首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In an immunohistochemical study of the ventral nerve cord of L. decemlineata, five distinct neuron categories were distinguished: 1) Two paired segmental twin interneurons occur in each ganglion or neuromere; their axons distribute processes over almost the entire nerve cord and run to the cerebral ganglion complex. In contrast, other axons are distributed locally. 2) Four large frontal neurosecretory neurons occur in the suboesophageal ganglion (SOG), two of which have axons that run into the mandibular nerves to form a neurohemal plexus on the surface of cerebral nerves. 3) A pair of large caudal neurons occur in the terminal ganglion and innervate the hindgut. 4) Local miniature interneurons occur in the SOG. 5) Terminal neurons are present in the last abdominal ganglion. Segmental twin interneurons appear to be grouped into 3 functional units spanning several ganglia. Their axons run to specific projection areas, which separate the functional units, and which mark the externally visible separation of condensed ganglion complexes. A possible role of the most caudal functional unit might be the synaptic control of caudal neurons innervating the hindgut.  相似文献   

2.
The commissural ring nerve (RN) of the cricket Acheta domesticus links together the two cercal motor nerves of the terminal abdominal ganglion. It contains the axons of almost 100 neurons including two bilateral clusters of eight to 13 ventrolateral neurons and approximately 75 neurons with midline somata within the terminal abdominal ganglion. The ventrolateral neurons have an ipsilateral dendritic arborization within the dorsal neuropil of the ganglion and their axons use the RN as a commissure in order to enter the contralateral nerves of the tenth ganglionic neuromere. In contrast, most midline neurons have bifurcating axons projecting bilaterally into the neuropil of the ganglion as well as into the RN where they often branch extensively before entering the contralateral tenth nerves. Most RN neurons have small, non-spiking somata with spike initiation zones distant from the soma. Many midline neurons also produce double-peaked spikes in their somata, indicative of multiple spike initiation zones. Spontaneous neuronal activity recorded extracellularly from the RN reveals several units, some with variable firing patterns, but none responding to sensory stimuli. The RN is primarily composed of small (50 nm diameter) axon profiles with a few large (0.5-1 microm diameter) profiles. Occasionally, profiles of nerve terminals containing primarily small clear vesicles and a few large dense vesicles are observed. These vesicles can sometimes be clustered about an active zone. We conclude that the primary function of the RN is to serve as a peripheral nerve commissure and that its role as a neurohemal organ is negligible. J. Exp. Zool. 286:350-366, 2000.Copyright 2000 Wiley-Liss, Inc.  相似文献   

3.
Summary Serotonin-immunoreactive neurons in the median protocerebrum and suboesophageal ganglion of the sphinx moth Manduca sexta were individually reconstructed. Serotonin immunoreactivity was detected in 19–20 bilaterally symmetrical pairs of interneurons in the midbrain and 10 pairs in the suboesophageal ganglion. These neurons were also immunoreactive with antisera against DOPA decarboxylase. All major neuropil regions except the protocerebral bridge are innervated by these neurons. In addition, efferent cells are serotonin-immunoreactive in the frontal ganglion (5 neurons) and the suboesophageal ganglion (2 pairs of neurons). The latter cells probably give rise to an extensive network of immunoreactive terminals on the surface of the suboesophageal ganglion and suboesophageal nerves. Most of the serotonin-immunoreactive neurons show a gradient in the intensity of immunoreactive staining, suggesting low levels of serotonin in cell bodies and dendritic arbors and highest concentrations in axonal terminals. Serotonin-immunoreactive cells often occur in pairs with similar morphological features. With one exception, all serotonin-immunoreactive neurons have bilateral projections with at least some arborizations in identical neuropil areas in both hemispheres. The morphology of several neurons suggests that they are part of neuronal feedback circuits. The similarity in the arborization patterns of serotonin-immunoreactive neurons raises the possibility that their outgrowing neurites experienced similar forces during embryonic development. The morphological similarities further suggest that serotonin-immunoreactive interneurons in the midbrain and suboesophageal ganglion share physiological characteristics.Abbreviations CNS central nervous system - DDC DOPA decarboxylase - LAL lateral accessory lobe - SLI serotonin-like immunoreactivity - SOG suboesophageal ganglion - VLP ventro-lateral protocerebrum  相似文献   

4.
Serotonin-like immunoreactivity was mapped in the central nervous system (CNS) of the cockroach, Periplaneta americana. Immunoreactive staining occurred in every ganglion of the CNS. The largest numbers of immunoreactive somata were detected in the optic lobes and the brain, and lowest numbers in the first and second thoracic ganglia. Dense stained fibers, ramifications, and varicosities were found in all ganglia, and numerous axon like processes occurred in all interganglionic connectives. Immunoreactive processes were not, however, detected in most of the peripherally projecting nerve roots. Processes were found only in roots of the suboesophageal ganglion and the tritocerebral lobes of the brain. A comparison of the map for serotonin immunoreactivity with one generated for the pentapeptide transmitter proctolin suggests that the two systems overlap only in the suboesophageal ganglion and the tritocerebrum. The amine and peptide may co-occur in neurons in these regions. The serotonin immunoreactive system appeared significantly different from the octopaminergic system of the ventral nerve cord. Seventy-two potentially identifiable immunoreactive cells were located in the cockroach CNS. Some of these may be suitable for physiological study of the functional role of serotonin.  相似文献   

5.
Summary Serotonin-immunoreactivity is mapped in wholemounts and slices of the suboesophageal ganglion (SOG) of larval Manduca sexta by means of immunocytochemistry. An extensive meshwork of serotonin-immunoreactive nerve fibres on some peripheral nerves of the SOG has been demonstrated. This meshwork appears to belong to a serotonergic neurohemal system, probably supplied by two pairs of bilateral serotonin-immunoreactive neurons with big cell bodies on the dorsal side near the midline in the mandibular neuromere. Intracellular recording and staining revealed their physiology and morphology. These neurons produce long lasting (50 msec) action potentials, which suggest that they are neurosecretory cells. Two pairs of bilateral serotonin-immunoreactive interneurons similar to those of other insects are stained in the labial and maxillar neuromeres, but not in the mandibular neuromere. Their ventrolaterally located cell bodies project through a ventral commissure into the contralateral hemiganglion and then cross back again through a dorsal commissure. The axons project into the contralateral circumoesophageal connective.  相似文献   

6.
Summary Production of sex pheromone in several species of moths has been shown to be under the control of a neuropeptide termed pheromone-biosynthesis-activating neuropeptide (PBAN). We have produced an antiserum to PBAN from Helicoverpa zea (Lepidoptera: Noctuidae) and used it to investigate the distribution of immunoreactive peptide in the brain-suboesophageal ganglion complex and its associated neurohemal structures, and the segmental ganglia of the ventral nerve cord. Immunocytochemical methods reveal three clusters of cells along the ventral midline in the suboesophageal ganglion (SOG), one cluster each in the presumptive mandibular (4 cells), maxillary (12–14 cells), and labial neuromeres (4 cells). The proximal neurites of these cells are similar in their dorsal and lateral patterns of projection, indicating a serial homology among the three clusters. Members of the mandibular and maxillary clusters have axons projecting into the maxillary nerve, while two additional pairs of axons from the maxillary cluster project into the ventral nerve cord. Members of the labial cluster project to the retrocerebral complex (corpora cardiaca and cephalic aorta) via the nervus corpus cardiaci III (NCC III). The axons projecting into the ventral nerve cord appear to arborize principally in the dorsolateral region of each segmental ganglion; the terminal abdominal ganglion is distinct in containing an additional ventromedial arborization in the posterior third of the ganglion. Quantification of the extractable immunoreactive peptide in the retrocerebral complex by ELISA indicates that PBAN is gradually depleted during the scotophase, then restored to maximal levels in the photophase. Taken together, our findings provide anatomical evidence for both neurohormonal release of PBAN as well as axonal transport via the ventral nerve cord to release sites within the segmental ganglia.Abbreviations A aorta - Br-SOG brain-suboesophageal ganglion complex - CC corpus cardiacum - PBS phosphate-buffered saline - PLI PBAN-like immunoreactivity - TAG terminal abdominal ganglion - VNC ventral nerve cord  相似文献   

7.
The morphology and position of putative neurohemal areas in the peripheral nervous system (ventral nerve cord and retrocerebral complex) of the cricket Gryllus bimaculatus are described. By using antisera to the amines dopamine, histamine, octopamine, and serotonin, and the neuropeptides crustacean cardioactive peptide, FMRFamide, leucokinin 1, and proctolin, an extensive system of varicose fibers has been detected throughout the nerves of all neuromeres, except for nerve 2 of the prothoracic ganglion. Immunoreactive varicose fibers occur mainly in a superficial position at the neurilemma, indicating neurosecretory storage and release of neuroactive compounds. The varicose fibers are projections from central or peripheral neurons that may extend over more than one segment. The peripheral fiber varicosities show segment-specific arrangements for each of the substances investigated. Immunoreactivity to histamine and octopamine is mainly found in the nerves of abdominal segments, whereas serotonin immunoreactivity is concentrated in subesophageal and terminal ganglion nerves. Immunoreactivity to FMRFamide and crustacean cardioactive peptide is widespread throughout all segments. Structures immunoreactive to leucokinin 1 are present in abdominal nerves, and proctolin immunostaining is found in the terminal ganglion and thoracic nerves. Codistribution of peripheral varicose fiber plexuses is regularly seen for amines and peptides, whereas the colocalization of substances in neurons has not been detected for any of the neuroactive compounds investigated. The varicose fiber system is regarded as complementary to the classical neurohemal organs.  相似文献   

8.
9.
Summary Two groups of cerebral dorsal cells of the pulmonate snail Planorbarius corneus stain positively with antisera raised against synthetic fragments of the B- and C-chain of the molluscan pro-insulin-related prohormone, proMIP-I, of another pulmonate snail, Lymnaea stagnalis. At the light-microscopic level the somata of the dorsal cells and their axons and neurohemal axon terminals in the periphery of the paired median lip nerves are immunoreactive with both antisera. Furthermore, the canopy cells in the lateral lobes of the cerebral ganglia are positive. In addition, MIPB-immunoreactive neurons are found in most other ganglia of the central nervous system. At the ultrastructural level, pale and dark secretory granules are found in somata and axon terminals of the dorsal cells. Dark granules are about 4 times as immunoreactive to both antisera as pale granules. Release of anti-MIPB- and anti-MIPC-immunopositive contents of the secretory granules by exocytosis is apparent in material treated according to the tannic acid method. It is concluded that the dorsal and canopy cells synthesize a molluscan insulin-related peptide that is packed in the cell body into secretory granules and that is subsequently transported to the neurohemal axon terminals and released into the hemolymph by exocytosis. Thus, MIP seems to act as a neurohormone on peripheral targets. On the basis of the analogy between the dorsal cells and the MIP-producing cells in L. stagnalis, it is proposed that the dorsal cells of P. corneus are involved in the control of body growth and associated processes.  相似文献   

10.
Summary An antiserum against the cockroach neuropeptide leucokinin I (LKI) was used to study peptidergic neurons and their innervation patterns in larvae and adults of three species of higher dipteran insects, the flies Drosophila melanogaster, Calliphora vomitoria, and Phormia terraenovae, as well as larvae of a primitive dipteran insect, the crane fly Phalacrocera replicata. In the larvae of the higher dipteran flies, the antiserum revealed three pairs of cells in the brain, three pairs of ventro-medial cells in the subesophageal ganglion, and seven pairs of ventro-lateral cells in the abdominal ganglia. Each of these 14 abdominal leucokinin-immunoreactive (LKIR) neurons innervates a single muscle of the abdominal body wall (muscle 8), which is known to degenerate shortly after adult emergence. Conventional electron microscopy demonstrates that this muscle is innervated by at least one axon containing clear vesicles and two axons containing dense-cored vesicles. Electronmicroscopical immunocytochemistry shows that the LKIR axon is one of these two axons with dense-cored vesicles and that it forms terminals on the sarcolemma of its target muscle. The abdominal LKIR neurons appear to survive metamorphosis. In the adult fly, the efferent abdominal LKIR neurons innervate the spiracles, the heart, and neurohemal regions of the abdominal wall. In the crane fly larva, dorso-medial and ventrolateral LKIR cell bodies are located in both thoracic and abdominal ganglia of the ventral nerve cord. As in the larvae of the other flies, the abdominal ventrolateral LKIR neurons form efferent axons. However, in the crane fly larva there are two pairs of efferent LKIR neurons in each of the abdominal ganglia and their peripheral targets include neurohemal regions of the dorsal transverse nerves. An additional difference is that in the crane fly, a caudal pair of LKIR axons originating from the penultimate pair of dorso-median LKIR cells in the terminal ganglion innervate the hindgut.  相似文献   

11.
Serotonin immunoreactivity of neurons in the gastropod Aplysia californica   总被引:2,自引:0,他引:2  
Serotonergic neurons and axons were mapped in the central ganglia of Aplysia californica using antiserotonin antibody on intact ganglia and on serial sections. Immunoreactive axons and processes were present in all ganglia and nerves, and distinct somata were detected in all ganglia except the buccal and pleural ganglia. The cells stained included known serotonergic neurons: the giant cerebral neurons and the RB cells of the abdominal ganglion. The area of the abdominal ganglion where interneurons are located which produce facilitation during the gill withdrawal reflex was carefully examined for antiserotonin immunoreactive neurons. None were found, but two bilaterally symmetric pairs of immunoreactive axons were identified which descend from the contralateral cerebral or pedal ganglion to abdominal ganglion. Because of the continuous proximity of this pair of axons, they could be recognized and traced into the abdominal ganglion neuropil in each preparation. If serotonin is a facilitating transmitter in the abdominal ganglion, these and other antiserotonin immunoreactive axons in the pleuroabdominal connectives may be implicated in this facilitation.  相似文献   

12.
Summary The nervus corporis cardiaci III (NCC III) of the locust Locust migratoria was investigated with intracellular and extracellular cobalt staining techniques in order to elucidate the morphology of neurons within the suboesophageal ganglion, which send axons into this nerve. Six neurons have many features in common with the dorsal, unpaired, median (DUM) neurons of thoracic and abdominal ganglia. Three other cells have cell bodies contralateral to their axons (contralateral neuron 1–3; CN 1–3). Two of these neurons (CN2 and CN3) appear to degenerate after imaginal ecdysis. CN3 innervates pharyngeal dilator muscles via its anterior axon in the NCC III, and a neck muscle via an additional posterior axon within the intersegmental nerve between the suboesophageal and prothoracic ganglia. A large cell with a ventral posterior cell body is located close to the sagittal plane of the ganglion (ventral, posterior, median neuron; VPMN). Staining of the NCC III towards the periphery reveals that the branching pattern of this nerve is extremely variable. It innervates the retrocerebral glandular complex, the antennal heart and pharyngeal dilator muscles, and has a connection to the frontal ganglion.Abbreviations AH antennal heart - AN antennal nerves - AO aorta - AV antennal vessel - CA corpus allatum - CC corpus cardiacum - CN1, CN2, CN3 contralateral neuron 1–3 - DIT dorsal intermediate tract - DMT dorsal median tract - DUM dorsal, unpaired, median - FC frontal connective - FG frontal ganglion - HG hypocerebral ganglion - LDT lateral dorsal tract - LMN, LSN labral motor and sensory nerves - LN+FC common root of labral nerves and frontal connective - LO lateral ocellus - MDT median dorsal tract - MDVR ventral root of mandibular nerve - MVT median ventral tract - NCA I, II nervus corporis allati I, II - NCC I, II, III nervus corporis cardiaci I, III - NR nervus recurrens - NTD nervus tegumentarius dorsalis - N8 nerve 8 of SOG - OE oesophagus - OEN oesophageal nerve - PH pharynx - SOG suboesophageal ganglion - T tentorium - TVN tritocerebral ventral nerve - VLT ventral lateral tract - VIT ventral intermediate tract - VMT ventral median tract - VPMN ventral, posterior, median neuron - 1–7 peripheral nerves of the SOG - 36, 37, 40–45 pharyngeal dilator muscles  相似文献   

13.
Summary Neurones in the suboesophageal ganglion of the locust Schistocerca gregaria were stained with an antiserum raised against gamma amino butyric acid (GABA). This ganglion consists of the fused mandibular, maxillary and labial neuromeres. Immunoreactive cell bodies of similar size and distribution occur in the lateral, ventral and middorsal regions of all three neuromeres. Approximately 200 cell bodies stain in both the mandibular and maxillary neuromeres and 270 in the labial neuromere. A few distinctly larger cells occur in the ventral groups and one large pair occurs in the lateral group of the maxillary neuromere. Dorsal commissures DCIV and DCV are composed mainly of stained fibres, while DCI–DCIII are largely unstained. A ventral commissure also stains in the maxillary neuromere. All longitudinal tracts contain both stained and unstained fibres. Many processes within the neuropil are also immunoreactive. A stained axon is found in the posterior tritocerebral commissure which enters the anterior dorsal region of the mandibular neuromere. The salivary branch of the 7th nerve contains one stained axon and two axons stain in nerve 8 which innervates neck muscles.  相似文献   

14.
Summary In the American cockroach, Periplaneta americana, and the Australian field cricket, Teleogryllus commodus, the two nerves supplying the bases of the cerci are joined by a branch that crosses behind the last abdominal ganglion. This commissural ring nerve is restricted to females, and it contains many axons filled with granular and agranular vesicles. The axons stem from somata located within the ganglion. There are one (Periplaneta) or two (Teleogryllus) groups of median neurons with bilaterally symmetrical bifurcations, and a group of postero-ventral neurons on each side. In T. commodus, these neurons are distinct from others associated with the cerci. In the two species, the ring nerve neurons contribute to a neuropile near the root of each cereal nerve. The bifurcating median neurons arborize on both sides before entering the ring nerve, while the postero-ventral ones branch more extensively ipsilateral to their somata. The possibilities are discussed that the bifurcating neurons may be homologous to dorsal unpaired median neurons, and that the ring nerve may be a neurohemal area.  相似文献   

15.
Summary Using an antiserum against the tetrapeptide FMRFamide, we have studied the distribution of FMRFamide-like substances in the brain and suboesophageal ganglion of the sphinx mothManduca sexta. More than 2000 neurons per hemisphere exhibit FMRFamide-like immunoreactivity. Most of these cells reside within the optic lobe. Particular types of FMRFamide-immunoreactive neurons can be identified. Among these are neurosecretory cells, putatively centrifugal neurons of the optic lobe, local interneurons of the antennal lobe, mushroom-body Kenyon cells, and small-field neurons of the central complex. In the suboesophageal ganglion, groups of ventral midline neurons exhibit FMRFamide-like immunoreactivity. Some of these cells have axons in the maxillary nerves and apparently give rise to FMRFamide-immunoreactive terminals in the sheath of the suboesophageal ganglion and the maxillary nerves. In local interneurons of the antennal lobe and a particular group of protocerebral neurons, FMRFamide-like immunoreactivity is colocalized with GABA-like immunoreactivity. This suggests that FMRFamide-like peptides may be cotransmitters of these putatively GABAergic interneurons. All FMRFamide-immunoreactive neurons are, furthermore, immunoreactive with an antiserum against bovine pancreatic polypeptide, and the vast majority is also immunoreactive with an antibody against the molluscan small cardioactive peptide SCPB. Therefore, it is possible that more than one peptide is localized within many FMRFamide-immunoreactive neurons. The results suggest that FMRFamide-related peptides are widespread within the nervous system ofM. sexta and might function as neurohormones and neurotransmitters in a variety of neuronal cell types.Abbreviations AL antennal lobe - BPPLI bovine pancreatic polypeptide-like immunoreactivity - FLI FMRFamide-like immunoreactivity - GLI GABA-like immunoreactivity - NSC neurosecretory cell - SCP B LI small cardioactive peptideB-like immunoreactivity - SLI serotonin-like immunoreactivity - SOG suboesophageal ganglion  相似文献   

16.
Food selection behavior of lepidopteran larvae is predominantly governed by the activation of taste neurons present in two sensilla styloconica located on the galea of the maxilla. In this study, we present the ultrastructure of the sensilla styloconica and the central projection pattern of their associated receptor neurons in larvae of the heliothine moth, Helicoverpa armigera. By means of light microscopy and scanning electron microscopy, the previous findings of two morphologically fairly similar sensilla comprising a socketed conic tip inserted into a large peg were confirmed. However, the peg size of the medial sensillum was found to be significantly bigger than that of the lateral sensillum. The sensory neurons derived from each sensillum styloconicum were mapped separately using anterograde staining experiments combined with confocal laser-scanning microscopy. For determining the afferents’ target regions relative to each other, we reconstructed the labeled axons and placed them into a common reference framework. The sensory axons from both sensilla projected via the ipsilateral maxillary nerve to the suboesophageal ganglion and further through the ipsilateral circumoesophageal connective to the brain. In the suboesophageal ganglion, the sensory projections targeted two areas of the ipsilateral maxillary neuropil, one located in the ventrolateral neuromere and the other adjacent to the neuromere midline. In the brain, the axon terminals targeted the dorso-anterior area of the ipsilateral tritocerebrum. As confirmed by the three-dimensional reconstructions, the target regions of the neural projections originating from each of the two sensilla styloconica were identical.  相似文献   

17.
Summary In the abdominal ganglia of the turnip moth Agrotis segetum, an antibody against the cockroach neuropeptide leucokinin I recognizes neurons with varicose fibers and terminals innervating the perisympathetic neurohemal organs. In the larva, the abdominal perisympathetic organs consist of a segmental series of discrete neurohemal swellings on the dorsal unpaired nerve and the transverse nerves originating at its bifurcation. These neurohemal structures are innervated by varicose terminals of leucokinin I-immunoreactive (LKIR) fibers originating from neuronal cell bodies located in the preceding segment. In the adult, the abdominal segmental neurohemal units are more or less fused into a plexus that extends over almost the whole abdominal nerve cord. The adult plexus consists of peripheral nerve branches and superficial nerve fibers beneath the basal lamina of the neural sheath of the nerve cord. During metamorphosis, the LKIR fibers closely follow the restructuration of the perisympathetic organs. In both larvae and adults the LKIR fibers in the neurohemal structures originate from the same cell bodies, which are distributed as ventrolateral bilateral pairs in all abdominal ganglia. The transformation of the series of separated and relatively simple larval neurohemal organs into the larger, continuous and more complex adult neurohemal areas occurs during the first of the two weeks of pupal life. The efferent abdominal LKIR neurons of the moth Agrotis segetum thus belong to the class of larval neurons which persist into adult life with substantial peripheral reorganization occurring during metamorphosis.  相似文献   

18.
Summary Evidence is presented that neurons in the adult Colorado potato beetle contain a proctolin-like substance. By use of immunocytochemical methods the location of immunoreactive neurons in the central and stomatogastric nervous systems is described. No such neurons were found in the proto- and deutocerebrum or optic lobe. Few immunoreactive neurons are present in the tritocerebrum and numerous proctolin-immunoreactive neurons occur in all ventral ganglia and in the frontal ganglion. Two groups of neurosecretory cells in the suboesophageal ganglion contain a proctolin-immunoreactive substance. In these cells this material is co-localized with a bovine pancreatic polypeptide/FMRF amide-like substance and with a vasopressin/vasotocin/oxytocin-like substance. Proctolin-immunoreactive axon terminals were found on the musculature of the fore- and hindgut and of the vas deferens, and on some segmental muscles. Furthermore, proctolin-immunoreactive neurosecretory axon terminals were found in the corpus cardiacum. The proctolin-like substance may therefore function both as a neurotransmitter/neuromodulator and as a neurohormone. The presence of a proctolin-like substance was also demonstrated with a sensitive bioassay. On fractionation of extracts of the nervous systems of Leptinotarsa decemlineata with high performance liquid chromatography most of the proctolin-like bioactive material comigrated with authentic proctolin. This shows that a proctolin-like substance in this insect is very similar to, if not identical with, the known pentapeptide proctolin.  相似文献   

19.
Summary We have used immunohistochemical methods to investigate the morphology of identified, presumptive serotonergic neurons in the antennal lobes and suboesophageal ganglion of the worker honeybee. A large interneuron (deutocerebral giant, DCG) is described that interconnects the deutocerebral antennal and dorsal lobes with the suboesophageal ganglion and descends into the ventral nerve chord. This neuron is accompanied by a second serotonin-immunoreactive interneuron with projections into the protocerebrum. Two pairs of bilateral immunoreactive serial homologues were identified in each of the three suboesophageal neuromeres and were also found in the thoracic ganglia. With the exception of the frontal commissure, no immunoreactive processes could be found in the peripheral nerves of the brain and the suboesophageal ganglion. The morphological studies on the serial homologues were extended by intracellular injections of Lucifer Yellow combined with immunofluorescence.  相似文献   

20.
Histological and electrophysiological studies of identified long hair sensilla (LHS) have provided information on primary afferent fibre pathways in the ventral nerve cord of the Indian black scorpion, Heterometrus fulvipes.Cobalt-filling of single LHS on the metasoma showed that sensory axons enter the respective segmental ganglion, ascend ipsilaterally through the next anterior ganglia and terminate in a 4th ganglion. In each ganglion, these plurisegmental fibres give off collateral branches that terminate in the ganglionic neuropil. Fibres entering heterolateral connectives were not found.Recordings from peripheral nerves after deflections of a hair showed single or multiple spike discharges. A single spike could be recorded from ipsilateral anterior connectives of the ventral nerve cord, indicating a through-conductance of the sensory pathways. Strong deflections of a single hair activated several ipsilateral and fewer contralateral ascending interneurons and some segmentai motor neurons. Behavioral studies demonstrate the mechanoreceptive function of the LHS.The present study provides evidence in support of the notion that sensory afferents of the postabdomen in the scorpion bring about rapid, co-ordinated intersegmental movements of the multisegmented tail of the scorpion.Abbreviations CNS central nervous system - LHS long hair sensillum - TR trichobothria  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号