首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hybridization has been repeatedly put forward to explain the invasiveness of Rhododendron ponticum L. in the British Isles. The present study investigates the pattern of ecotypic differentiation and hybridization among native North American R. catawbiense and R. maximum, native R. ponticum from Georgia and Spain, and invasive R. ponticum from Ireland and aims to assess the contribution of hybridization for Rhododendron invasion in the British Isles. Six populations per taxon were analyzed with AFLP markers for genetic dissimilarity, subjected to germination and growth experiments, and tested for frost hardiness. We assessed variation in morphological and ecological characteristics to identify traits displaying evidence of hybridization, thus, promoting invasiveness. Molecular marker analyses revealed a clear distinction between North American R. catawbiense and R. maximum on the one hand, and all R. ponticum populations on the other hand, displaying a complete intermixture of native Spanish and invasive Irish populations. Multivariate analyses of traits revealed leaf length-width ratio, relative growth rates (RGRs) in leaf length, root biomass, and shoot-root ratio to significantly discriminate between the different taxa and unequivocally assigned invasive Irish R. ponticum to the Spanish phenotypes. While the Irish R. ponticum had similar growth traits as conspecific native R. ponticum provenances, germination and biomass allocation were more similar to North American R. catawbiense and R. maximum. Hybridization did not contribute to explaining invasiveness of R. ponticum in Ireland. The similarity in germination and biomass allocation of invasive Irish R. ponticum and North American species has evolved independently and can more probably be attributed to an independent shift within the Ponticum cluster in Ireland.  相似文献   

2.
Summary We conducted a field study to test the hypothesis that creosotebush (Larrea tridentata) shrubs growing in naturally nutrient-rich sites had better quality foliage and supported greater populations of foliage arthropods than shrubs growing in nutrient-poor sites. Nutrient-rich sites had significantly higher concentrations of soil nitrogen than nutrient-poor sites. Multivariate analysis of variance revealed significant differences between high nutrient and low nutrient shrubs based on a number of structural and chemical characteristics measured. High nutrient shrubs were larger, had denser foliage, greater foliage production, higher concentrations of foliar nitrogen and water, and lower concentrations of foliar resin than low nutrient shurbs. Numbers of foliage arthropods, particularly herbivores and predators, were significantly higher on high nutrient shrubs. Shrub characteristics and foliage arthropod abundances varied considerably from shrub to shrub. Shrub characteristics representing shrub size, foliage density, foliage growth, and foliar nitrogen and water concentrations were positively correlated with arthropod abundances. Foliar resin concentrations were negatively correlated with foliage arthropod abundances. The positive relationship between creosotebush productivity and foliage arthropods is contradictory to the tenet that physiologically stressed plants provide better quality foliage to insect herbivores.  相似文献   

3.
Comparisons among European, Japanese and North-American temperate deciduous woody floras revealed that there is no difference in shade-tolerance or in successional position between the compound- and simple-leaved species. Given that the compound-leaved species usually have greater biomass investments in non-productive throwaway supporting structures, it remained unclear how they could be as shade-tolerant as the simple-leaved analogues. To find out the role of the variability in leaf structure and composition in shade-tolerance of these species, foliar morphology and chemistry were analysed in 15 Estonian temperate compound-leaved deciduous woody taxa.Both foliar morphological and chemical parameters influenced the fractional investment of foliar biomass in petioles. The proportion of leaf biomass in petioles was independent of leaf size, but it increased with increasing leaflet number per leaf, suggesting that spacing rather than support requirements determined the biomass investment in petioles. The leaves with greater nitrogen concentrations also had larger foliar biomass investments in petioles. The latter effect possibly resulted from a greater water demand of functionally more active protein-rich leaves. Though the proportion of leaf biomass invested in petioles was high (for the whole material on average 15.9±0.4%), petioles were considerably cheaper to construct in terms of mineral nutrients than leaflets. e.g., petioles contained on average only 5.55±0.14% of total leaf nitrogen. Since in many cases the availability of mineral nutrients such as nitrogen rather than organic carbon sets limits to total leaf biomass on the plant, I suggested, contrary to previous claims, that the costs for foliage formation should not necessarily be different between compound- and simple-leaved species. Compound-leaved species also fit the basic relationships previously observed in simple-leaved analogues. Leaf size increased and leaf dry mass per area (LMA) decreased with increasing shade-tolerance. Thus, more shade-tolerant species construct a more effective foliar display for light interception at low irradiance with similar biomass investment in leaves. Species shade-tolerance was independent of biomass investment in petioles. However, due to the genotypic plasticity in LMA, more shade-tolerant species supported more foliar area at a constant leaf biomass investment in petioles.  相似文献   

4.
In the South American temperate evergreen rainforest (Valdivian forest), invasive plants are mainly restricted to open sites, being rare in the shaded understory. This is consistent with the notion of closed-canopy forests as communities relatively resistant to plant invasions. However, alien plants able to develop shade tolerance could be a threat to this unique forest. Phenotypic plasticity and local adaptation are two mechanisms enhancing invasiveness. Phenotypic plasticity can promote local adaptation by facilitating the establishment and persistence of invasive species in novel environments. We investigated the role of these processes in the recent colonization of Valdivian forest understory by the perennial alien herb Prunella vulgaris from nearby populations in open sites. Using reciprocal transplants, we found local adaptation between populations. Field data showed that the shade environment selected for taller plants and greater specific leaf areas. We found population differentiation and within-population genetic variation in both mean values and reaction norms to light variation of several ecophysiological traits in common gardens from seeds collected in sun and shade populations. The colonization of the forest resulted in a reduction of plastic responses to light variation, which is consistent with the occurrence of genetic assimilation and suggests that P. vulgaris individuals adapted to the shade have reduced probabilities to return to open sites. All results taken together confirm the potential for rapid evolution of shade tolerance in P. vulgaris and suggest that this alien species may pose a threat to the native understory flora of Valdivian forest.  相似文献   

5.
Phenotypic plasticity is an important plant trait associated with invasiveness of alien plants that reflects its ability to occupy a wide range of environments. We investigated the phenotypic response of Chenopodium murale to resource variability and ontogeny. Its plant-level and leaf-level traits were studied at high-resource (HR) and low-resource (LR) sites in peri-urban areas in Indian dry tropics. Plants at LR had significantly higher root length, root/shoot biomass ratio, stem mass and root mass fractions. Plants at HR had higher shoot length, basal diameter, leaf mass fraction and leaf area ratio. Leaf-level traits like leaf area and chlorophyll a were also higher here. Mean plasticity indices for plant- and leaf-level traits were higher at HR. With increasing total plant biomass, there was significant increase in the biomass of leaf, stem, root, and reproductive parts, and root and shoot lengths, whereas root/shoot length ratio, their biomass ratio, and leaf and root mass fractions declined significantly. Allocation to roots and leaves significantly decreased with increasing plant size at both sites. But, at any size, allocation to roots was greater at LR, indicative of optimization of capture of soil nutrients, whereas leaf allocation was higher at HR. Consistently increasing stem allocation equaled leaf allocation at comparatively higher shoot lengths at HR. Reproductive biomass comprised 10–12% of the plant’s total biomass. In conclusion, the success of alien weed C. murale across environmentally diverse habitat conditions in Indian dry tropics can be attributed to its high phenotypic plasticity, resource utilization capability in low-resource habitats and higher reproductive potential. These characteristics suggest that it will continue to be an aggressive invader.  相似文献   

6.
不同光照条件下3种冬青属植物的光合特征日变化研究   总被引:19,自引:3,他引:16  
以冬青、绿冬青、全缘枸骨为材料,运用光生理生态研究方法,对不同遮荫条件下,3种冬青属植物的光生理变化进行了研究。结果表明:3种冬青在全光照下的净光合速率高于透光率45%下的,透光率45%的高于透光率20%的,且全光照处理的净光合速率日变化均为双峰曲线,反映3种冬青均为中性树种。但从午休程度和午休后光合恢复情况来看,全缘枸骨对强光的适应能力好于绿冬青,绿冬青好于冬青。叶片光合色素和比叶重变化进一步证明,全缘枸骨适应能力最好,绿冬青次之,冬青相对较差。该研究对揭示各树种光适应特性和合理的园林配置有指导意义。  相似文献   

7.
We grew seedlings of two co-occurring high elevation tree species in controlled light and nitrogen (N) environments to examine the effect on foliar N and P concentrations and the resulting correlation with photosynthesis and growth. Foliar N concentrations in both heart-leaf paper birch (Betula cordifolia) and balsam fir (Abies balsamea) seedlings were greater in low light treatments than in high light treatments. P concentrations, however, were lower in birch and fir foliage grown in low light than in high light. N-availability had no effect on foliar N in birch but tended to increase N concentration in fir needles at all but 100% ambient light. N-availability had no effect on P concentration in fir seedlings, but high N decreased foliar P in birch. There was a positive relationship between foliar N-concentration (mg g–1) and mass-based maximum photosynthetic rate (Asat) in birch seedlings and a corresponding growth response to increased N-availability (suggesting N-limitation). Fir photosynthesis exhibited a positive correlation up to 22 mg g–1 – N and a negative correlation above that point, suggesting that high N concentrations may be detrimental to photosynthesis in the fir seedlings. There was no significant effect of N-treatment on growth.  相似文献   

8.
王坤  杨继  陈家宽 《生物多样性》2010,18(6):615-715
喜旱莲子草(Alternanthera philoxeroides)入侵已在中国造成巨大的生态和经济损失。为揭示喜旱莲子草成功入侵的生态机制并预测其种群扩张趋势及其与环境因子的关系, 作者比较了喜旱莲子草与其同属的外来弱入侵种刺花莲子草(A. pungens)以及土著种莲子草(A. sessilis)在不同土壤水分、养分条件下的生长状况。结果显示: 在高水高肥条件下, 喜旱莲子草的生物量要高于刺花莲子草和莲子草, 而在低水低肥条件下却不如这两个同属种; 弱入侵种刺花莲子草在低水条件下的生物量要高于强入侵种喜旱莲子草和土著种莲子草, 说明植物的入侵性受环境条件的影响。另外, 强入侵种喜旱莲子草形态学性状的可塑性较高, 在各种条件下都具有较高的比叶面积, 暗示这两个指标可作为莲子草属外来植物入侵性的预测指标。  相似文献   

9.
以亚热带不同林龄(3、8、14、21、46年生)杉木人工林为研究对象,探索不同叶龄(当年生、1年生、2年生和3年生)叶片氮、磷养分状况和水分利用效率的差异及其相互关系.结果表明: 不同叶龄水分利用效率差异显著,总体趋势为当年生>1年生>2年生>3年生,而林龄对水分利用效率影响不显著.叶片N/P为11.4~19.6,其中,幼龄林和老龄林叶片N/P高于速生期林分叶片N/P,氮、磷浓度随叶龄的变化趋势一致,为当年生>1年生>2年生>3年生.水分利用效率随林龄变化不显著,可能是因为叶片光合速率和气孔导度同时随林龄下降.水分利用效率与叶片氮浓度相关不显著,而与叶片磷浓度呈显著正相关,与N/P呈显著负相关,表明在氮沉降增加的背景下,亚热带森林中植物磷含量逐渐成为影响水分利用效率的重要因子.  相似文献   

10.
Young trees 0.03-1.7 m high of three coexisting Betula species were investigated in four sites of varying soil fertility, but all in full daylight, to separate nutrient and plant size controls on leaf dry mass per unit area (MA), light-saturated foliar photosynthetic electron transport rate (J) and the fraction of plant biomass in foliage (F(L)). Because the site effect was generally non-significant in the analyses of variance with foliar nitrogen content per unit dry mass (N(M)) as a covariate, N(M) was used as an explaining variable of leaf structural and physiological characteristics. Average leaf area (S) and dry mass per leaf scaled positively with N(M) and total tree height (H) in all species. Leaf dry mass per unit area also increased with increasing H, but decreased with increasing N(M), whereas the effects were species-specific. Increases in plant size led to a lower and increases in N(M) to a greater FL and total plant foliar area per unit plant biomass (LAR). Thus, the self-shading probably increased with increasing N(M) and decreased with increasing H. Nevertheless, the whole-plant average M(A), as well as M(A) values of topmost fully exposed leaves, correlated with N(M) and H in a similar manner, indicating that scaling of MA with N(M) and H did not necessarily result from the modified degree of within-plant shading. The rate of photosynthetic electron transport per unit dry mass (J(M)) scaled positively with N(M), but decreased with increasing H and M(A). Thus, increases in M(A) with tree height and decreasing nitrogen content not only resulted in a lower plant foliar area (LAR = F(L)/M(A)), but also led to lower physiological activity of unit foliar biomass. The leaf parameters (J(M), N(M) and M(A)) varied threefold, but the whole-plant characteristic FL varied 20-fold and LAR 30-fold, indicating that the biomass allocation was more plastically adjusted to different plant internal nitrogen contents and to tree height than the foliar variables. Our results demonstrate that: (1) tree height and N(M) may independently control foliar structure and physiology, and have an even greater impact on biomass allocation; and (2) the modified within-plant light availabilities alone do not explain the observed patterns. Although there were interspecific differences with respect to the statistical significance of the relationships, all species generally fit common regressions. However, these differences were consistent, and suggested that more competitive species with inherently larger growth rates also more plastically respond to N and H.  相似文献   

11.
Ülo Niinemets 《Plant Ecology》1996,124(2):145-153
Variation in leaf size (area per leaf) and leaf dry weight per area (LWA) in relation to species shade- and drought-tolerance, characterised by Ellenberg's light (ELD) and water demand (EWD) values, respectively, were examined in 60 temperate woody taxa at constant relative irradiance. LWA was independent of plant size, but leaf size increased with total plant height at constant ELD. Canopy position also affected leaf morphology: leaves from the upper crown third had higher LWA and were larger than leaves from the lower third. Leaf size and LWA were negatively correlated, and leaf size decreased and LWA increased with decreasing species shade-tolerance. Mean LWA was similar for trees and shrubs, but trees had larger leaves than shrubs. Furthermore, all relationships were altered by plant growth-form: none of the qualitative tendencies was significant for trees. This implies the considerably lower plasticity of foliar parameters in trees than those in shrubs. Accordingly, shade-tolerance of trees, having relatively constant leaf structure, may be most affected by the variability in biomass partitioning and crown geometry which influence foliage distribution and spacing and finally determine canopy light absorptance. Alteration of leaf form and investment pattern for construction of unit foliar surface area which change the efficiency of light interception per unit biomass investment in leaves, is a competitive strategy inherent to shrubs. EWD as well as wood anatomy did not control LWA and leaf size, though there was a trend of ring-porous tree species to be more shade-tolerant than diffuse-porous trees. Since ring-porous species are more vulnerable to cavitation than diffuse-porous species, they may be constrained to environments where irradiances and consequently evaporative demand is lower.  相似文献   

12.
Measurements of photosynthesis at saturating irradiance and CO2 partial pressure, A max, “adjusted” normalised difference vegetation index, R aNDVI, and photochemical reflectance index, R PRI, were made on trees sampled along a soil chronosequence to investigate the relationship between carbon uptake and ecosystem development in relation to nutrient availability. Measurements were made on the three most dominant species at six sites along the sequence in South Westland, New Zealand with soil age ranging from <6 to 120,000 years resulting from the retreat of the Franz Josef glacier. The decrease in soil phosphorus availability with increasing soil age and high soil nitrogen availability at the two youngest sites, due to the presence of a nitrogen-fixing species, provided marked differences in nutrient availability. Mean A max was high at the two youngest sites, then decreased markedly with increasing site age. Analysis of the data for individual species within sites revealed separation of groups of species in the response of A max to N m and P m, suggesting complex interactions between the two nutrients. There were strong linear relationships for leaf-level R aNDVI and R PRI with A max, at high irradiance, showing that measurements of reflectance indices can be used to estimate A max for foliage with a range in morphology and nutrient concentrations. Notwithstanding the change in species composition from angiosperms to conifers with increasing site age, the presence of nitrogen-fixing species, the variability in foliage morphology from flat leaves to imbricate scales and a wide range in foliar nitrogen and phosphorus concentrations, there were strong positive linear relationships between site average A max and foliage nitrogen, N m, and phosphorus, P m, concentrations on a foliage mass basis. The results provide insights to interpret the regulation of photosynthesis across natural ecosystems with marked gradients in nitrogen and phosphorus availability.  相似文献   

13.
We tested the hypothesis that invasive (IN) species could capture resources more rapidly and efficiently than noninvasive (NIN) species. Two IN alien species, Ageratina adenophora and Chromolaena odorata, and one NIN alien species, Gynura sp. were compared at five irradiances. Photon-saturated photosynthetic rate (P max), leaf mass (LMA) and nitrogen content (NA) per unit area, and photosynthetic nitrogen utilization efficiency (PNUE) increased significantly with irradiance. LMA, NA, and PNUE all contributed to the increased P max, indicating that both morphological and physiological acclimation were important for the three alien species. Under stronger irradiance, PNUE was improved through changes in N allocation. With the increase of irradiance, the amount of N converted into carboxylation and bioenergetics increased, whereas that allocated to light-harvesting components decreased. The three alien species could adequately acclimate to high irradiance by increasing the ability to utilize and dissipate photon energy and decreasing the efficiency of photon capture. The two IN species survived at 4.5 % irradiance while the NIN species Gynura died, representing their different invasiveness. Ageratina generally exhibited higher respiration rate (R D) and NA. However, distinctly higher P max, PNUE, P max/R D, or P max/LMA were not detected in the two invasive species, nor was lower LMA. Hence the abilities to capture and utilize resources were not always associated with invasiveness of the alien species.  相似文献   

14.
Species in an adaptive radiation often occupy different habitats so that individuals of each species develop under different conditions. Showing that a radiation is adaptive thus requires evidence that taxa have diverged genetically and that each has an ecological advantage in using particular habitats or resources, taking into account both phenotypic plasticity and phylogenetic relationships among species. Here, we use a common-garden experiment to show that representative species of Hawaiian lobeliads have diverged adaptively in their leaf-level photosynthetic light responses. Across species, plants genetically shifted their photosynthetic physiology with native light regime in accord with theoretical predictions and exhibited adaptive crossover in net carbon gain—that is, species native to a given light regime outperformed others only under conditions similar to those they occupy in the field, with the rank order of species based on photosynthesis per unit leaf mass changing with light level. These findings make a powerful case for adaptation of photosynthetic light responses to native light regimes and, combined with our earlier field studies, provide the strongest demonstration to date for the evolution of divergent adaptations for energy capture in any group of closely related plants.  相似文献   

15.
Plant distribution borders are key features to characterise the ecological niche of a species and to monitor effects of climate change. Here we focus on an evergreen small tree, Ilex aquifolium, which reaches its north-eastern range edge in Denmark. Our main objectives are to describe and to model the current distribution of the species, to identify the most important climatic and land use factors which shape this distribution pattern, and to analyse the species' habitat requirements. For this purpose we used data from a national mapping project, complemented by information from forest owners. The distribution and abundance of I. aquifolium in Denmark have markedly changed during the past 40 years. It is now found in almost all districts, although the centres of abundance still coincide with the historical records. Our model shows lower habitat suitability for the species in northern and eastern districts, where winters are more severe and spring precipitation is lower. To a lesser extent, land use influences I. aquifolium occurrence, but it is more common in areas with a high proportion of forests and/or urban sites. The analysis of habitat requirements supports these results, since I. aquifolium occurs mainly as a forest species in deciduous stands, on relatively nutrient-rich moist soils, and under moderately high light conditions. However, some records may be the product of seed dispersal from planted individuals nearby. The results suggest that the range edge of the species has moved at least 100 km east within half a century. Since I.aquifolium is sensitive to winter frost, this change in distribution may be due to increasingly mild winter temperatures.  相似文献   

16.
Plants allocate carbon to root exudates to mine nitrogen (N) from soil organic matter (SOM). Little is known about how the root-exudation rate varies among co-existing woody species. We conducted an in situ experiment in a warm temperate forest on two dominant species, Quercus serrata and Ilex pedunculosa, and two of their congeneric species, Quercus glauca and Ilex macropoda, respectively. We hypothesized that the root-exudation rate varies among these species because of their distinct functional traits and N demands. Root-exudation rates were measured using a non-soil culture method during the growing season from June 2013 to May 2014. We also measured foliar N concentrations and the activities of N-degrading enzymes in the rhizosphere soils. The annual demand for N was calculated from the growth rate and allometric equations for biomass. The root-exudation rates of Q. serrata and I. macropoda were consistently greater than those of their congeneric evergreen species on root-length, root-weight, and individual-tree bases. The variations of the annual N demand of these species mirrored this pattern. Within a species, root-exudation rates correlated positively to leaf N contents, suggesting a physiological linkage between photosynthetic capacities and belowground carbon allocation. Root-exudation rates also correlated positively to the activities of polyphenol oxidase, an enzyme that decomposes N from recalcitrant SOM. Our results suggest that the variations of the root-exudation among co-existing species relate to their functional traits and demand for N.  相似文献   

17.
Over the last 4 years, two data sets have emerged which allow increased accuracy and resolution in the definition and validation of a photosynthesis model for whole forest canopies. The first is a greatly expanded set of data on the nitrogen-photosynthesis relationship for temperate and tropical woody species. The second is a unique set of long-term (4 year) daily carbon balance measurements at the Harvard Forest, Petersham, Massachusetts, collected by the eddy-correlation technique. A model (PhET-Day) is presented which is derived directly from, and validated against, these data sets. The PnET-Day model uses foliar nitrogen concentration to calculate maximum instantaneous rates of gross and net photosynthesis which are then reduced for suboptimal temperature, photosynthetically active radiation (PAR), and vapor pressure deficit (VPD). Predicted daily gross photosynthesis is closely related to gross carbon exchange at the Harvard Forest as determined by eddy-correlation measurements. Predictions made by the full canopy model were significantly better than those produced by a multiple linear regression model. Sensitivity analyses for this model for a deciduous broad-leaved forest showed results to be much more sensitive to parameters related to maximum leaf-level photosynthetic rate (A max) than to those related to light, temperature, VPD or total foliar mass. Aggregation analyses suggest that using monthly mean climatic data to drive the canopy model will give results similar to those achieved by averaging daily eddy correlation measurements of gross carbon exchange (GCE).  相似文献   

18.
Naidu  Shawna L.  DeLucia  Evan H. 《Plant Ecology》1998,138(1):27-40
Because acclimation to canopy gaps may involve coordination of new leaf production with morphological or physiological changes in existing, shade-developed leaves, we examined both new leaf production and photosynthesis of existing leaves on shade-grown seedlings after exposure to a late-season canopy gap. Midway through the summer, we transferred potted, shade-grown seedlings of four co-occurring temperate deciduous tree species representing a range of shade-tolerance categories and leaf production strategies to gaps. Shade-tolerant Acer saccharum was the least responsive to gap conditions. It produced few new, high-light acclimated leaves and increases in photosynthetic rates of shade-developed leaves appeared stomatally limited. Intermediately shade-tolerant Fraxinus americana and Quercus rubra responded most, by producing new leaves and increasing photosynthetic rates of existing shade-developed leaves to levels not significantly different from gap-grown controls within four weeks of gap exposure. Shade-intolerant Liriodendron tulipifera was intermediate in response. In these species, the degree of shoot-level morphological acclimation (new leaf production) and leaf-level physiological acclimation (photosynthetic increases in existing leaves) appear coupled. Mechanisms of acclimation also appear related to intrinsic patterns of nitrogen use and mobilization, the ability to adjust stomatal conductance, and shade tolerance.  相似文献   

19.
Effects of defoliation and girdling on fruit production in Ilex aquifolium   总被引:1,自引:0,他引:1  
1. The effects of defoliation and girdling on fruit production in European holly Ilex aquifolium were studied in a northern Spanish population. Three defoliation treatments (control, 50% and 100% leaf removal) were applied at branch level in 10 trees. Six branches were used per treatment in each tree and half of these branches were girdled (a ring of bark and cambium was removed from the branch base).
2. Leaf removal from ungirdled branches had little effect on fruit set, fruit production and reproductive allocation at branch level. However, these variables decreased as the extent of defoliation increased on girdled branches.
3. Fruit production in undefoliated branches did not differ between girdled and ungirdled branches, showing that girdled branches were autonomous for fruit production when undamaged. Mean fruit mass of girdled-100% defoliated branches averaged 8% of fruit mass produced by control branches.
4. Fruit production of ungirdled-100% defoliated branches did not differ from control branches, showing the importance of resource importation from other branches. Hence the branches may be regarded as only partially autonomous for fruit production.
5. Fruit production of girdled-50% defoliated branches was 42% of fruit production of control branches, while ungirdled-50% defoliated branches amounted to 70% of controls. These results also demonstrated resource importation but did not support the existence of photosynthetic compensatory mechanisms.
6. The ability of resource importation developed by fruiting branches might be a mechanism to reduce the effect of reproductive costs in this species.  相似文献   

20.
We addressed the question: “Are short-term, leaf-level measurements of photosynthesis correlated with long-term patterns of plant success?” in a productive grassland where interspecific competitive interactions are important. To answer this question, seasonal patterns of leaf-level photosynthesis were measured in 27 tallgrass prairie species growing in sites that differed in species composition and productivity due to differences in fire history. Our specific goals were to assess the relationship between gas exchange under field conditions and success (defined as aerial plant cover) for a wide range of species, as well as for these species grouped as dominant and sub-dominant grasses, forbs, and woody plants. Because fire increases productivity and dominance by grasses in this system, we hypothesized that any relationship between photosynthesis and success would be strongest in annually burned sites. We also predicted that regardless of fire history, the dominant species (primarily C4 grasses) would have higher photosynthetic rates than the less successful species (primarily C3 grasses, forbs and woody plants). Because forbs and woody species are less abundant in annually burned sites, we expected that these species would have lower photosynthetic rates in annually burned than in infrequently burned sites. As expected, the dominant C4?grasses had the highest cover on all sites, relative to?other growth forms, and they had the highest maximum and seasonally averaged photosynthetic rates (17.6 ± 0.42 μmol m?2 s?1). Woody species had the lowest average cover as well as the lowest average photosynthetic rates, with subdominant grasses and forbs intermediate in both cover and photosynthesis. Also as predicted, the highest overall photosynthetic rates were found on the most productive annually burned site. Perhaps most importantly, a positive relationship was found between leaf-level photosynthesis and cover for a core group of species when data were combined across all sites. These data support the hypothesis that higher instantaneous rates of leaf-level photosynthesis are indicative of long-term plant success in this grassland. However, in contrast to our predictions, the subdominant grasses, forbs and woody species on the annually burned site had higher photosynthetic rates than in the less frequently burned sites, even though their average cover was lower on annually burned sites, and hence they were less successful. The direct negative effect of fire on plant cover and species-specific differences in the availability of resources may explain why photosynthesis was high but cover was low in some growth forms in annually burned sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号