首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
To establish the biological function of thioacylation (palmitoylation), we have studied the heterotrimeric guanine nucleotide-binding protein (G protein) subunits of the pheromone response pathway of Saccharomyces cerevisiae. The yeast G protein gamma subunit (Ste18p) is unusual among G(gamma) subunits because it is farnesylated at cysteine 107 and has the potential to be thioacylated at cysteine 106. Substitution of either cysteine results in a strong signaling defect. In this study, we found that Ste18p is thioacylated at cysteine 106, which depended on prenylation of cysteine 107. Ste18p was targeted to the plasma membrane even in the absence of prenylation or thioacylation. However, G protein activation released prenylation- or thioacylation-defective Ste18p into the cytoplasm. Hence, lipid modifications of the G(gamma) subunit are dispensable for G protein activation by receptor, but they are required to maintain the plasma membrane association of G(betagamma) after receptor-stimulated release from G(alpha). The G protein alpha subunit (Gpa1p) is tandemly modified at its N terminus with amide- and thioester-linked fatty acids. Here we show that Gpa1p was thioacylated in vivo with a mixture of radioactive myristate and palmitate. Mutation of the thioacylation site in Gpa1p resulted in yeast cells that displayed partial activation of the pathway in the absence of pheromone. Thus, dual lipidation motifs on Gpa1p and Ste18p are required for a fully functional pheromone response pathway.  相似文献   

2.
The GPA1, STE4, and STE18 genes of Saccharomyces cerevisiae encode the alpha, beta, and gamma subunits, respectively, of a G protein involved in the mating response pathway. We have found that mutations G124D, W136G, W136R, and delta L138 and double mutations W136R L138F and W136G S151C of the Ste4 protein cause constitutive activation of the signaling pathway. The W136R L138F and W136G S151C mutant Ste4 proteins were tested in the two-hybrid protein association assay and found to be defective in association with the Gpa1 protein. A mutation at position E307 of the Gpa1 protein both suppresses the constitutive signaling phenotype of some mutant Ste4 proteins and allows the mutant alpha subunit to physically associate with a specific mutant G beta subunit. The mutation in the Gpa1 protein is adjacent to the hinge, or switch, region that is required for the conformational change which triggers subunit dissociation, but the mutation does not affect the interaction of the alpha subunit with the wild-type beta subunit. Yeast cells constructed to contain only the mutant alpha and beta subunits mate and respond to pheromones, although they exhibit partial induction of the pheromone response pathway. Because the ability of the modified G alpha subunit to suppress the Ste4 mutations is allele specific, it is likely that the residues defined by this analysis play a direct role in G-protein subunit association.  相似文献   

3.
Communication between cells and their environments is often mediated by G protein-coupled receptors and cognate G proteins. In fungi, one such signaling cascade is the mating pathway triggered by pheromone/pheromone receptor recognition. Unlike Saccharomyces cerevisiae, which expresses two Galpha subunits, most filamentous ascomycetes and basidiomycetes have three Galpha subunits. Previous studies have defined the Galpha subunit acting upstream of the cAMP-protein kinase A pathway, but it has been unclear which Galpha subunit is coupled to the pheromone receptor and response pathway. Here we report that in the pathogenic basidiomycetous yeast Cryptococcus neoformans, two Galpha subunits (Gpa2, Gpa3) sense pheromone and govern mating. gpa2 gpa3 double mutants, but neither gpa2 nor gpa3 single mutants, are sterile in bilateral crosses. By contrast, deletion of GPA3 (but not GPA2) constitutively activates pheromone response and filamentation. Expression of GPA2 and GPA3 is differentially regulated: GPA3 expression is induced by nutrient-limitation, whereas GPA2 is induced during mating. Based on the phenotype of dominant active alleles, Gpa2 and Gpa3 signal in opposition: Gpa2 promotes mating, whereas Gpa3 inhibits. The incorporation of an additional Galpha into the regulatory circuit enabled increased signaling complexity and facilitated cell fate decisions involving choice between yeast growth and filamentous asexual/sexual development.  相似文献   

4.
In yeast, two different constitutive mutants of the G protein alpha subunit have been reported. Gpa1(Q323L) cannot hydrolyze GTP and permanently activates the pheromone response pathway. Gpa1(N388D) was also proposed to lack GTPase activity, yet it has an inhibitory effect on pheromone responsiveness. We have characterized this inhibitory mutant (designated Galpha(ND)) and found that it binds GTP, interacts with G protein betagamma subunits, and exhibits full GTPase activity in vitro. Although pheromone leads to dissociation of the receptor from wild-type G protein, the same treatment promotes stable association of the receptor with Galpha(ND). We conclude that agonist binding to the receptor promotes the formation of a nondissociable complex with Galpha(ND), and in this manner prevents activation of the endogenous wild-type G protein. Dominant-negative mutants may be useful in matching specific receptors and their cognate G proteins and in determining mechanisms of G protein signaling specificity.  相似文献   

5.
A common property of G protein-coupled receptors is that they become less responsive with prolonged stimulation. Regulators of G protein signaling (RGS proteins) are well known to accelerate G protein GTPase activity and do so by stabilizing the transition state conformation of the G protein alpha subunit. In the yeast Saccharomyces cerevisiae there are four RGS-homologous proteins (Sst2, Rgs2, Rax1, and Mdm1) and two Galpha proteins (Gpa1 and Gpa2). We show that Sst2 is the only RGS protein that binds selectively to the transition state conformation of Gpa1. The other RGS proteins also bind Gpa1 and modulate pheromone signaling, but to a lesser extent and in a manner clearly distinct from Sst2. To identify other candidate pathway regulators, we compared pheromone responses in 4,349 gene deletion mutants representing nearly all nonessential genes in yeast. A number of mutants produced an increase (sst2, bar1, asc1, and ygl024w) or decrease (cla4) in pheromone sensitivity or resulted in pheromone-independent signaling (sst2, pbs2, gas1, and ygl024w). These findings suggest that Sst2 is the principal regulator of Gpa1-mediated signaling in vivo but that other proteins also contribute in distinct ways to pathway regulation.  相似文献   

6.
A pheromone-mediated signaling pathway that couples seven-transmembrane-domain (7-TMD) receptors to a mitogen-activated protein kinase module controls Candida albicans mating. 7-TMD receptors are typically connected to heterotrimeric G proteins whose activation regulates downstream effectors. Two Galpha subunits in C. albicans have been identified previously, both of which have been implicated in aspects of pheromone response. Cag1p was found to complement the mating pathway function of the pheromone receptor-coupled Galpha subunit in Saccharomyces cerevisiae, and Gpa2p was shown to have a role in the regulation of cyclic AMP signaling in C. albicans and to repress pheromone-mediated arrest. Here, we show that the disruption of CAG1 prevented mating, inactivated pheromone-mediated arrest and morphological changes, and blocked pheromone-mediated gene expression changes in opaque cells of C. albicans and that the overproduction of CAG1 suppressed the hyperactive cell cycle arrest exhibited by sst2 mutant cells. Because the disruption of the STE4 homolog constituting the only C. albicans gene for a heterotrimeric Gbeta subunit also blocked mating and pheromone response, it appears that in this fungal pathogen the Galpha and Gbeta subunits do not act antagonistically but, instead, are both required for the transmission of the mating signal.  相似文献   

7.
G protein-coupled receptors (GPCRs) are involved in the response of eukaryotic cells to a wide variety of stimuli, traditionally mediating their effects through heterotrimeric G proteins comprised of G alpha, G beta and G gamma subunits. The fission yeast Schizosaccharomyces pombe is an established tool for GPCR research, possessing two G alpha-dependent signalling cascades. A complete G alpha beta gamma complex has been characterised for the glucose-sensing pathway, but only the G alpha subunit, Gpa1p, has been identified in the pheromone-response pathway. Here, we report the use of the yeast two-hybrid system to identify a novel protein, Gnr1p, which interacts with Gpa1p. Gnr1p is predicted to contain seven WD repeats and to adopt a structure similar to typical G beta subunits. Disruption and overexpression studies reveal that Gnr1p negatively regulates the pheromone-response pathway but is not required for signalling. Human G beta subunits complement the loss of Gnr1p, functioning as negative regulators of G alpha signalling in fission yeast.  相似文献   

8.
The yeast GPA1, STE4, and STE18 genes encode proteins homologous to the respective alpha, beta and gamma subunits of the mammalian G protein complex which appears to mediate the response to mating pheromones. Overexpression of the STE4 protein by the galactose-inducible GAL1 promoter caused activation of the pheromone response pathway which resulted in cell-cycle arrest in late G1 phase and induction of the FUS1 gene expression, thereby suppressing the sterility of the receptor-less mutant delta ste2. Disruption of STE18, in turn, suppressed activation of the pheromone response induced by overexpression of STE4, suggesting that the STE18 product is required for the STE4 action. However, overexpression of both the STE4 and STE18 proteins did not generate a stronger pheromone response than overexpression of STE4 in the presence of wild-type levels of STE18. These results suggest that the beta subunit is the limiting component for the pheromone response and support the idea that beta and gamma subunits act as a positive regulator. Furthermore, overexpression of GPA1 prevented cell-cycle arrest but not FUS1 induction mediated by overexpression of STE4. This implies that the alpha subunit acts as a negative regulator presumably through interacting with beta and gamma subunits in the mating pheromone signaling pathway.  相似文献   

9.
The kelch repeat-containing proteins Krh1p and Krh2p are negative regulators of the Gpa2p signaling pathway that directly interact with the G protein alpha-subunit Gpa2p in the yeast Saccharomyces cerevisiae. A screen was carried out to identify Gpa2p variants that are defective in their ability to bind Krh1p but retain the ability to bind another Gpa2p-interacting protein, Ime2p. This screen identified amino acids Gln-419 and Asn-425 as being important for the interaction between Gpa2p and Krh1p. Gpa2p variants with changes at these positions are defective for Krh1p binding in vivo. Cells containing these forms of Gpa2p display decreased heat shock resistance and increased expression of a gene required for pseudohyphal growth. These findings indicate that the substitutions at positions 419 and 425 confer a degree of constitutive activity to the Gpa2p alpha-subunit. Residues Gln-419 and Asn-425 are located in the beta6-alpha5 loop and alpha5 helix of Gpa2p, which is the region that couples receptor binding to guanine nucleotide exchange. The results suggest that binding of Gpa2p to Krh1p does not resemble the binding of Galpha subunits to either Gbeta subunits or effectors, but it instead represents a novel type of functional interaction.  相似文献   

10.
It has been inferred from compelling genetic evidence that the pheromone-responsive G(alpha) protein of Saccharomyces cerevisiae, Gpa1, directly inhibits the mating signal by binding to its own beta(gamma) subunit. Gpa1 has also been implicated in a distinct but as yet uncharacterized negative regulatory mechanism. We have used three mutant alleles of GPA1, each of which confers resistance to otherwise lethal doses of pheromone, to explore this possibility. Our results indicate that although the G322E allele of GPA1 completely blocks the pheromone response, the E364K allele promotes recovery from pheromone treatment rather than insensitivity to it. This observation suggests that Gpa1, like other G(alpha) proteins, interacts with an effector molecule and stimulates a positive signal--in this case, an adaptive signal. Moreover, the Gpa1-mediated adaptive signal is itself induced by pheromone, is delayed relative to the mating signal, and does not involve sequestration of G(beta)(gamma). The behavior of N388D, a mutant form of Gpa1 predicted to be activated, strongly supports these conclusions. Although N388D cannot sequester beta(gamma), as evidenced by two-hybrid analysis and its inability to complement a Gpa1 null allele under normal growth conditions, it can stimulate adaptation and rescue a gpa1(delta) strain when cells are exposed to pheromone. Considered as a whole, our data suggest that the pheromone-responsive heterotrimeric G protein of S. cerevisiae has a self-regulatory signaling function. Upon activation, the heterotrimer dissociates into its two subunits, one of which stimulates the pheromone response, while the other slowly induces a negative regulatory mechanism that ultimately shuts off the mating signal downstream of the receptor.  相似文献   

11.
In order to identify amino acid residues of Ste4p involved in receptor recognition and/or receptor-G protein coupling, we employed random in vitro mutagenesis and a genetic screening to isolate mutant Ste4p subunits with altered pheromone response. We generated a plasmid library containing randomly mutagenized Ste4 ORFs, followed by phenotypic selection of ste4p mutants by altered alpha pheromone response in yeast cells. Subsequently, we analyzed mutant ste4-10 which has a replacement of the almost universally conserved leucine 132 by phenylalanine. This residue lies in the first blade of the beta propeller structure proposed by crystallographic analysis. By overexpression experiments we found that mutant ste4p subunit triggers the mating pathway at wild type levels in both wild type and receptorless strains. When expressed in a ste4 background, however, the mutant G protein is activated inefficiently by mating pheromone in both a and alpha cells. The mutant ste4-10p was tested in the two-hybrid system and found to be defective in its interaction with the Gpa1p, but has a normal association with the C-termini end of the Ste2p receptor. These observations strongly suggest that the Leu-132 of the Ste4p subunit is essential for efficient activation of the G protein by the pheromone-stimulated receptor and that this domain could be an important point for physical interaction between the Gbeta and the Galpha subunits.  相似文献   

12.
Signal transfer between the protease-activated PAR1 thrombin receptor and membrane-associated heterotrimeric G proteins is mediated by protein-protein interactions. We constructed a yeast signaling system that resolves domain-specific functions of binding from coupling in the Galpha subunit. The endogenous yeast Galpha subunit, Gpa1, does not bind to PAR1 and served as a null structural template. N- and C-terminal portions of mammalian G(i2) and G(16) were substituted back into the Gpa1 template and gain-of-function assessed. The C-terminal third of G(16), but not of G(i2), provides sufficient interactions for coupling to occur with PAR1. The N-terminal two-thirds of G(i2) also contains sufficient determinants to bind and couple to PAR1 and overcome the otherwise negative or missing interactions supplied by the C-terminal third of Gpa1. Replacement of the N-terminal alpha-helix of G(i2), residues 1-34, with those of Gpa1 abolishes coupling but not binding to PAR1 or to betagamma subunits. These data support a model that the N-terminal alphaN helix of the Galpha subunit is physically interposed between PAR1 and the Gbeta subunit and directly assists in transferring the signal between agonist-activated receptor and G protein.  相似文献   

13.
One major class of G proteins typically functions as heterotrimeric complexes consisting of Galpha, Gbeta and Ggamma subunits. However, recent work in yeast has identified an atypical Galpha protein, Gpa2p, which functions without cognate Gbetagamma subunits. Two novel kelch repeat protein binding partners of Gpa2p, Krh1p and Krh2p, do not function as alternative Gbeta subunits, as initially thought, but rather as Gpa2p effectors. They directly link Gpa2p to protein kinase A, thus forming an adenylate cyclase bypass pathway that enables inputs other than cellular cAMP concentration to affect protein kinase A activity. Because mammalian protein kinase A expressed in yeast is also subject to control by the same bypass pathway, it is exciting to postulate that a functionally similar mechanism might exist in mammalian cells, and that other Galpha proteins could exhibit similar characteristics to Gpa2p.  相似文献   

14.
The pheromone response ofSaccharomyces cerevisiae is mediated by a receptor-coupled heterotrimeric G protein. The βγ subunit of the G protein stimulates a PAK/MAP kinase cascade that leads to cellular changes preparatory to mating, while the pheromone-responsive Gα protein, Gpa1, antagonizes the Gβγ-induced signal. In its inactive conformation, Gpa1 sequesters Gβγ and tethers it to the receptor. In its active conformation, Gpa1 stimulates adaptive mechanisms that downregulate the mating signal, but which are independent of α-βγ binding. To elucidate these potentially novel signaling functions of Gα in yeast, epistasis analyses were performed using N388D, a hyperadaptive mutant form of Gpa1, and null alleles of various loci that have been implicated in adaptation. The results of these experiments indicate the existence of signaling thresholds that affect the yeast mating reaction. At low pheromone concentration, the Regulator of G Protein Signaling (RGS) homologue and putative guanosine triphosphatase (GTPase) activating protein, Sst2, appears to stimulate sequestration of Gβγ by Gpa1. Throughout the range of pheromone concentrations sufficient to cause cell cycle arrest, Gpa1 stimulates adaptive mechanisms that are partially dependent on Msg5 and Mpt5. Gpa1-mediated adaptation appears to be independent of Afr1, Akr1, and the carboxy-terminus of the pheromone receptor.  相似文献   

15.
In the phytopathogenic fungus Ustilago maydis, fusion of haploid cells is a prerequisite for infection. This process is controlled by a pheromone-receptor system. The receptors belong to the seven-transmembrane class that are coupled to heterotrimeric G proteins. Of four Galpha subunits in U. maydis, only gpa3 has a function during mating and cyclic AMP (cAMP) signaling. Activation of the cAMP cascade induces pheromone gene expression; however, it does not lead to the induction of conjugation tubes seen after pheromone stimulation. To investigate the possibility that a Gbeta subunit participates in pheromone signaling, we isolated the single beta subunit gene, bpp1, from U. maydis. bpp1 deletion mutants grew filamentously and showed attenuated pheromone gene expression, phenotypes associated with deltagpa3 strains. In addition, a constitutively active allele of gpa3 suppressed the phenotype of the bpp1 deletion strains. We suggest that Bpp1 and Gpa3 are components of the same heterotrimeric G protein acting on adenylyl cyclase. Interestingly, while deltagpa3 strains are impaired in pathogenicity, deltabpp1 mutants are able to induce plant tumors. This could indicate that Gpa3 operates independently of Bpp1 during pathogenic development.  相似文献   

16.
In yeast Saccharomyces cerevisiae the G protein betagamma subunits (Ste4/Ste18) have long been known to transmit the signal required for mating. Here we demonstrate that GTPase-deficient mutants of Galpha (Gpa1) directly activate the mating response pathway. We also show that signaling by activated Gpa1 requires direct coupling to an RNA binding protein Scp160. These findings suggest an additional role for Gpa1 and reveal Scp160 as a component of the mating response pathway in yeast.  相似文献   

17.
The Saccharomyces cerevisiae G protein alpha subunit Gpa1p is involved in the response of both MATa and MAT alpha cells to pheromone. We mutagenized the GPA1 C terminus to characterize the receptor-interacting domain and to investigate the specificity of the interactions with the a- and alpha-factor receptors. The results are discussed with respect to a structural model of the Gpa1p C terminus that was based on the crystal structure of bovine transducin. Some mutants showed phenotypes different than the pheromone response and mating defects expected for mutations that affect receptor interactions, and therefore the mutations may affect other aspects of Gpa1p function. Most of the mutations that resulted in pheromone response and mating defects had similar effects in MATa and MAT alpha cells, suggesting that they affect the interactions with both receptors. Overexpression of the pheromone receptors increased the mating of some of the mutants tested but not the wild-type strain, consistent with defects in mutant Gpa1p-receptor interactions. The regions identified by the mating-defective mutants correlated well with the regions of mammalian G(alpha) subunits implicated in receptor interactions. The strongest mating type-specific effects were seen for mutations to proline and a mutation of a glycine residue predicted to form a C-terminal beta turn. The analogous beta turn in mammalian G(alpha) subunits undergoes a conformational change upon receptor interaction. We propose that the conformation of this region of Gpa1p differs during the interactions with the a- and alpha-factor receptors and that these mating type-specific mutations preclude the orientation necessary for interaction with one of the two receptors.  相似文献   

18.
Autophagy is the process whereby cytoplasmic cargo (e.g., protein and organelles) are sequestered within a double membrane-enclosed transport vesicle and degraded after vesicle fusion with the vacuole/lysosome. Current evidence suggests that the Vps34 phosphatidylinositol 3-kinase is essential for macroautophagy, a starvation-induced autophagy pathway (Kihara et al., 2001). Here, we characterize a requirement for Vps34 in constitutive autophagy by the cytoplasm-to-vacuole targeting (Cvt) pathway. First, we show that transient disruption of phosphatidylinositol (PtdIns) 3-phosphate (PtdIns[3]P) synthesis through inactivation of temperature-sensitive Vps34 or its upstream activator, Vps15, blocks the Cvt and macroautophagy pathways. Yet, PtdIns(3)P-binding FYVE domain-containing proteins, which mediate carboxypeptidase Y (CPY) transport to the vacuole by the CPY pathway, do not account for the requirement of Vps34 in autophagy. Using a genetic selection designed to isolate PtdIns(3)P-binding effectors of Vps34, we identify Etf1, an uncharacterized type II transmembrane protein. Although Etf1 does not contain a known 3-phosphoinositide-binding domain (i.e., FYVE or Phox), we find that Etf1 interacts with PtdIns(3)P and that this interaction requires a basic amino acid motif (KKPAKK) within the cytosolic region of the protein. Moreover, deletion of ETF1 or mutation of the KKPAKK motif results in strong sorting defects in the Cvt pathway but not in macroautophagy or in CPY sorting. We propose that Vps34 regulates the CPY, Cvt, and macroautophagy pathways through distinct sets of PtdIns(3)P-binding effectors and that Vps34 promotes protein trafficking in the Cvt pathway through activation/localization of the effector protein Etf1.  相似文献   

19.
Covalent attachment of ubiquitin is well-known to target proteins for degradation. Here, mass spectrometry was used to identify the site of ubiquitination in Gpa1, the G protein alpha subunit in yeast Saccharomyces cerevisiae. The modified residue is located at Lys165 within the alpha-helical domain of Galpha, a region of unknown function. Substitution of Lys165 with Arg (Gpa1(K165R)) results in a substantial decrease in ubiquitination. In addition, yeast expressing the Gpa1(K165R) mutant are moderately resistant to pheromone in growth inhibition assays-a phenotype consistent with enhanced Galpha signaling activity. These findings indicate that the alpha-helical domain may serve to regulate the turnover of Gpa1.  相似文献   

20.
The mating-specific heterotrimeric G(alpha) protein of Saccharomyces cerevisiae, Gpa1, negatively regulates activation of the pheromone response pathway both by sequestering G(beta)gamma and by triggering an adaptive response through an as yet unknown mechanism. Previous genetic studies identified mutant alleles of GPA1 that downregulate the pheromone response independently of the pheromone receptor (GPA1E364K), or through a receptor-dependent mechanism (GPA1N388D). To further our understanding of the mechanism of action of these mutant alleles, their corresponding proteins were purified and subjected to biochemical analysis. The receptor-dependent activity of Gpa1N388D was further analyzed using yeast strains expressing constitutively active receptor (Ste2) mutants, and C-terminal truncation mutant forms of Gpa1. A combination of G(alpha) affinity chromatography, GTP binding/hydrolysis studies, and genetic analysis allowed us to assign a distinct mechanism of action to each of these mutant proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号