首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GROUNDPLANS AND EXEMPLARS: PATHS TO THE TREE OF LIFE   总被引:2,自引:1,他引:2  
Abstract — During cladistic analysis of a diverse higher taxon it is impractical to code every species as a separate terminal. In such cases, workers proceed in one of two distinct ways: (1) examine a number of member species in order to deduce groundplan character states of the higher group before the analysis is begun, here called the intuitive method, or (2), code a number of real species belonging to the group as terminals in the analysis, called the exemplar method. Both methods have the same aim, to estimate the groundplan of the higher taxon concerned.
Both groundplan estimation methods will lead to identical results when the character in question has the same state in all members of the terminal group, however when the character has two or more states, the two methods may give different results. The precise methods employed in the intuitive approach have not been articulated in the literature, but possible techniques may result in non-parsimonious ancestral state assignments, even in simple cases.
Groundplan estimation in the exemplar method is an extension of parsimony. The exemplar method allows groundplan state/s at internal nodes to be calculated during tree search. In many cases the exemplar method assigns a number of possible states to the groundplan, and the state assignment is therefore equivocal. This is not a deficiency of the method but reflects the notion that the parsimony criterion alone cannot always distinguish a single state present in a hypothetical ancestor. The optimal choice of exemplars required to estimate the groundplan most efficiently is discussed under a simple and common hypothesis of character transformation. For complex character distributions up to three exemplars may be required, each from a separate lineage of the group close to its hypothetical common ancestral node.  相似文献   

2.
Evidence from outgroups, ontogeny, neontology, and fossils is used to distinguish primitive and derived character states for the major components of the eutherian stapedial artery in 17 modern orders. Derived states support the following higher-level phylogenetic hypotheses: (1) Microchiroptera and Megachiroptera are monophyletic+ADs- and (2) within Ungulata, Tubulidentata is the outgroup to the remaining modern orders, followed in succession by Artiodactyla and then Cetacea. Three branches of the stapedial artery, the a. diploetica magna, ramus temporalis, and ramus posterior, all but neglected in previous syntheses, are shown to be primitive for Eutheria and Amniota.  相似文献   

3.
There is much debate on the definitions of homoplasy and homology, and on how to spot them among character states used in a phylogenetic analysis. Many advocate what I call a "processual approach," in which information on genetics, development, function, or other criteria help a priori in identifying two character states as homologous or homoplastic. I argue that the processes represented by these criteria are insufficiently known for most organisms and most characters to be reliably used to identify homoplasies and homologies. Instead, while not foolproof, phylogeny should be the ultimate test for homology. Character states are assumed to be homologous a priori because this is falsifiable and because their initial inclusion in the character-state analysis is based on the assumption that they may be phylogenetically informative. If they fall out as symplesiomorphies or synapomorphies in a phylogenetic analysis, their status as homologies remains unfalsified. If they fall out as homoplasies, having evolved independently in more than one clade, their status as homologous is falsified, and a homoplasy is identified. The character-state transformation series, functional morphology, finer levels of morphological comparison, and the distribution and correlation of characters all help to explain the presence of homoplasies in a given phylogeny. Explaining these homoplasies, and not ignoring them as "noise," should be as much a goal of phylogenetic analysis as the production of a phylogeny. Examples from the fossil record of Miocene hominoids are given to illustrate the advantages of a process-informs-pattern-recognition-after-the-fact approach to understanding the evolution of character states.  相似文献   

4.
Characters of 25 abdominal structures were analyzed in the fleas of 96 genera representing over 90% of the world fauna. It was shown that different flea taxa could be described based on 16 universal and 12 specific characters, whose 108 states reflect the entire known diversity of the flea abdominal morphology. Of them, 16 characters with 39 states are formulated based on universal terms. Five universal characters with 13 states describe the proportions of various structures, and also the proportions and shapes of their sclerites; 17 specific characters with 69 states describe the structure of the skeletal elements and the patterns of their junctions. Judging by the number of characters (14) and their states (69), the most evolutionarily flexible structures in fleas are the inner sclerites and anchoring structures of the aedeagus, sternite IX in males, and also the spermatheca and tergite I in females. The character states reflecting the possible phylogenetic closeness of taxa comprise 39%, while 61% of the abdominal character states are homoplasies.  相似文献   

5.
Alternative hypotheses in higher-level marsupial systematics have different implications for marsupial origins, character evolution, and biogeography. Resolving the position of the South American monito del monte (Order Microbiotheria) is of particular importance in that alternate hypotheses posit sister-group relationships between microbiotheres and taxa with disparate temporal and geographic distributions: pediomyids; didelphids; dasyuromorphians; diprotodontians; all other australidelphians; and all other marsupials. Among Australasian marsupials, the placement of bandicoots is critical; competing views associate bandicoots with particular Australasian taxa (diprotodontians, dasyuromorphians) or outside of a clade that includes all other Australasian forms and microbiotheres. Affinities of the marsupial mole are also unclear. The mole is placed in its own order (Notoryctemorphia) and sister-group relationships have been postulated between it and each of the other Australasian orders. We investigated relationships among marsupial orders by using a data set that included mitochondrial and nuclear genes. Phylogenetic analyses provide support for the association of microbiotheres with Australasian marsupials and an association of the marsupial mole with dasyuromorphs. Statistical tests reject the association of diprotodontians and bandicoots together as well as the monophyly of Australasian marsupials. The origin of the paraphyletic Australasian marsupial fauna may be accounted for by (i) multiple entries of australidelphians into Australia or (ii) bidirectional dispersal of australidelphians between Antarctica and Australia.  相似文献   

6.
The structure of 76 skeletal elements of adult fleas was analyzed, and the distribution of 114 characters with 446 character states over the body tagmata, segments, and morphofunctional complexes was investigated. Among them, 40% of the characters (40) and their states (163) describe the diversity of the structures of the frontal complex (including those of the head and prothorax), which is related to the specific features of flea parasitism. A large part of the characters (18) and their states (83) describe the structures of the nototrochanteral complex of the meso- and metathorax responsible for jumping. The total number of all types of homoplasies (258 states) is almost 1.8 times as great as the number of the states (145) that may be regarded as synapomorphies. The ancestral states (43) comprise a smaller portion of the total number. The proportion of the synapomorphic and homoplastic character states varies between the morphofunctional complexes.  相似文献   

7.
Species are groups of organisms, marked out by reproductive (replicative) properties. Monophyletic taxa are groups of species, marked out by synapomorphies. In Nelson’s analysis, monophyly and synapomorphy are identical relations. Monophyly and synapomorphy, however, are not equivalent relations. Monophyly is epistemically not accessible, whereas synapomorphy is epistemically accessible through character analysis. Monophyly originates with speciation, the two sister‐species that come into being through the splitting of the ancestral species lineage forming a monophyletic taxon at the lowest level of inclusiveness. Synapomorphy provides the empirical evidence for monophyly, inferred from character analysis in the context of a three‐taxon statement. If synapomorphy and monophyly were equivalent, phylogenetic systematists should find a single tree, instead of multiple equally parsimonious trees. Understanding synapomorphy as the relevant evidence for phylogenetic inference reveals a category mistake in contemporary phylogenetics: the treatment of morphological characters mapped onto molecular trees as synapomorphies and homoplasies. The mapping of morphological characters onto nodes of a molecular tree results in an empirically empty procedure for synapomorphy discovery. Morphological synapomorphies and homoplasies can only be discovered by morphological and combined analyses. The use of morphology in phylogenetic inference in general is defended by examples from Laurales and Squamata in particular. To make empirical evidence scientifically relevant in order to search for concordance, or dis‐concordance, of phylogenetic signal, is certainly more fruitful for phylogenetics than the uncritical mapping of morphological traits on a molecular scaffold. © The Willi Hennig Society 2010.  相似文献   

8.
Abstract   The Australian insect fauna is highly endemic and characterised by numerous unique higher-level taxa. In addition, a number of groups are noticeably absent or depauperate on the continent. Many groups found in Australia show characteristic Gondwanan distribution patterns on the southern continents. There are extensive radiations on the plant families Myrtaceae and Mimosaceae, a specialised arid/semiarid fauna, and diverse taxa associated with rainforests and seasonally wet tropical regions. The fauna is also poorly studied, particularly when compared with the flora and vertebrate groups. However, studies in the last two decades have provided a more comprehensive picture of the size of the fauna, relationships, levels of endemism, origins and its evolution. Here we provide an overview of these and other aspects of Australian insect diversity, focusing on six groups, the Thysanoptera and the five megadiverse orders Hemiptera, Coleoptera, Diptera, Lepidoptera and Hymenoptera.  相似文献   

9.
Only recently, new ontogenetic series of early dinosaurs and related groups have been described. Here, we present an isolated immature dinosauriform femur from the Late Triassic of southern Brazil and investigate its influence on character polarization. Because the specimen shares a number of synapomorphies with Pampadromaeus barberenai, herein we postulate that it corresponds to a juvenile individual of that taxon. Accordingly, we investigate the morphological variation between juvenile and mature individuals of P. barberenai. Scoring these character states into a published phylogenetic data-set of Dinosauromorpha reveals that morphological variation is higher than that observed among closely-related taxa. Ontogenetic variation thus exerts influence on character polarization. In addition, modification of the scores affected by ontogeny produces different topologies, as noted by the reduction in both the number of most parsimonious trees and number of steps, and increased inclusivity of some clades and reduction of polytomies as well. Our study, together with other recent contributions, sheds light on the morphologic pathways seen during dinosauromorph ontogenetic development, which is crucial to more reliably assess phylogenetic reconstructions and macroevolutionary patterns of this widespread and successful group.  相似文献   

10.
Ontogeny and phylogeny in temnospondyls: a new method of analysis   总被引:1,自引:0,他引:1  
A new method has been devised to compare the ontogeny and phylogeny of some of the better documented tetrapods from the Stephanian to the Trias. This approach is based on global parsimony analysis of several temnospondyl amphibians, in which some ontogenetic sequences have been highlighted. Forty-one homologous morphoanatomical character states have been separated into larval, juvenile and adult stages of each of six tetrapod species. The taxonomic congruence (TC) approach involves comparing trees based on larval, juvenile and adult character states. These so-called 'ontotrees' are not congruent, either in their topologies or in the distribution of the character states. The total evidence (TE) approach involves a combined analysis of all the character states observed in the various growth stages of the taxa, and is secondarily used in order to test this taxonomic incongruence. In this case, the TE result corroborates the TC analysis: the TE tree is robust and reveals a few homoplasies which cause the taxonomic incongruence. This is interpreted as either the result of heterochronic events in temnospondyl evolution, or as the product of inaccurate identification of larval and metamorphic fossil forms.  相似文献   

11.
Analyses of living and fossil taxa are crucial for understanding biodiversity through time. The total evidence method allows living and fossil taxa to be combined in phylogenies, using molecular data for living taxa and morphological data for living and fossil taxa. With this method, substantial overlap of coded anatomical characters among living and fossil taxa is vital for accurately inferring topology. However, although molecular data for living species are widely available, scientists generating morphological data mainly focus on fossils. Therefore, there are fewer coded anatomical characters in living taxa, even in well-studied groups such as mammals. We investigated the number of coded anatomical characters available in phylogenetic matrices for living mammals and how these were phylogenetically distributed across orders. Eleven of 28 mammalian orders have less than 25% species with available characters; this has implications for the accurate placement of fossils, although the issue is less pronounced at higher taxonomic levels. In most orders, species with available characters are randomly distributed across the phylogeny, which may reduce the impact of the problem. We suggest that increased morphological data collection efforts for living taxa are needed to produce accurate total evidence phylogenies.  相似文献   

12.
Although 11 studies have addressed the systematics of the four families and 281 fish species of the ecomorphologically diverse Anostomoidea, none has proposed a global hypothesis of relationships. We synthesized these studies to yield a supermatrix with 463 morphological characters among 174 ingroup species, and inferred phylogeny with parsimony and Bayesian optimization. We evaluated the applicability of the supermatrix approach to morphological datasets, tested its sensitivity to missing data, determined the impact of homoplastic characters on phylogenetic resolution, and determined the distribution of homologies and homoplasies on the topology. Despite more than 60% missing data, analyses supported the monophyly of all families, and phylogenetic structure degraded only with inclusion of species with high percentages of missing data and in analyses limited to homoplasies. The latter differs modestly from the full matrix indicating phylogenetic signal in homoplastic characters. Character distributions differ across the phylogeny, with a greater prevalence of homologies at deeper nodes and homoplasies nearer the tips than expected by chance. This may suggest early diversification into distinct bauplans with subsequent diversification of faster evolving character systems. The morphological supermatrix approach is powerful and allows integration of classical data with modern methods to examine the evolution of multiple character systems.  相似文献   

13.
Some recent analyses of three mitochondrial DNA regions suggest that sperm whales are the sister group to baleen whales and, therefore, the suborder Odontoceti (toothed whales) constitutes a paraphyletic group. I cladistically analyzed the available morphological data, including that from relevant fossil taxa, for all families of extant cetaceans to test this hypothesis. The results of this analysis unambiguously support a monophyletic Odontoceti including the sperm whales. All synapomorphies that support the Odontoceti node are decisive, not related to the evolution of highly correlated characters, and provide the same result regardless of what order of mammals is used as an outgroup. These numerous, anatomically diverse, and unambiguous characters make this clade one of the best-supported higher-level groupings among mammals. In addition, the fossil evidence refutes a sperm whale/baleen whale clade. Both the molecular and morphological data produce the same unrooted tree. The improper rooting of the molecular tree appears to be producing these seemingly incongruent phylogenies.  相似文献   

14.
The Bryaceae are a large cosmopolitan moss family including genera of significant morphological and taxonomic complexity. Phylogenetic relationships within the Bryaceae were reconstructed based on DNA sequence data from all three genomic compartments. In addition, maximum parsimony and Bayesian inference were employed to reconstruct ancestral character states of 38 morphological plus four habitat characters and eight insertion/deletion events. The recovered phylogenetic patterns are generally in accord with previous phylogenies based on chloroplast DNA sequence data and three major clades are identified. The first clade comprises Bryum bornholmense, B. rubens, B. caespiticium, and Plagiobryum. This corroborates the hypothesis suggested by previous studies that several Bryum species are more closely related to Plagiobryum than to the core Bryum species. The second clade includes Acidodontium, Anomobryum, and Haplodontium, while the third clade contains the core Bryum species plus Imbribryum. Within the latter clade, B. subapiculatum and B. tenuisetum form the sister clade to Imbribryum. Reconstructions of ancestral character states under maximum parsimony and Bayesian inference suggest fourteen morphological synapomorphies for the ingroup and synapomorphies are detected for most clades within the ingroup. Maximum parsimony and Bayesian reconstructions of ancestral character states are mostly congruent although Bayesian inference shows that the posterior probability of ancestral character states may decrease dramatically when node support is taken into account. Bayesian inference also indicates that reconstructions may be ambiguous at internal nodes for highly polymorphic characters.  相似文献   

15.
The maximum likelihood and Bayesian methods are based on parametric models of character evolution. They assume that if we know these models as well as distribution of character states in studied organisms, we can infer the probability of different phylogenetic trajectories leading from ancestors to modern forms. In fact, these methods are mathematized variants of the traditional Haeckel’s approach to phylogeny reconstruction. In contrast to classical and parsimonious cladistics, they infer phylogenies without such limitations as necessity of strictly dichotomous evolution, exclusion of plesiomorphic characters, and acceptance of only holophyletic taxa. They assume that evolution may be reticulated, any homologous characters—both apomorphic and plesiomorphic—can be used for inferring phylogenies, and interpretation of evolutionary lineages as taxa is optional. Thus, the main difference between the new and more traditional approaches to phylogeny reconstruction lies not in the characters used (molecular or morphological) but in the methodology of analysis. It must be admitted that a revolution began in phylogenetics 10–20 years ago. However, the fundamental changes in phylogenetics have been carried out so calmly and neatly by the people who started this revolution, that many systematists still do not realize their importance.  相似文献   

16.
The phyletic relationships of cercopithecid higher taxa are fairly well understood. By reference to the outgroup Hominoidea, character state distributions for a variety of dental, cranial and posteranial features are reviewed and morphotypes are presented for supra-generic taxa. Cercopithecids show 13 derived conditions relative to the eucatarrhine morphotype. Cercopithecines are further derived by eight features while the colobine morphotype shows an additional nine synapomorphies, including three newly identified pedal features. Within Cercopithecinae, the tribes Papionini and Cercopithecini are each characterized by several derived states. In turn, each tribe includes a relatively conservative and a more derived clade, recognized at the subtribal level: Macacina and Papionina (including the previously recognized Theropithecina) for Papionini: and the newly defined Allenopithecina and Cercopithecina among Cercopithecini. The distinctions within Colobinae appear comparable to those defining cercopithecine subtribes, and two taxa are accepted at that rank: the African Colobina, defined by three derived states: and the possibly paraphyletic Asian Presbytina. Piliocolobus shares four synapomorphies with Procolobus and therefore is ranked as a subgenus of that taxon. The hypothesis that Dolichopithecus is the direct descendant of Mesopithecus is weakened on the basis of contrary pedal evidence.  相似文献   

17.
Abstract— Diverse morphological evidence from both living and fossil taxa suggests several higher-level groupings of the Recent orders of eutherian mammals. The strongest hypotheses closely relate rodents and lagomorphs within Glires, proboscideans and sirenians within Tethytheria, hyracoids and tethytheres within Paenungulata, chiropterans and dermopterans, and pholidotans and edentates. Somewhat weaker evidence supports groupings of Glires with macroscelideans, primates and tree-shrews with bats and flying lemurs (Archonta), and all Eutheria excluding pangolins and edentates (Epitheria). There is some tenuous evidence for the monophyly of all modern ungulate orders (including cetaceans), and for the division between artiodactyls and other ungulates. Rather than providing only a confusing and unresolved picture of higher eutherian relationships, comparative morphology and paleontology offer some compelling hypotheses that comprise a framework for studies of macromolecular traits.  相似文献   

18.
Absent characters (negative characters) are difficult to assess and their correct interpretation as symplesiomorphies, synapomorphies or convergencies (homoplasies) is one of the greatest challenges in phylogenetic systematics. Different phylogenetic assessments often result in contradictory phylogenetic hypotheses, in which the direction of evolutionary changes is diametrically opposed. Especially in deciding between primary (plesiomorphic) and secondary (apomorphic) absence, false conclusions may be reached if only the outgroup comparison and the principle of parsimony are employed without attempting any biological evaluation or interpretation of characters. For example, in the higher‐level systematization of the Annelida and related taxa different assessments of absent characters have led to conflicting hypotheses about the phylogenetic relationships and the ground pattern of the annelid stem species. Varying phylogenetic interpretations regarding the absence of the chemosensory nuchal organs in the clitellates and their presence in polychaetes initiated a controversy that produced two alternative phylogenetic hypotheses: (1) the Clitellata are highly derived Annelida related to a subtaxon within the, in this case, paraphyletic ‘Polychaeta’ or (2) the Clitellata are comparatively primitive Annelida representing the sister group of a monophyletic taxon Polychaeta. In the former, the absence of nuchal organs in the Clitellata is regarded as a secondary character, in the latter as primary. As most Clitellata are either limnetic or terrestrial, we must ask which characters are plesiomorphies, taken from their marine stem species without changes. In addition to a thorough investigation and evaluation of clitellate characters, a promising approach to these questions is to look for such characters in limnetic and terrestrial annelids clearly not belonging to the Clitellata. A similar problem applies to the evaluation of the position of the Echiura, which lack both segmentation and nuchal organs. Evidence is presented that in both taxa these absent characters represent derived, apomorphic character states. The consequences for their phylogenetic position and the questionable monophyly of the Polychaeta are discussed. The conclusion drawn from morphological character assessments is in accordance with recently published hypotheses based on molecular data.  相似文献   

19.
Ontogenetic evidence for the Paleozoic ancestry of salamanders   总被引:2,自引:0,他引:2  
The phylogenetic positions of frogs, salamanders, and caecilians have been difficult to establish. Data matrices based primarily on Paleozoic taxa support a monophyletic origin of all Lissamphibia but have resulted in widely divergent hypotheses of the nature of their common ancestor. Analysis that concentrates on the character states of the stem taxa of the extant orders, in contrast, suggests a polyphyletic origin from divergent Paleozoic clades. Comparison of patterns of larval development in Paleozoic and modern amphibians provides a means to test previous phylogenies based primarily on adult characteristics. This proves to be highly informative in the case of the origin of salamanders. Putative ancestors of salamanders are recognized from the Permo-Carboniferous boundary of Germany on the basis of ontogenetic changes observed in fossil remains of larval growth series. The entire developmental sequence from hatching to metamorphosis is revealed in an assemblage of over 600 specimens from a single locality, all belonging to the genus Apateon. Apateon forms the most speciose genus of the neotenic temnospondyl family Branchiosauridae. The sequence of ossification of individual bones and the changing configuration of the skull closely parallel those observed in the development of primitive living salamanders. These fossils provide a model of how derived features of the salamander skull may have evolved in the context of feeding specializations that appeared in early larval stages of members of the Branchiosauridae. Larvae of Apateon share many unique derived characters with salamanders of the families Hynobiidae, Salamandridae, and Ambystomatidae, which have not been recognized in any other group of Paleozoic amphibians.  相似文献   

20.

Background  

In recent years, gene order data has attracted increasing attention from both biologists and computer scientists as a new type of data for phylogenetic analysis. If gene orders are viewed as one character with a large number of states, traditional bootstrap procedures cannot be applied. Researchers began to use a jackknife resampling method to assess the quality of gene order phylogenies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号