is degraded, it enters osteoclasts' transcytotic vesicles for further processing and is then finally exocytosed to the intercellular space. The present study clarifies the spatial relationship between these vesicle fusion and matrix uptake processes at the ruffled border. Our results show the presence of vacuolar H+-ATPase, small GTPase rab7 as well as dense aggregates of F-actin at the peripheral ruffled border, where basolaterally endocytosed transferrin and cathepsin K are delivered. On the contrary, rhodamine-labeled bone matrix enters transcytotic vesicles at the central ruffled border, where the vesicle budding proteins such as clathrin, AP-2 and dynamin II are also localized. We present a model for the mechanism of ruffled border turnover and suggest that, due to its late endosomal characteristics, the ruffled border serves as a valuable model for studying the dynamic organization of other endosomal compartments as well .  相似文献   

7.
Recently, we identified an ADP-ribosylating and vacuolating cytotoxin in Mycoplasma pneumoniae designated Community Acquired Respiratory Distress Syndrome (CARDS) toxin. In this study we show that vacuoles induced by recombinant CARDS (rCARDS) toxin are acidic and derive from the endocytic pathway as determined by the uptake of neutral red and the fluid-phase marker, Lucifer yellow, respectively. Also, we demonstrate that the formation of rCARDS toxin-associated cytoplasmic vacuoles is inhibited by the vacuolar ATPase inhibitor, bafilomycin A1, and the ionophore, monensin. To examine the ontogeny of these vacuoles, we analyzed the distribution of endosomal and lysosomal membrane markers during vacuole formation and observed the enrichment of the late endosomal GTPase, Rab9, around rCARDS toxin-induced vacuoles. Immunogold-labeled Rab9 and overexpression of green fluorescent-tagged Rab9 further confirmed vacuolar association. The late endosomal- and lysosomal-associated membrane proteins, LAMP1 and LAMP2, also localized to the vacuolar membranes, while the late endosomal protein, Rab7, and early endosomal markers, Rab5 and EEA1, were excluded. HeLa cells expressing dominant-negative (DN) Rab9 exhibited markedly reduced vacuole formation in the presence of rCARDS toxin, in contrast to cells expressing DN-Rab7, highlighting the importance of Rab9 function in rCARDS toxin-induced vacuolation. Our findings reveal the unique Rab9-association with rCARDS toxin-induced vacuoles and its possible relationship to the characteristic histopathology that accompanies M. pneumoniae infection.  相似文献   

8.
The intracellular pathogenic bacterium Salmonella enterica serovar typhimurium (Salmonella) relies on acidification of the Salmonella‐containing vacuole (SCV) for survival inside host cells. The transport and fusion of membrane‐bound compartments in a cell is regulated by small GTPases, including Rac and members of the Rab GTPase family, and their effector proteins. However, the role of these components in survival of intracellular pathogens is not completely understood. Here, we identify Nischarin as a novel dual effector that can interact with members of Rac and Rab GTPase (Rab4, Rab14 and Rab9) families at different endosomal compartments. Nischarin interacts with GTP‐bound Rab14 and PI(3)P to direct the maturation of early endosomes to Rab9/CD63‐containing late endosomes. Nischarin is recruited to the SCV in a Rab14‐dependent manner and enhances acidification of the SCV. Depletion of Nischarin or the Nischarin binding partners—Rac1, Rab14 and Rab9 GTPases—reduced the intracellular growth of Salmonella. Thus, interaction of Nischarin with GTPases may regulate maturation and subsequent acidification of vacuoles produced after phagocytosis of pathogens.  相似文献   

9.
Dissolution of the inorganic bone matrix releases not only calcium and phosphate ions, but also bicarbonate. Electroneutral sodium-bicarbonate co-transporter (NBCn1) is expressed in inactive osteoclasts, but its physiological role in bone resorption has remained unknown. We show here that NBCn1, encoded by the SLC4A7 gene, is directly involved in bone resorption. NBCn1 protein was specifically found at the bone-facing ruffled border areas, and metabolic acidosis increased NBCn1 expression in rats in vivo. In human hematopoietic stem cell cultures, NBCn1 mRNA expression was observed only after formation of resorbing osteoclasts. To further confirm the critical role of NBCn1 during bone resorption, human hematopoietic stem cells were transduced with SLC4A7 shRNA lentiviral particles. Downregulation of NBCn1 both on mRNA and protein level by lentiviral shRNAs significantly inhibited bone resorption and increased intracellular acidification in osteoclasts. The lentiviral particles did not impair osteoclast survival, or differentiation of the hematopoietic or mesenchymal precursor cells into osteoclasts or osteoblasts in vitro. Inhibition of NBCn1 activity may thus provide a new way to regulate osteoclast activity during pathological bone resorption.  相似文献   

10.
Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man   总被引:45,自引:0,他引:45  
Chloride channels play important roles in the plasma membrane and in intracellular organelles. Mice deficient for the ubiquitously expressed ClC-7 Cl(-) channel show severe osteopetrosis and retinal degeneration. Although osteoclasts are present in normal numbers, they fail to resorb bone because they cannot acidify the extracellular resorption lacuna. ClC-7 resides in late endosomal and lysosomal compartments. In osteoclasts, it is highly expressed in the ruffled membrane, formed by the fusion of H(+)-ATPase-containing vesicles, that secretes protons into the lacuna. We also identified CLCN7 mutations in a patient with human infantile malignant osteopetrosis. We conclude that ClC-7 provides the chloride conductance required for an efficient proton pumping by the H(+)-ATPase of the osteoclast ruffled membrane.  相似文献   

11.
The multisubunit mTORC1 complex integrates signals from growth factors and nutrients to regulate protein synthesis, cell growth, and autophagy. To examine how endocytic trafficking might be involved in nutrient regulation of mTORC1, we perturbed specific endocytic trafficking pathways and measured mTORC1 activity using S6K1 as a readout. When early/late endosomal conversion was blocked by either overexpression of constitutively active Rab5 (Rab5CA) or knockdown of the Rab7 GEF hVps39, insulin- and amino acid–stimulated mTORC1/S6K1 activation were inhibited, and mTOR localized to hybrid early/late endosomes. Inhibition of other stages of endocytic trafficking had no effect on mTORC1. Overexpression of Rheb, which activates mTOR independently of mTOR localization, rescued mTORC1 signaling in cells expressing Rab5CA, whereas hyperactivation of endogenous Rheb in TSC2−/− MEFs did not. These data suggest that integrity of late endosomes is essential for amino acid– and insulin-stimulated mTORC1 signaling and that blocking the early/late endosomal conversion prevents mTOR from interacting with Rheb in the late endosomal compartment.  相似文献   

12.
The small GTPases Rab4, Rab5 and Rab7 are endosomal proteins which play important roles in the regulation of various stages of endosomal trafficking. Rab4 and Rab5 have both been localized to early endosomes and have been shown to control recycling and endosomal fusion, respectively. Rab7, a marker of the late endosomal compartment, is involved in the regulation of the late endocytic pathway. Here, we compare the role of Rab4, Rab5 and Rab7 in early and late endosomal trafficking in HeLa cells monitoring ligand uptake, recycling and degradation. Expression of the Rab4 dominant negative mutant (Rab4AS22N) leads to a significant reduction in both recycling and degradation while, as expected, Rab7 mutants exclusively affect epidermal growth factor (EGF) and low density lipoprotein degradation. As also expected, expression of the dominant negative Rab5 mutant perturbs internalization kinetics and affects both recycling and degradation. Expression of Rab4WT and dominant positive mutant (Rab4AQ67L) changes dramatically the morphology of the transferrin compartment leading to the formation of membrane tubules. These transferrin positive tubules display swellings (varicosities) some of which are positive for early endosomal antigen-1 and contain EGF. We propose that the Rab4GTPase is important for the function of the early sorting endosomal compartment, affecting trafficking along both recycling and degradative pathways.  相似文献   

13.
Osteoclasts resorb bone via the ruffled border, whose complex folds are generated by secretory lysosome fusion with bone-apposed plasma membrane. Lysosomal fusion with the plasmalemma results in acidification of the resorptive microenvironment and release of CatK to digest the organic matrix of bone. The means by which secretory lysosomes are directed to fuse with the ruffled border are enigmatic. We show that proteins essential for autophagy, including Atg5, Atg7, Atg4B, and LC3, are important for generating the osteoclast ruffled border, the secretory function of osteoclasts, and bone resorption in?vitro and in?vivo. Further, Rab7, which is required for osteoclast function, localizes to the ruffled border in an Atg5-dependent manner. Thus, autophagy proteins participate in polarized secretion of lysosomal contents into the extracellular space by directing lysosomes to fuse with the plasma membrane. These findings are in keeping with a putative link between autophagy genes and human skeletal homeostasis.  相似文献   

14.
Myotubularins constitute a ubiquitous family of phosphatidylinositol (PI) 3-phosphatases implicated in several neuromuscular disorders. Myotubularin [myotubular myopathy 1 (MTM1)] PI 3-phosphatase is shown associated with early and late endosomes. Loss of endosomal phosphatidylinositol 3-phosphate [PI(3)P] upon overexpression of wild-type MTM1, but not a phosphatase-dead MTM1C375S mutant, resulted in altered early and late endosomal PI(3)P levels and rapid depletion of early endosome antigen-1. Membrane-bound MTM1 was directly complexed to the hVPS15/hVPS34 [vacuolar protein sorting (VPS)] PI 3-kinase complex with binding mediated by the WD40 domain of the hVPS15 (p150) adapter protein and independent of a GRAM-domain point mutation that blocks PI(3,5)P(2) binding. The WD40 domain of hVPS15 also constitutes the binding site for Rab7 and, as shown previously, contributes to Rab5 binding. In vivo, the hVPS15/hVPS34 PI 3-kinase complex forms mutually exclusive complexes with the Rab GTPases (Rab5 or Rab7) or with MTM1, suggesting a competitive binding mechanism. Thus, the Rab GTPases together with MTM1 likely serve as molecular switches for controlling the sequential synthesis and degradation of endosomal PI(3)P. Normal levels of endosomal PI(3)P and PI(3,5)P(2) are crucial for both endosomal morphology and function, suggesting that disruption of endosomal sorting and trafficking in skeletal muscle when MTM1 is mutated may be a key factor in precipitating X-linked MTM.  相似文献   

15.
Bone-resorbing osteoclasts are highly dependent on vesicular trafficking pathways that are regulated by Rab GTPases. In particular, polarised transport of acidic vesicles of the endocytic/lysosomal pathway is required for formation of the ruffled border, the resorptive organelle of the osteoclast. The breakdown products of resorption are then transported through the osteoclast by transcytosis, enabling their excretion. In this review, we summarise these trafficking routes, highlight the emerging evidence that the bone disease osteopetrosis results from defects in vesicular trafficking in osteoclasts, and outline the similarities between the endocytic/lysosomal compartment in osteoclasts and secretory lysosomes in other cell types.  相似文献   

16.
Vesicular transport along microtubules must be strictly regulated to sustain the unique structural and functional polarization of bone-resorbing osteoclasts. However, the molecular mechanisms bridging these vesicle-microtubule interactions remain largely obscure. Rab3D, a member of the Rab3 subfamily (Rab3A/B/C/D) of small exocytotic GTPases, represents a core component of the osteoclastic vesicle transport machinery. Here, we identify a new Rab3D-interacting partner, Tctex-1, a light chain of the cytoplasmic dynein microtubule motor complex, by a yeast two-hybrid screen. We demonstrate that Tctex-1 binds specifically to Rab3D in a GTP-dependent manner and co-occupies Rab3D-bearing vesicles in bone-resorbing osteoclasts. Furthermore, we provide evidence that Tctex-1 and Rab3D intimately associate with the dynein motor complex and microtubules in osteoclasts. Finally, targeted disruption of Tctex-1 by RNA interference significantly impairs bone resorption capacity and mislocalizes Rab3D vesicles in osteoclasts, attesting to the notion that components of the Rab3D-trafficking pathway contribute to the maintenance of osteoclastic resorptive function.  相似文献   

17.
We exploit the ease with which highly motile early endosomes are distinguished from static late endosomes in order to study Aspergillus nidulans endosomal traffic. RabS(Rab7) mediates homotypic fusion of late endosomes/vacuoles in a homotypic fusion- and vacuole protein sorting/Vps41-dependent manner. Progression across the endocytic pathway involves endosomal maturation because the end products of the pathway in the absence of RabS(Rab7) are minivacuoles that are competent in multivesicular body sorting and cargo degradation but retain early endosomal features, such as the ability to undergo long-distance movement and propensity to accumulate in the tip region if dynein function is impaired. Without RabS(Rab7), early endosomal Rab5s-RabA and RabB-reach minivacuoles, in agreement with the view that Rab7 homologues facilitate the release of Rab5 homologues from endosomes. RabS(Rab7) is recruited to membranes already at the stage of late endosomes still lacking vacuolar morphology, but the transition between early and late endosomes is sharp, as only in a minor proportion of examples are RabA/RabB and RabS(Rab7) detectable in the same-frequently the less motile-structures. This early-to-late endosome/vacuole transition is coupled to dynein-dependent movement away from the tip, resembling the periphery-to-center traffic of endosomes accompanying mammalian cell endosomal maturation. Genetic studies establish that endosomal maturation is essential, whereas homotypic vacuolar fusion is not.  相似文献   

18.
Rab GTPases comprise a large family of monomeric proteins that regulate a diverse number of membrane trafficking events, including endocytosis. In this paper, we examine the subcellular distribution and function of the GTPase Rab15. Our biochemical and confocal immunofluorescence studies demonstrate that Rab15 associates with the transferrin receptor, a marker for the early endocytic pathway, but not with Rab7 or the cation-independent mannose 6-phosphate receptor, markers for late endosomal membranes. Furthermore, Rab15 colocalizes with Rab4 and -5 on early/sorting endosomes, as well as Rab11 on pericentriolar recycling endosomes. Consistent with its localization to early endosomal membranes, overexpression of the constitutively active mutant HArab15Q67L reduces receptor-mediated and fluid phase endocytosis. Therefore, our functional studies suggest that Rab15 may function as an inhibitory GTPase in early endocytic trafficking.  相似文献   

19.
The immunological synapse generation and function is the result of a T‐cell polarization process that depends on the orchestrated action of the actin and microtubule cytoskeleton and of intracellular vesicle traffic. However, how these events are coordinated is ill defined. Since Rab and Rho families of GTPases control intracellular vesicle traffic and cytoskeleton reorganization, respectively, we investigated their possible interplay. We show here that a significant fraction of Rac1 is associated with Rab11‐positive recycling endosomes. Moreover, the Rab11 effector FIP3 controls Rac1 intracellular localization and Rac1 targeting to the immunological synapse. FIP3 regulates, in a Rac1‐dependent manner, key morphological events, like T‐cell spreading and synapse symmetry. Finally, Rab11‐/FIP3‐mediated regulation is necessary for T‐cell activation leading to cytokine production. Therefore, Rac1 endosomal traffic is key to regulate T‐cell activation.  相似文献   

20.
Structural basis for recruitment of RILP by small GTPase Rab7   总被引:1,自引:0,他引:1  
Wu M  Wang T  Loh E  Hong W  Song H 《The EMBO journal》2005,24(8):1491-1501
Rab7 regulates vesicle traffic from early to late endosomes, and from late endosomes to lysosomes. The crystal structure of Rab7-GTP in complex with the Rab7 binding domain of RILP reveals that Rab7 interacts with RILP specifically via two distinct areas, with the first one involving the switch and interswitch regions and the second one consisting of RabSF1 and RabSF4. Disruption of these interactions by mutations abrogates late endosomal/lysosomal targeting of Rab7 and RILP. The Rab7 binding domain of RILP forms a coiled-coil homodimer with two symmetric surfaces to interact with two separate Rab7-GTP molecules, forming a dyad configuration of Rab7-RILP(2)-Rab7. Mutations that disrupt RILP dimerization also abolish its interactions with Rab7-GTP and late endosomal/lysosomal targeting, suggesting that the dimeric form of RILP is a functional unit. Structural comparison suggests that the combined use of RabSF1 and RabSF4 with the switch regions may be a general mode of action for most Rab proteins in regulating membrane trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号