首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

Reoxygenation of ischemic tissues is a major factor that determines the severity of cardiovascular diseases. This paper describes the consequences of anoxia/reoxygenation (A/R) stresses on Drosophila, a useful, anoxia tolerant, model organism.

Methodology/Principal Findings

Newly emerged adult male flies were exposed to anoxic conditions (<1% O2) for 1 to 6 hours, reoxygenated and their survival was monitored.

Results

A/R stresses induced a transient increase in mortality which peaked at the time of reoxygenation. Then flies recovered low mortality rates similar to those of control flies. A/R induced mortality was strongly dependent on dietary conditions during the 48 h that preceded anoxia. Well fed flies were anoxia sensitive. Strong dietary restrictions and starvation conditions protected flies against A/R injuries. The tolerance to anoxia was associated to large decreases in glycogen, protein, and ATP contents. During anoxia, anoxia tolerant flies produced more lactate, less phosphate and they maintained more stable ATP levels than anoxia sensitive flies. Moderate dietary restrictions, which increased the longevity of normoxic flies, did not promote resistance to A/R stresses. Diet dependent A/R injuries were still observed in sima loss of function mutants and they were insensitive to dietary rapamycin or resveratrol. AICAR (5-aminoimidazole-4-carboxamide-1-beta-D-ribosefuranoside), an activator AMP kinase decreased A/R injuries. Mutants in the insulin signalling pathway were more anoxia tolerant in a fed state.

Conclusion/Significance

Long A/R stresses induce a transient increase in mortality in Drosophila. This mortality is highly dependent on dietary conditions prior to the stress. Strong dietary restrictions and starvation conditions protect flies against A/R injuries, probably by inducing a major remodelling of energy metabolism. The results also indicate that mechanistically different responses develop in response to dietary restrictions of different strengths. AMP kinase and the insulin signalling pathway are possible mediators of diet dependent anoxic tolerance in Drosophila.  相似文献   

3.
Continuous cultures of the cowpea-type Rhizobium sp., strain CB756, were grown in the presence of NH+4 at automatically controlled concentrations of dissolved O2 and rates of aeration. Nitrogenase activity of steady-state cultures was only detected under microaeration conditions (dissolved O2 typically <0.03 μM; aeration rate typically 0.6 μmol O2/ml per h), when the cellular ATP pool size was 0.8–1.8 nmol/mg dry wt., (optimum 1.1) and the energy charge 0.6–0.7. At twice this aeration rate and dissolved O2 concentration of about 0.15 μM, the yield of bacteria doubled, the ATP pool increased and energy charge increased to 0.8. With similar rates of O2 supply but high concentration of dissolved O2 (approx. 150 μM), cultures were NH+4-limited and the ATP pool and energy charge were slightly reduced. Amongst all of these O2 supply conditions the total pool of adenosine phosphates was not significantly different (2.6 S.D. 0.7 nmol/mg dry wt.). In steady-state, O2-limited cultures, concentrations of cyclic GMP were higher when nitrogenase was present. When rates of O2 supply to steady-state cultures were changed, oscillations in bacterial energy status and growth rate were induced decreasing in amplitude until a new steady state was reached. This made it difficult to discern precisely the energy status in which nitrogenase activity was derepressed or repressed. However, generally, increases in nitrogenase activity followed decreases in ATP and energy charge and decreased nitrogenase activity accompanied increases in these energy parameters. These results are discussed in relation to the possible involvement of adenylation or deadenylation of glutamine synthetase and to the control of nitrogenase synthesis in the presence of NH+4. It is concluded that the small ATP pool size is responsible for failure of adenylylation of glutamine synthetase and is related to nitrogenase synthesis at microaeration rates.  相似文献   

4.
We investigated the effects of O2 on Bifidobacterium species using liquid shaking cultures under various O2 concentrations. Although most of the Bifidobacterium species we selected showed O2 sensitivity, two species, B. boum and B. thermophilum, demonstrated microaerophilic profiles. The growth of B. bifidum and B. longum was inhibited under high-O2 conditions accompanied by the accumulation of H2O2 in the medium, and growth was restored by adding catalase to the medium. B. boum and B. thermophilum grew well even under 20% O2 conditions without H2O2 accumulation, and growth was stimulated compared to anoxic growth. H2O-forming NADH oxidase activities were detected dominantly in cell extracts of B. boum and B. thermophilum under acidic reaction conditions (pH 5.0 to 6.0).  相似文献   

5.
Accelerated degradation of membrane phospholipids characterizes the reaction of rat liver and myocardial cells to ischemia. A similar disturbance in phospholipid metabolism was sought in anoxic hepatocytes. Primary cultures of adult rat hepatocytes were made anoxic by evacuation of the CO2O2 atmosphere with N2. The resulting loss of ATP was reversible upon reoxygenation after periods of anoxia up to 2 h. With 3–4 h of anoxia, the cells were incapable of regenerating ATP levels. Loss of viability was also indicated by the inability of over 90% of the cells after 3–4 h to exclude trypan blue. The baseline rate of turnover of [14C]-ethanolamine or glycerol prelabeled phospholipids was then established. A constant rate of turnover was found for, at least, the first 3 days the cells were in culture. No loss of total phospholipid occurred during this time. Anoxia induced very significant differences in the fate of prelabeled phospholipids. With [14C]-ethanolamine there was a 30% loss of total cellular radioactivity within 4 h. Total phospholipids determined as lipid phosphate decreased by 20%. This depletion of cellular phospholipids was paralleled by an accumulation of hydrophilic degradation products in the culture medium. Phosphorylethanolamine accounted for 50% of these, with equal amounts of glycerophosphorylethanolamine and ethanolamine the other 50%. A similar accumulation in the medium occurred with [14C]-glycerol- and [14C]choline-prelabeled phospholipids. The accelerated degradation of phospholipid was accompanied by evidence of membrane dysfunction as shown by the loss of 50% of the glucose 6-phosphatase activity in whole cell homogenates. The results of these studies establish that anoxia induces in cultured rat hepatocytes a similar disturbance to phospholipid metabolism as does ischemia of the same cells in the intact animal. This implies that the deprivation of oxygen per se determines the characteristic reaction of cells to ischemia. This conclusion allows further analysis of the effects of O2 deprivation on cultured hepatocytes as a new experimental model with which to further explore the effects of ischemia on cells.  相似文献   

6.
《Plant science》1988,54(3):193-202
The effect of anoxia over a 3-week period on the respiratory ability of Euglena gracilis (strains Z and ZC) was studied. Low temperature absorption spectra indicated that comparable alterations of the cytochromes occurred in both cell types studies, leading to the disappearance of cytochrome oxidase and cytochrome c558 in the aplastic strain ZC and in the wild type strain Z. Both types of cells maintained their ability to consume O2 when they were transferred from the nitrogen atmosphere to air. Resistance of respiration to cyanide and azide, and sensitivity to propyl gallate increased during anoxia, indicating the decreasing role of cytochrome oxidase in this O2 consumption. Quantitative changes in the O2 consumption capacity were followed during the course of anoxia; this capacity decreased during the 5 first days of anoxia and then increased to recover its initial value during the second week. This recovery of a high O2, consumption capacity was linked to the appearance of a cyanide- and azide-resistant, propyl gallate-sensitive O2 consumption pathway. This paper raises the question of the physiological significance of this electron transfer pathway induced by anoxia.  相似文献   

7.
Habitats occupied by many halophytes are not only saline, but are also prone to flooding and yet surprisingly few studies have evaluated submergence tolerance in halophytes. Sediment, floodwater, and intra-plant O2 dynamics were evaluated during tidal submergence for the leaf-succulent halophyte Suaeda maritima (L.) Dum. For S. maritima growing in soil just above the mud flat in a UK salt marsh, the soil was only moderately hypoxic just prior to tidal inundation, presumably owing to drainage and O2 entry facilitated by frequent, large cracks. O2 declined to very low levels following high tide. By contrast, mud flat sediment remained waterlogged, lacked cracks, and was anoxic. Plant O2 dynamics were investigated using field-collected plants in sediment blocks transported to a controlled-submergence system in a glasshouse. Submergence during night-time resulted in anoxia within leaves, whereas during day-time O2 was produced by underwater photosynthesis. The thin lateral roots of S. maritima presumably access some O2 from hypoxic sediments, but could also experience transient episodes of severe hypoxia/anoxia, especially as any internal O2 movement from shoots would be small owing to the low gas-filled porosity in roots. Fermentative metabolism to lactate, producing some ATP in the absence of O2, might contribute to tolerance of transient O2 deficits. Lactate was high in root tissues, whereas ethanol production (tissue and incubation medium contents) was low, both in comparison with values reported for other species. Our findings demonstrate the importance of tolerance to transient waterlogging and submergence for the halophyte S. maritima growing in a tidal salt marsh.  相似文献   

8.
Rice coleoptiles grow under anoxia. When the ultrastructure of anoxic coleoptile cells was examined, it was seen that most organelles maintain their integrity, with the exception of peroxisomes (unspecialized type). The lack of O2 greatly reduced the number of these organelles and altered the ultrastructure of the remaining ones. To examine the effect of O2 on peroxisome development in more detail, coleoptiles grown in air were transferred to N2 and anoxic coleoptiles were transferred to oxygen. Marker enzyme activity was measured in entire coleoptiles as well as in the isolated organelles. As expected, anoxia greatly depressed enzyme activity when imposed from the beginning of the germination process, while it had a lesser effect when imposed for only two days on aerobic seedlings. When coleoptiles were grown constantly under N2, the density of the organelles was 1.216 g/cm3, while the corresponding aerobic organelles showed a buoyant density of 1.241 g/cm3. When transferred to air the anoxic peroxisomes reached the intermediate density of 1.227 g/cm3. The results confirm the particular sensitivity of rice peroxisomes to O2 availability.  相似文献   

9.
Aquatic plants frequently encounter multiple stresses under natural conditions. Nuttall's water weed, Elodea nuttallii (Planch.) is a submerged aquatic macrophyte which has flexible ability to use different nutrient sources from various environments. However, recently the growth of E. nuttallii has been declining in waters of Japan and in the Chesapeake Bay, a large estuary in the United States. In the present experiment, we studied growth and survival capabilities of the plant under a gradient of redox conditions; from highly oxic (+400 to +440 mV) to extremely reduced (−180 to −120 mV) conditions. Reduced environment was prepared by adding glucose to growth medium and nitrogen gas bubbling, while the oxic environment was brought about by atmospheric air bubbling. In comparison to the oxic environment, growth rate and carbon–nitrogen content of the plants were significantly affected negatively at hypoxic and anoxic conditions. In hypoxic and anoxic environments, indole acetic acid (IAA), tissue nitrogen and chlorophyll levels were down-regulated, whereas hydrogen peroxide (H2O2), indole acetic acid oxidase (IAAO) and peroxidase (POD) levels were up-regulated. It was also found that high NH4–N concentrations (10–40 ppm) affect the growth rate and biochemical parameters of the plant; however, in hypoxic and anoxic treatments the effects were more severe. We conclude that E. nuttallii is poorly tolerant to hypoxia/anoxia. Moreover, oxygen stress combined with high ammonium concentration act as important factors influencing distribution and abundance of this species.  相似文献   

10.
Modulation of epithelial cell proliferation by the dissolved oxygen concentration (PO2) of the growth medium was assessed with primary human foreskin epithelium and a continuous monkey kidney epithelial cell line (LLC-MK2). Direct measurement of the growth medium PO2 provides the first quantitative evaluation of epithelial cell proliferation as a function of PO2 provides the first quantitative evaluation of epithelial cell proliferation as a function of PO2. Sustained proliferation of LLC-MK2 cells occurs in serum-free medium equilibrated with a gas phase containing 18% or 30% O2 v/v. Mid-logarithmic phase cultures rapidly consume dissolved oxygen; this results in a 60–70 mm Hg decline in PO2 and leads to a stable growth medium PO2 between 70 and 100 mm Hg, well above anoxic values. In contrast, if culture medium is equilibrated with a gas phase containing 0% or 1% O2 v/v to yield a growth medium PO2 ~ 20–40 mm Hg, proliferation of LLC-MK2 and primary foreskin epithelial cells is retarded, and LLC-MK2 cells use little dissolved oxygen. Gentle, continuous rocking to prevent diffusion gradient formation enhances proliferation slightly at the higher PO2, but neither periodic fluid renewals nor continued rocking stimulates cells retarded by a lowered oxygen concentration to resume proliferation. The data collectively demonstrate that epithelial cell proliferation requires a PO2 > 40 mm Hg, and threshold requirements are probably closer to 70 mm Hg. Glycolysis continues at a PO2 insufficient for proliferation, but more lactic acid accumulates in actively proliferating cultures than in cultures equilibrated with 0% oxygen. We conclude that epithelial cells in vitro both consume more oxygen and require a higher PO2 for continued proliferation, and that the oxygen requirement for epithelial cell proliferation exceeds that of a comparable population of fibroblasts for which low oxygen may enhance survival and proliferation.  相似文献   

11.
Echinochloa phyllopogon was grown hydroponically under four root zone gassing treatments to determine aeration effects on the growth and development of the plant root system. Although mesocotyl growth and the number of nodal roots were unaffected by the treatments, other aspects of plant growth were altered. Shoot growth was reduced by hypoxic (5 kPa partial pressure O2 in nitrogen gas) and anoxic conditions (O2 free nitrogen gas), but not by ethylene (0.1 ppm in air). Seminal root growth was unaffected by hypoxia or ethylene treatments, but was reduced under anoxia. Hypoxic environments stimulated the emergence of roots along the length of the mesocotyl when compared to aerobic controls; anoxic and ethylene treatments had no significant effects. Mesocotyl roots elongated from primordia that were produced de novo in response to the hypoxic treatment. Under hypoxic conditions, aerenchyma was present in the cortex of nodal roots and to a lesser extent in seminal roots, but mesocotyl roots were devoid of aerenchyma under these conditions. The results are compared with the literature concerning flooding and aeration effects on growth and development in other species.  相似文献   

12.
13.
Chlorella vulgaris (Beijer.) was grown for 8 d under air in cultures with complete (Control) or with phosphorus-deficient (–P) medium limiting culture growth. The cells assimilated only 5–17 % of orthophosphate supplied from the complete medium, whereas from medium of –P cultures, orthophosphate was almost totally exhausted. Despite limited phosphorus availability, cells in the oldest –P cultures contained the same amount of inorganic orthophosphate as the control cells and only slightly less organic phosphates. The –P cells showed normal chlorophyll concentration and increased Vmax and 1/K0.5 dissolved inorganic carbon (DIC) of photosynthetic O2 evolution. Phosphorus deficiency enhanced production, excretion and metabolism of glycolate during the whole investigated period. In the initial phase of –P culture growth, medium acidification and low DIC concentration were conducive to glycolate production. With subsequent medium alkalization, DIC content and cell carbonic anhydrase activity increased the photosynthetic O2 evolution of –P cells two-fold. At that period, the elevated intrachloroplast O2 concentration might be the main reason of enhancement of glycolate metabolism. The results support the suggestion that involvement of glycolate metabolism in acclimation to low phosphorus supply improves regeneration of inorganic orthophosphate and protects chloroplasts against photoinhibitory damage by consumption of excess of absorbed light energy.  相似文献   

14.
Encysted embryos of the brine shrimp, Artemia franciscana, exhibit extraordinary longevity when exposed to continuous anoxia. To explore the metabolic basis of this ability, the post-anoxic respiration of embryos exposed to anoxia for periods exceeding 1 year was measured. Since anoxic metabolism might result in the accumulation of metabolic end products, an O2 debt would be expected. Contrary to that expectation, post-anoxic embryos exhibited a marked depression in respiration rate whether embryos were hydrated under anoxic conditions or were exposed to a previous aerobic incubation and then placed under anoxia. These results, and those of previous studies, suggest that extended anoxia may bring the metabolism of these embryos to a reversible standstill.  相似文献   

15.
Spatial heterogeneity of substrata in streams may influence dissolved oxygen (O2) transport and nutrient forms. We studied the relationship between scales of substratum heterogeneity and O2. Heterogeneous systems could have greater respiration rates as a result of increased interfacial surfaces in the biogeochemically active areas between oxic and anoxic zones. We used grids with twelve 7 × 3.5 cm cells; half the cells were filled with sand and the other half with gravel to quantify the effect of centimeter-scale heterogeneity on respiration. The sand and gravel cells were arranged within the grids to give low, medium, and high heterogeneity. Grids were incubated for 15–17 days in a prairie stream, and then whole grid respiration was analyzed in closed recirculating chambers. Depth to anoxia and substratum metabolism were calculated from O2 microelectrode profiles measured in each cell of the grid and compared with data from natural stream transects from agricultural, urban, and prairie land use types. Shannon–Weaver (H′) diversity and “probability of change” indices were also used to compare heterogeneity of the grids to the natural stream transects. No significant differences were found among grid heterogeneity levels for respiration rate, but the anoxic interface was deeper in the gravel of higher heterogeneity grids, probably due to greater transport rates of O2 in the coarse-grained substratum. The H′ and probability of change indices indicated that the grids had levels of heterogeneity within the range of real streams. Grid depth to anoxia and substratum metabolism rates were similar to those found in streams, though less variable. In streams, H′ and probability of change values showed a slight difference among land use types, with some urban and agricultural sites displaying very low heterogeneity. Handling editor: Robert Bailey  相似文献   

16.
17.
ABSTRACT Pseudocohnilembus species exhibit a polymorphic life cycle consisting of trophic cells, theronts, and cysts. Pseudocohnilembus pusillus isolated from the intertidal mats of Laguna Figueroa, Baja California Norte, Mexico, forms desiccation-resistant cysts in response to bacterial food depletion. This isolate is a euryhaline organism, able to grow at salinities from freshwater to 96 ppt total salinity and from pH 6–9. Electron micrographs show that oral and somatic cilia and kinetids are retained inside young cysts. Cyst walls are composed of a single layer (0.1 μm) of granular material. Under all conditions, as bacterial food was depleted, P. pusillus cells formed cysts, except for a small proportion (1–5%) that continued to swim. Changes in pH and salinity did not directly induce cyst formation. Salinity did greatly affect growth rate. Doubling times were shortest at 16 ppt salinity and at pH 7–8. Cyst formation occurred later in the growth cycle as more food bacteria were added. Additionally, ciliates grown in small culture volumes (10 ml) formed cysts sooner than cultures in larger volumes (100 ml), suggesting that crowding may influence cyst formation. Mature cysts may survive desiccation at least as long as one month at 37° C and for as long as one year at 20 ± 3° C. Although trophic cells did not survive desiccation or anoxia, encysted ciliates from liquid stationary phase cultures kept in anoxic seawater for one month excysted into swimming cells within 2.5 h after exposure to air. The adaptability of P. pusillus to extremes of salinity, pH, desiccation, and anoxia permits survival in its environmentally variable, microbial mat habitat.  相似文献   

18.
Bacterial biomass production is often estimated from incorporation of radioactively labeled leucine into protein, in both oxic and anoxic waters and sediments. However, the validity of the method in anoxic environments has so far not been tested. We compared the leucine incorporation of bacterial assemblages growing in oxic and anoxic waters from three lakes differing in nutrient and humic contents. The method was modified to avoid O2 contamination by performing the incubation in syringes. Isotope saturation levels in oxic and anoxic waters were determined, and leucine incorporation rates were compared to microscopically observed bacterial growth. Finally, we evaluated the effects of O2 contamination during incubation with leucine, as well as the potential effects of a headspace in the incubation vessel. Isotope saturation occurred at a leucine concentration of above about 50 nM in both oxic and anoxic waters from all three lakes. Leucine incorporation rates were linearly correlated to observed growth, and there was no significant difference between oxic and anoxic conditions. O2 contamination of anoxic water during 1-h incubations with leucine had no detectable impact on the incorporation rate, while a headspace in the incubation vessel caused leucine incorporation to increase in both anoxic and O2-contaminated samples. The results indicate that the leucine incorporation method relates equally to bacterial growth rates under oxic and anoxic conditions and that incubation should be performed without a headspace.  相似文献   

19.
Lipid metabolism in rat brain was investigated in mild hypoxia (5–7% O2 in nitrogen), which is associated with no apparent change in energy metabolism, and in severe anoxic conditions (ischemic anoxia), which are associated with a rapid decrease in ATP and oxygen content in brain. When brain slices were incubated with labeled glucose or acetate, the amount of labeled CO2 produced was no different in experimental and control conditions, but the incorporation of radioactivity into brain lipids was decreased in all hypoxic and anoxic conditions. Interestingly, the incorporation of label from [14C]glucose into phosphatidylinositols was specifically inhibited by both hypoxic conditions but not by conditions associated with anoxia. The incorporation of the same labeled precursor, i.e., [14C]glucose, into fatty acids was elevated in ischemic anoxia but reduced after mild hypoxia. Because of the obvious differences in oxygen utilization in brain in anoxic and hypoxic conditions, we believe that the observed disturbances in lipid metabolism may be due to factors other than those that arise from oxygen deficiency alone.  相似文献   

20.
The perennating organ, the rhizome, was chosen for examination of response to anoxia in the species Iris pseudacorus L., Iris germanica L. var Quechei, and Glyceria maxima (Hartm.) Holmberg. These monocots are known to differ in their tolerance of anoxia. Intact rhizomes were subjected to periods of prolonged anoxia of up to 28 days and superoxide dismutase (SOD) activity was determined in a 48 hour postanoxic recovery phase. Tests were performed to ensure the accuracy of the measured enzyme activities. In the most anoxia tolerant species, I. pseudacorus, SOD activity rose continuously during the period of imposed anoxia, and levels were maintained in the postanoxic recovery phases: 28 days brought about a 13-fold increase to 1576 U SOD per milligram protein. Small increases were found in the less anoxia tolerant I. germanica during anoxic/postanoxic phases, while a drop in activity was recorded in the least anoxia tolerant G. maxima. However, initial levels in G. maxima were more than twice as high as in the other two species. Experiments applying cycloheximide to anoxic rhizome slices of I. pseudacorus inhibited the increase in SOD activity. This indicates that SOD is, paradoxically, induced under anoxia and we suggest that in this species SOD is one of the enzymes identified as anaerobic polypeptides. The significance of the induction of an `oxygen-protecting' enzyme during complete oxygen deprivation is discussed with regard to a possible critical role during recovery from anoxic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号