首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
人血液含有来源于几乎所有细胞、组织、器官的蛋白质,可以直接反映病理、生理状态,是各种疾病诊断、生物标志物发现的最有价值的标本。因此,长期以来,血浆蛋白质组一直是人们研究的热点,并被人类蛋白质组组织(HUPO)列为首批启动的重大国际合作研究项目。血浆蛋白质含量动态范围非常广、成分极其复杂,血浆蛋白质组的研究极富挑战性。近年来,血浆高丰度蛋白质去除、蛋白质/肽段分离、质谱鉴定、数据处理等多种相关技术都取得了很大的进展。本文简要综述了上述技术领域的研究和应用进展。  相似文献   

2.
The chloroplast is one of the most important organelles in plants. Proteomic investigations of chloroplasts have been undertaken for many herb plant species, but to date no such investigation has been reported for woody plant chloroplasts. In the present study we initiated a systematic proteomic study of Populus chloroplasts using a shotgun proteomic method. After isolation of chloroplasts and tryptic digestion of the proteins, the protein fragments were separated via HPLC using an SCX column, and the peptides were analyzed by LC-MS/MS; 119 proteins were successfully identified. Based on annotation information in the UniProtKB/Swiss-Prot database, these proteins were identified as being localized in the chloroplast thylakoid membrane, chloroplast stroma, chloroplast thylakoid lumen, and plastoglobules. Over 50% of all identified proteins were confirmed as chloroplast thylakoid proteins, and 85 are encoded by the chloroplast genome with the remaining proteins encoded by the nuclear genome. Based on functional annotation, these proteins were classified into four functional categories, including photosynthesis, redox regulation and stress, primary and secondary metabolism, transport and signaling. These data provide a valuable basis for further studies on photosynthesis in poplar species.  相似文献   

3.
4.
Hu LL  Huang T  Cai YD  Chou KC 《PloS one》2011,6(7):e22989
Determining the body fluids where secreted proteins can be secreted into is important for protein function annotation and disease biomarker discovery. In this study, we developed a network-based method to predict which kind of body fluids human proteins can be secreted into. For a newly constructed benchmark dataset that consists of 529 human-secreted proteins, the prediction accuracy for the most possible body fluid location predicted by our method via the jackknife test was 79.02%, significantly higher than the success rate by a random guess (29.36%). The likelihood that the predicted body fluids of the first four orders contain all the true body fluids where the proteins can be secreted into is 62.94%. Our method was further demonstrated with two independent datasets: one contains 57 proteins that can be secreted into blood; while the other contains 61 proteins that can be secreted into plasma/serum and were possible biomarkers associated with various cancers. For the 57 proteins in first dataset, 55 were correctly predicted as blood-secrete proteins. For the 61 proteins in the second dataset, 58 were predicted to be most possible in plasma/serum. These encouraging results indicate that the network-based prediction method is quite promising. It is anticipated that the method will benefit the relevant areas for both basic research and drug development.  相似文献   

5.
The data collected by Human Proteome Organization's Plasma Proteome Pilot project phase was analyzed by members of our working group. Accordingly, a functional annotation of the human plasma proteome was carried out. Here, we report the findings of our analyses. First, bioinformatic analyses were undertaken to determine the likely sources of plasma proteins and to develop a protein interaction network of proteins identified in this project. Second, annotation of these proteins was performed in the context of functional subproteomes involved in the coagulation pathway, the mononuclear phagocytic system, the inflammation pathway, the cardiovascular system, and the liver; as well as the subset of proteins associated with DNA binding activities. Our analyses contributed to the Plasma Proteome Database (http://www.plasmaproteomedatabase.org), an annotated database of plasma proteins identified by HPPP as well as from other published studies. In addition, we address several methodological considerations including the selective enrichment of post-translationally modified proteins by the use of multi-lectin chromatography as well as the use of peptidomic techniques to characterize the low molecular weight proteins in plasma. Furthermore, we have performed additional analyses of peptide identification data to annotate cleavage of signal peptides, sites of intra-membrane proteolysis and post-translational modifications. The HPPP-organized, multi-laboratory effort, as described herein, resulted in much synergy and was essential to the success of this project.  相似文献   

6.

Background  

Cellular processes require the interaction of many proteins across several cellular compartments. Determining the collective network of such interactions is an important aspect of understanding the role and regulation of individual proteins. The Gene Ontology (GO) is used by model organism databases and other bioinformatics resources to provide functional annotation of proteins. The annotation process provides a mechanism to document the binding of one protein with another. We have constructed protein interaction networks for mouse proteins utilizing the information encoded in the GO annotations. The work reported here presents a methodology for integrating and visualizing information on protein-protein interactions.  相似文献   

7.
血浆蛋白质组学是研究血浆蛋白质的功能和变化的一门科学。血浆中蕴藏着生命机体的所有信息,因此只有彻底了解血浆中存在哪些蛋白质,才能知道如何利用血浆来预测人体对疾病的易感性并监控疾病的进程,以期达到对疾病进行早诊断早治疗。由于血浆蛋白质组动态范围大,给研究带来了很大的困难。尤其是高丰度蛋白质的存在影响了低丰度蛋白质的检测率。而低丰度蛋白质都是有意义的具有临床诊断价值的蛋白质。因此去除高丰度蛋白质的干扰成了血浆蛋白质组学研究的关键。近年来,血浆蛋白质组学相关研究技术也得到了长足进展,为深入研究血浆蛋白质做出了重要贡献。血浆蛋白质组学作为一种无创性的研究方法,值得我们去探讨。本文就血浆蛋白质组学研究进展情况做一简要综述。  相似文献   

8.
Functional annotation is routinely performed for large-scale genomics projects and databases. Researchers working on more specific problems, for instance on an individual pathway or complex, also need to be able to quickly, completely and accurately annotate sequences. The Bioverse sequence annotation server (http://bioverse.compbio.washington.edu) provides a web-based interface to allow users to submit protein sequences to the Bioverse framework. Sequences are functionally and structurally annotated and potential contextual annotations are provided. Researchers can also submit candidate genomes for annotation of all proteins encoded by the genome (proteome).  相似文献   

9.
In order to discover novel protein markers indicative of disease processes or drug effects, the proteomics technology platform most commonly used consists of high resolution protein separation by two-dimensional electrophoresis (2-DE), mass spectrometric identification of proteins from stained gel spots and a bioinformatic data analysis process supported by statistics. This approach has been more successful in profiling proteins and their disease- or treatment-related quantitative changes in tissue homogenates than in plasma samples. Plasma protein display and quantitation suffer from several disadvantages: very high abundance of a few proteins; high heterogeneity of many proteins resulting in long charge trains; crowding of 2-DE separated protein spots in the molecular mass range between 45-80 kD and in the isoelectric point range between 4.5 and 6. Therefore, proteomic technologies are needed that address these problems and particularly allow accurate quantitation of a larger number of less abundant proteins in plasma and other body fluids. The immunoaffinity-based protein subtraction chromatography (IASC) described here removes multiple proteins present in plasma and serum in high concentrations effectively and reproducibly. Applying IASC as an upfront plasma sample preparation process for 2-DE, the protein spot pattern observed in gels changes dramatically and at least 350 additional lower abundance proteins are visualized. Affinity-purified polyclonal antibodies (pAbs) are the immunoaffinity reagents used to specifically remove the abundant proteins such as albumin, immunoglobulin G, immunoglobulin A, transferrin, haptoglobin, alpha-1-antitrypsin, hemopexin, transthyretin, alpha-2-HS glycoprotein, alpha-1-acid glycoprotein, alpha-2-macroglobulin and fibrinogen from human plasma samples. To render the immunoaffinity subtraction procedure recyclable, the pAbs are immobilized and cross-linked on chromatographic matrices. Antibody-coupled matrices specific for one protein each can be pooled to form mixed-bed IASC columns. We show that up to ten affinity-bound plasma proteins with similar solubility characteristics are eluted from a mixed-bed column in one step. This facilitates automated chromatographic processing of plasma samples in high throughput, which is desirable in proteomic disease marker discovery projects.  相似文献   

10.
The effect of graded levels of dietary aflatoxin on the assessment of genetic variability of body weight and gain and plasma protein response was tested utilizing the Athens-Canadian randombred population of chickens. Dietary aflatoxin was administered at levels of either 0, 1.25, 2.50 or 5.0 µg/g of diet ad libitum from 7 to 21 days of age to progeny from 58 sire families. Twenty-one-day body weights, gain and plasma protein concentration were used to assess the variation in response.—The administration of increasing levels of aflatoxin resulted in a dose-related decrease of gains and plasma protein concentrations. Plasma protein concentrations were significantly higher among males than females within the control group; however, this difference was reversed as the severity of the aflatoxin challenge increased. Heritability estimates for all responses increased as the level of aflatoxin administered increased. This change was most notable for total plasma protein concentration. Phenotypic correlations for plasma protein concentration and growth measurements tended to diminish with increasing levels of aflatoxin. A similar trend was noted for the genetic correlations; however, a moderate correlation between growth responses and plasma protein response was detected in the 5.0-µg/g aflatoxin treatment group. Genetic correlations were calculated for the same characters between the different levels of aflatoxin. Regardless of which aflatoxin challenges were compared, a very high genetic correlation for 21-day body weight and 7- to 21-day gain was estimated. This variation in growth potential in the toxic environment paralleled that observed in the control environment but at a lower plane. Genetic correlations for plasma protein response across aflatoxin levels diminished as the difference between the levels of aflatoxin administered increased. Plasma protein concentration in the control environment was positively correlated with plasma protein response in groups fed a low level of aflatoxin, but negatively correlated when an aflatoxin challenge of 2.5 µg/g or more was given, suggesting that selection for aflatoxin resistance using plasma protein response as a selection criterion should be made under an aflatoxin stress environment.  相似文献   

11.
Plasma from a child with homozygous sickle-cell disease, sampled during the early phase of an aplastic crisis, contained human parvovirus B19 virions. Plasma taken 10 days later (during the convalescent phase) contained both immunoglobulin M and immunoglobulin G antibodies directed against two viral polypeptides with apparent molecular weights of 83,000 and 58,000 which were present exclusively in the particulate fraction of the plasma taken during the acute phase. These two protein species comigrated at 110S on neutral sucrose velocity gradients with the B19 viral DNA and thus appear to constitute the viral capsid polypeptides. The B19 genome was molecularly cloned into a bacterial plasmid vector. Restriction endonuclease fragments of this cloned B19 genome were treated with BAL 31 and shotgun cloned into the open reading frame expression vector pJS413. Two expression constructs containing B19 sequences from different halves of the viral genome were obtained, which directed the synthesis, in bacteria, of segments of virally encoded protein. These polypeptide fragments were then purified and used to immunize rabbits. Antibodies against a protein sequence specified between nucleotides 2897 and 3749 recognized both the 83- and 58-kilodalton capsid polypeptides in aplastic plasma taken during the acute phase and detected similar proteins in the tissues of a stillborn fetus which had been infected transplacentally with B19. Antibodies against a protein sequence encoded in the other half of the B19 genome (nucleotides 1072 through 2044) did not react specifically with any protein in plasma taken during the acute phase but recognized three nonstructural polypeptides of 71, 63, and 52 kilodaltons present in the liver and, at lower levels, in some other tissues of the transplacentally infected fetus.  相似文献   

12.
Rational classification of proteins encoded in sequenced genomes is critical for making the genome sequences maximally useful for functional and evolutionary studies. The database of Clusters of Orthologous Groups of proteins (COGs) is an attempt on a phylogenetic classification of the proteins encoded in 21 complete genomes of bacteria, archaea and eukaryotes (http://www. ncbi.nlm. nih.gov/COG). The COGs were constructed by applying the criterion of consistency of genome-specific best hits to the results of an exhaustive comparison of all protein sequences from these genomes. The database comprises 2091 COGs that include 56-83% of the gene products from each of the complete bacterial and archaeal genomes and approximately 35% of those from the yeast Saccharomyces cerevisiae genome. The COG database is accompanied by the COGNITOR program that is used to fit new proteins into the COGs and can be applied to functional and phylogenetic annotation of newly sequenced genomes.  相似文献   

13.
Plasma proteins termed "SP1" and "30K proteins" are synthesized by the fat body cells of the silkworm, Bombyx mori, in a sex- and stage-specific manner during larval development. We successfully established a primary culture of the fat body cells in order to investigate the regulatory mechanisms of plasma protein gene expression. The primary cultures of fat body cells contained at least two cell types: small oval cells, and large spherical cells. The cells adhered to and migrated on the cultured dish after plating. By the 7th day of cultivation, the cells clustered to form fat body-like structures, which were maintained for at least 3 months. Plasma proteins were actively synthesized in the primary cultures of the fat body cells isolated from the final instar larvae only when the cells tightly adhered to and clustered on the cultured dish. Immunocytochemical analysis revealed that only 10-15% of the clustered cells synthesized plasma proteins in our culture system, indicating that the primary culture comprises heterogeneous cells that are morphologically and functionally distinct. The patterns of SP1 syntheses in primary cultures faithfully reproduced their sex-dependency in vivo.  相似文献   

14.
A study was made on protein metabolism and hormonal changes following birth in newborn lambs fed amino acids alone or in combination with lactose. Eight newborn lambs taken from their mother immediately after birth were fed hourly for 8 h, either with a solution of peptides and free amino acids obtained by mild hydrolysis of whey proteins (4 lambs; diet AP) or with the same solution + lactose (4 lambs; diet APL). L-[4,5-3H] leucine was continuously perfused into a jugular vein for 6 h when the lambs were 2 h 30 min old. Plasma glucose and insulin levels increased after birth in APL lambs whereas they decreased in the AP; these differences were significantly different. Plasma cortisol levels remained unchanged throughout the experiment. Free essential amino acid levels did not vary when lambs were older than 4.5 h; they depended on the corresponding amino acid intakes. Plasma free threonine, valine, isoleucine, leucine, tyrosine and lysine were lower in APL than in AP lambs. The plasma leucine irreversible loss and leucine oxidation were higher in AP than in APL lambs. The plasma flux of leucine from whole body protein breakdown was lower in APL than in AP lambs inasmuch as the plasma flux of dietary leucine may be estimated by the amounts of leucine ingested in both cases. No significant difference was found for the fractional synthesis rates of tissue proteins such as liver, skin, skeletal muscle, lung, brain and whole body. These rates for skin, muscle and whole body were close to those previously measured in colostrum fed lambs. The increase in whole body protein accretion resulting from lactose feeding in combination with amino acids seemed to result from a decreased protein breakdown that could be mediated by the insulin response.  相似文献   

15.
The availability of complete genome sequences has highlighted the problems of functional annotation of the many gene products that have only limited sequence similarity with proteins of known function. The predicted protein encoded by open reading frame Rv3214 from the Mycobacterium tuberculosis H37Rv genome was originally annotated as EntD through sequence similarity with the Escherichia coli EntD, a 4'-phosphopantetheinyl transferase implicated in siderophore biosynthesis. An alternative annotation, based on slightly higher sequence identity, grouped Rv3214 with proteins of the cofactor-dependent phosphoglycerate mutase (dPGM) family. The crystal structure of this protein has been solved by single-wavelength anomalous dispersion methods and refined at 2.07-Angstroms resolution (R = 0.229; R(free) = 0.245). The protein is dimeric, with a monomer fold corresponding to the classical dPGM alpha/beta structure, albeit with some variations. Closer comparisons of structure and sequence indicate that it most closely corresponds with a broad-spectrum phosphatase subfamily within the dPGM superfamily. This functional annotation has been confirmed by biochemical assays which show negligible mutase activity but acid phosphatase activity with a pH optimum of 5.4 and suggests that Rv3214 may be important for mycobacterial phosphate metabolism in vivo. Despite its weak sequence similarity with the 4'-phosphopantetheinyl transferases (EntD homologues), there is little evidence to support this function.  相似文献   

16.
17.
Myristoylation by the myristoyl-CoA:protein N-myristoyltransferase (NMT) is an important lipid anchor modification of eukaryotic and viral proteins. Automated prediction of N-terminal N-myristoylation from the substrate protein sequence alone is necessary for large-scale sequence annotation projects but it requires a low rate of false positive hits in addition to a sufficient sensitivity.Our previous analysis of substrate protein sequence variability, NMT sequences and 3D structures has revealed motif properties in addition to the known PROSITE motif that are utilized in a new predictor described here. The composite prediction function (with separate ad hoc parameterization (a) for queries from non-fungal eukaryotes and their viruses and (b) for sequences from fungal species) consists of terms evaluating amino acid type preferences at sequences positions close to the N terminus as well as terms penalizing deviations from the physical property pattern of amino acid side-chains encoded in multi-residue correlation within the motif sequence. The algorithm has been validated with a self-consistency and two jack-knife tests for the learning set as well as with kinetic data for model substrates. The sensitivity in recognizing documented NMT substrates is above 95 % for both taxon-specific versions. The corresponding rate of false positive prediction (for sequences with an N-terminal glycine residue) is close to 0.5 %; thus, the technique is applicable for large-scale automated sequence database annotation. The predictor is available as public WWW-server with the URL http://mendel.imp.univie.ac.at/myristate/. Additionally, we propose a version of the predictor that identifies a number of proteolytic protein processing sites at internal glycine residues and that evaluates possible N-terminal myristoylation of the protein fragments.A scan of public protein databases revealed new potential NMT targets for which the myristoyl modification may be of critical importance for biological function. Among others, the list includes kinases, phosphatases, proteasomal regulatory subunit 4, kinase interacting proteins KIP1/KIP2, protozoan flagellar proteins, homologues of mitochondrial translocase TOM40, of the neuronal calcium sensor NCS-1 and of the cytochrome c-type heme lyase CCHL. Analyses of complete eukaryote genomes indicate that about 0.5 % of all encoded proteins are apparent NMT substrates except for a higher fraction in Arabidopsis thaliana ( approximately 0.8 %).  相似文献   

18.
Plasma, the soluble component of the human blood, is believed to harbor thousands of distinct proteins, which originate from a variety of cells and tissues through either active secretion or leakage from blood cells or tissues. The dynamic range of plasma protein concentrations comprises at least nine orders of magnitude. Proteins involved in coagulation, immune defense, small molecule transport, and protease inhibition, many of them present in high abundance in this body fluid, have been functionally characterized and associated with disease processes. For example, protein sequence mutations in coagulation factors cause various serious disease states. Diagnosing and monitoring such diseases in blood plasma of affected individuals has typically been conducted by use of enzyme-linked immunosorbent assays, which using a specific antibody quantitatively measure only the affected protein in the tested plasma samples. The discovery of protein biomarkers in plasma for diseases with no known correlations to genetic mutations is challenging. It requires a highly parallel display and quantitation strategy for proteins. We fractionated blood serum proteins prior to display on two-dimensional electrophoresis (2-DE) gels using immunoaffinity chromatography to remove the most abundant serum proteins, followed by sequential anion-exchange and size-exclusion chromatography. Serum proteins from 74 fractions were displayed on 2-DE gels. This approach succeeded in resolving approximately 3700 distinct protein spots, many of them post-translationally modified variants of plasma proteins. About 1800 distinct serum protein spots were identified by mass spectrometry. They collapsed into 325 distinct proteins, after sequence homology and similarity searches were carried out to eliminate redundant protein annotations. Although a relatively insensitive dye, Coomassie Brilliant Blue G-250, was used to visualize protein spots, several proteins known to be present in serum in < 10 ng/mL concentrations were identified such as interleukin-6, cathepsins, and peptide hormones. Considering that our strategy allows highly parallel protein quantitation on 2-DE gels, it holds promise to accelerate the discovery of novel serum protein biomarkers.  相似文献   

19.
Plasma membranes were purified from rat liver, muscle and sarcoma tissues and from human liver and hepatoma tissues. The plasma membranes all contained DFP-sensitive, neutral proteolytic activity. Plasma membranes from all normal tissues contained a single DFP-binding protein of apparent molecular weight 68,000. Only the plasma membranes from tumour tissue contained a plasminogen activator; the DFP-binding proteins from these membranes were more diverse than those from the normal samples. The rat liver plasma membrane proteinase was purified. It was a labile enzyme sensitive to inhibition by DFP and by calcium ions, and with a broad substrate specificity. A similar protein was the sole DFP-binding protein in rat liver microsomes. This and the properties of the enzyme suggested a possible role in the processing and secretion of newly-synthesized protein.  相似文献   

20.
We have merged four different views of the human plasma proteome, based on different methodologies, into a single nonredundant list of 1175 distinct gene products. The methodologies used were 1) literature search for proteins reported to occur in plasma or serum; 2) multidimensional chromatography of proteins followed by two-dimensional electrophoresis and mass spectroscopy (MS) identification of resolved proteins; 3) tryptic digestion and multidimensional chromatography of peptides followed by MS identification; and 4) tryptic digestion and multidimensional chromatography of peptides from low-molecular-mass plasma components followed by MS identification. Of 1,175 nonredundant gene products, 195 were included in more than one of the four input datasets. Only 46 appeared in all four. Predictions of signal sequence and transmembrane domain occurrence, as well as Genome Ontology annotation assignments, allowed characterization of the nonredundant list and comparison of the data sources. The "nonproteomic" literature (468 input proteins) is strongly biased toward signal sequence-containing extracellular proteins, while the three proteomics methods showed a much higher representation of cellular proteins, including nuclear, cytoplasmic, and kinesin complex proteins. Cytokines and protein hormones were almost completely absent from the proteomics data (presumably due to low abundance), while categories like DNA-binding proteins were almost entirely absent from the literature data (perhaps unexpected and therefore not sought). Most major categories of proteins in the human proteome are represented in plasma, with the distribution at successively deeper layers shifting from mostly extracellular to a distribution more like the whole (primarily cellular) proteome. The resulting nonredundant list confirms the presence of a number of interesting candidate marker proteins in plasma and serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号