首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shallow, near-shore water habitats on the continental shelf of the Northeast Atlantic have been productive fishing areas in the past. Here, we review the present knowledge about (i) recent trends in the abundance of plaice and cod in these habitats and (ii) hypotheses regarding the factors responsible for any trends. At present, only a few studies exist on the trends of abundance of plaice or cod, namely from the Bay of Biscay, the North Sea and the Skagerrak/Kattegat. They suggest a declining abundance in coastal, shallow areas and – at least for plaice – a latitudinal gradient with an erosion of the southern distribution boundary in the Bay of Biscay and deepening of stocks in the North Sea. In contrast, no trend in shallow water abundance of plaice similar to a decline in deep-water stocks during the 1970s and their slow recovery during the 2000s is apparent in the Skagerrak/Kattegat. Although shallow habitats fundamentally differ from deeper areas by the prevalence of juvenile stages, the declining trends coincide with decreasing abundance/landings and spatial stock relocations in the deeper areas. Whether this indicates a common trend pointing at connectivity between shallow and deep water remains open. Fundamental differences exist in the suggested causes of the trends in different geographical areas. High fishing pressure together with low local recruitment apparently prevents the recovery of overexploited plaice and cod stocks in the Skagerrak/Kattegat. In contrast, the responses of juveniles and adult fish to increasing seawater temperature are the main hypotheses for changes in distribution and abundance of both fish species in the North Sea/Bay of Biscay. However, temperature alone cannot explain the observed decline of fish in coastal areas, and the causes may be more complex, involving nutrient loading, primary productivity or food availability, although at present, knowledge of these factors is insufficient.  相似文献   

2.
The Atlantic cod (Gadus morhua) is economically one of the world's most important marine species--a species presently suffering from heavy overexploitation throughout its range of distribution. Although not fully understood, the Atlantic cod is believed to be structured into populations in a rather complex manner, whereby both highly migratory and more confined ocean-spawning stocks coexist with stationary coastal populations. Owing to the complex population structure, little is presently known about how overexploitation of offshore stocks may affect other segments of the species. Here, we use microsatellite DNA analyses of coastal and offshore cod in combination with oceanographic modelling to investigate the population structure of Atlantic cod in the North Sea-Skagerrak area and evaluate the potential for larval transport into coastal populations. Our results suggest an extensive but temporally variable drift of offshore cod larvae into coastal populations. In a year (2001) with high inflow of North Sea waters into the Skagerrak we find that juvenile cod caught along the Skagerrak coast are predominantly of North Sea origin, whereas in a year (2000) with low inflow juveniles appear to be of local origin. These findings indicate that offshore cod may influence coastal cod populations over large distances.  相似文献   

3.
We evaluate the hypothesis that Atlantic cod larvae are passively transported by sea currents from off-shore spawning areas to settle in coastal waters, a hypothesis which has recently gained support from genetic analysis of cod in the North Sea-Skagerrak area. Such larval transport has been suggested to be an important mechanism behind the commonly observed low spatial genetic differentiation in many marine organisms. Here, we apply an ARMAX(2,2) model for juvenile abundance and use long-term monitoring data from the Skagerrak coast, constituting 54 continuous annual series from 1945 to 1997. Analysing the model, we find that the product of the size of the North Sea breeding stock and the strength of the net inflow of North Sea waters had a significant, positive effect on the abundance of coastal juvenile cod. The peak effect occurs during the month of March, just after spawning, when eggs and larvae remain pelagic and sensitive to currents. In contrast, we find no evidence of any direct effect of the North Sea spawning stock alone. Our analyses indicate that 15-20,000 0-group larvae from the North Sea reach each fjord per year, on average. This corresponds to about 1-10% of the total 0-group population in each fjord on average. These findings clearly demonstrate a direct link between larval drift and gene flow in the marine environment.  相似文献   

4.
Changes in phenotypic variability in natural populations have received little attention in comparison with changes in mean trait values. This is unfortunate because trait diversity may influence adaptive evolutionary change and population stability. We combine two unique data sets to illuminate complex trait changes in Atlantic cod along the Norwegian Skagerrak coast: (i) an annual beach seine survey starting in 1919, monitoring juvenile body size and abundance and (ii) capture–mark–recapture data from which we estimated selection on juvenile body size and growth. We demonstrate that the variability of juvenile size has been steadily decreasing across nine decades, with no evidence for a similar trend in mean size. We also report that small, slow-growing fish as well as large, fast-growing fish are selected against. Together, these results suggest long-term stabilizing selection acting on Atlantic cod, and emphasize the need for further studies evaluating the full complexity of trait changes in wild populations.  相似文献   

5.
The European eel (Anguilla anguilla L.) is distributed in coastal and inland habitats all over Europe, but spawns in the Sargasso Sea and is thus affected by both continental and oceanic factors. Since the 1980s a steady decline has been observed in the recruitment of glass eels to freshwater and in total eel landings. The eel is considered as critically endangered on the International Union for the Conservation of Nature and Natural Resources Red List of species. The Skagerrak beach seine survey from Norway constitutes the longest fishery-independent dataset on yellow/silver eels (starting in 1904). The Skagerrak coastal region receives larvae born in the Sargasso Sea spawning areas that have followed the Gulf Stream/North Atlantic Drift before they penetrate far into the North Sea. The Skagerrak coastal time series is therefore particularly valuable for exploring the impacts of oceanic factors on fluctuations in eel recruitment abundance. Analyses showed that Sargasso Sea surface temperature was negatively correlated with eel abundance, with a lag of 12 years revealing a cyclic and detrimental effect of high temperatures on the newly hatched larvae. The North Atlantic Oscillation index and inflow of North Atlantic water into the North Sea were negatively correlated with eel abundance, with a lag of 11 years. Increased currents towards the North Atlantic during high North Atlantic Oscillation years may send larvae into the subpolar gyre before they are ready to metamorphose and settle, resulting in low recruitment in the northern part of the distribution area for these years. The Skagerrak time series was compared with glass eel recruitment to freshwater in the Netherlands (Den Oever glass eel time series), and similar patterns were found revealing a cycle linked to changes in oceanic factors affecting glass eel recruitment. The recent decline of eels in the Skagerrak also coincided with previously documented shifts in environmental conditions of the North Sea ecosystem.  相似文献   

6.
Identifying the mechanisms maintaining population structure in marine fish species with more than a single dispersing life stage is challenging because of the difficulty in tracking all life stages. Here, a two‐stage otolith microchemistry approach to examining life‐stage movement was adopted, tracking a year‐class from the juvenile to adult stage and inferring larval sources from clustering, in order to consider the mechanisms maintaining population structuring in North Sea cod. Clustering of near‐core chemistry identified four clusters, two of which had either a southern or northern affinity and were similar to juvenile edge chemistry. The other two clusters, common to the central North Sea, had intermediate chemical composition and may have reflected either larval mixing in this region or a lack of geographic heterogeneity in the elemental signature. From the comparison of whole juvenile and the corresponding component of adult otoliths, adults from the southern North Sea mostly recruited from adjacent nursery grounds. In contrast, many adults in the northern North Sea had a juvenile chemistry consistent with the Skagerrak and juveniles from the northern Skagerrak site had a near‐core chemistry consistent with the northern North Sea. Similarities in otolith chemistry were consistent with retention of early life stages at a regional level and also juvenile and adult fidelity. The links between the northern North Sea and Skagerrak indicate natal homing, which when considered in the context of genetic evidence is suggestive of philopatry. The approach used here should be useful in exploring the mechanisms underlying population structuring in other species with multiple dispersive life stages and calcified hard parts.  相似文献   

7.
Recruitment variability in North Atlantic cod and match-mismatch dynamics   总被引:1,自引:0,他引:1  

Background

Fisheries exploitation, habitat destruction, and climate are important drivers of variability in recruitment success. Understanding variability in recruitment can reveal mechanisms behind widespread decline in the abundance of key species in marine and terrestrial ecosystems. For fish populations, the match-mismatch theory hypothesizes that successful recruitment is a function of the timing and duration of larval fish abundance and prey availability. However, the underlying mechanisms of match-mismatch dynamics and the factors driving spatial differences between high and low recruitment remain poorly understood.

Methodology/Principal Findings

We used empirical observations of larval fish abundance, a mechanistic individual-based model, and a reanalysis of ocean temperature data from 1960 to 2002 to estimate the survival of larval cod (Gadus morhua). From the model, we quantified how survival rates changed during the warmest and coldest years at four important cod spawning sites in the North Atlantic. The modeled difference in survival probability was not large for any given month between cold or warm years. However, the cumulative effect of higher growth rates and survival through the entire spawning season in warm years was substantial with 308%, 385%, 154%, and 175% increases in survival for Georges Bank, Iceland, North Sea, and Lofoten cod stocks, respectively. We also found that the importance of match-mismatch dynamics generally increased with latitude.

Conclusions/Significance

Our analyses indicate that a key factor for enhancing survival is the duration of the overlap between larval and prey abundance and not the actual timing of the peak abundance. During warm years, the duration of the overlap between larval fish and their prey is prolonged due to an early onset of the spring bloom. This prolonged season enhances cumulative growth and survival, leading to a greater number of large individuals with enhanced potential for survival to recruitment.  相似文献   

8.
Investigations into the 0-group fish in the Barents Sea have been carried out since 1965, with the goal of estimating the abundance of 0-group fish. 0-group abundance indices have been used in the assessment of the recruitment level and in recruitment variability studies. However, the ecological importance of the 0-group fish in the Barents Sea has been less studied. Although 0-group capelin, herring, cod and haddock are widely distributed in the Barents Sea, the central area seems to be the most important, accounting for approximately 50–80% of the annual biomass. The total biomass of the four most abundant 0-group fish species can be up to 3.3 million tonnes, with an average of 1.3 million tonnes (1993–2009). Wide distribution and high biomass of pelagically distributed 0-group fish make these fishes an important element in the energy transport between different trophic levels and different geographical areas, having a critical impact on the entire Barents Sea ecosystem. In recent years, capelin have shown a pronounced northward shift in biomass distribution, and several successive strong year classes occurred during warm temperature conditions. Cod biomasses were unexpectedly low during warm years and were positively correlated with spawning stock biomass, while the correlation with temperature was not significant. Haddock and herring show, as expected, increasing biomass with increased temperature when the spawning stock is at a sufficiently high level.  相似文献   

9.
Populations of marine fish, even from contrasting habitats, generally show low genetic differentiation at neutral genetic markers. Nevertheless, there is increasing evidence for differences in gene expression among populations that may be ascribed to adaptive divergence. Studying variation in salinity tolerance and gene expression among Atlantic cod (Gadus morhua) from two populations distributed across a steep salinity gradient, we observed high mortality (45% North Sea cod and 80% Baltic Sea cod) in a reciprocal common garden setup. Quantitative RT-PCR assays for expression of hsp70 and Na/K-ATPase α genes demonstrated significant differences in gene regulation within and between populations and treatment groups despite low sample sizes. Most interesting are the significant differences observed in expression of the Na/K-ATPase α gene in gill tissue between North Sea and Baltic cod. The findings strongly suggest that Atlantic cod are adapted to local saline conditions, despite relatively low levels of neutral genetic divergence between populations.  相似文献   

10.
The relationship between physiology and temperature has a large influence on population-level responses to climate change. In natural settings, direct thermal effects on metabolism may be exaggerated or offset by behavioural responses influencing individual energy balance. Drawing on a newly developed proxy, we provide the first estimates of the thermal performance curve of field metabolism in a wild fish. We investigate the thermal sensitivity of field metabolic rate in two sympatric, genetically distinct ecotypes of Atlantic cod from the Skagerrak coast of southern Norway. The combined ecotype median of field metabolic rate increased with increasing temperature until around 16°C, coincident with the thermal optimum for growth for juvenile Atlantic cod. Individual cod experienced temperatures in excess of the thermal optimum for field metabolic rate, indicating some degree of thermal limitation of field metabolism in a complex natural environment with the potential for thermal refugia. The two cod ecotypes showed different thermal performance curves for field metabolic rate, revealing that genetic components to temperature sensitivity persist beyond acclimation effects. The cold-adapted fjord ecotype maintained higher field metabolic rates at cooler temperatures than the warm-adapted North Sea ecotype, which showed clear preference for warmer waters around the thermal optimum. Field metabolic rates of the two ecotypes were strongly influenced by year and location of sampling, implying more complex behavioural responses to environmental conditions. We emphasise that the energy uses reflecting physiological conditions in the field should be considered in the evaluation of the effect of climatic variables on fish population dynamics and demonstrate that otolith isotopes provide an analytical framework to answer this question.  相似文献   

11.
In the Arctic Ocean, sea-ice habitats are undergoing rapid environmental change. Polar cod (Boreogadus saida) is the most abundant fish known to reside under the pack-ice. The under-ice distribution, association with sea-ice habitat properties and origins of polar cod in the central Arctic Ocean, however, are largely unknown. During the RV Polarstern expedition ARK XXVII/3 in the Eurasian Basin in 2012, we used for the first time in Arctic waters a Surface and Under Ice Trawl with an integrated bio-environmental sensor array. Polar cod was ubiquitous throughout the Eurasian Basin with a median abundance of 5000 ind. km?2. The under-ice population consisted of young specimens with a total length between 52 and 140 mm, dominated by 1-year-old fish. Higher fish abundance was associated with thicker ice, higher ice coverage and lower surface salinity, or with higher densities of the ice-amphipod Apherusa glacialis. The fish were in good condition and well fed according to various indices. Back-tracking of the sea-ice indicated that sea-ice sampled in the Amundsen Basin originated from the Laptev Sea coast, while sea-ice sampled in the Nansen Basin originated from the Kara Sea. Assuming that fish were following the ice drift, this suggests that under-ice polar cod distribution in the Eurasian Basin is dependent on the coastal populations where the sea-ice originates. The omnipresence of polar cod in the Eurasian Basin, in a good body condition, suggests that the central Arctic under-ice habitats may constitute a favourable environment for this species survival, a potential vector of genetic exchange and a recruitment source for coastal populations around the Arctic Ocean.  相似文献   

12.
Herring (Clupea harengus) and sprat (Sprattus sprattus) are the key prey resources of common terns (Sterna hirundo) breeding in the Wadden Sea. Breeding success of the terns has been below average since 2002, coinciding with exceptionally low herring recruitment and sprat abundance. Time series of herring and sprat abundance in the North Sea and in the Wadden Sea were analyzed to explain long-term breeding success and chick development at two common tern breeding colonies. North Sea herring recruitment and sprat abundance in the Wadden Sea explained the largest part of common tern breeding success, both as single variables and in a multiple regression approach. Breeding success showed stronger correlations with herring recruitment indices derived from the North Sea region compared to the Wadden Sea. Also, herring and sprat abundance data explained more variability in breeding success than of more directly responding measures such as growth rate and maximum weight of chicks. Despite spatial and temporal incoherences between fish surveys and the common tern breeding season, breeding success of common terns reflected the abundance of their key prey fish beyond their foraging range and breeding season. We argue that the ecological connectivity between large- and small-scale herring abundance and the responsiveness of common tern breeding success is strong enough to establish a fish–seabird indicator system to be potentially valuable in monitoring and conservation.  相似文献   

13.
The mechanisms most likely to determine the distribution of the two major herring Clupea harengus stocks in their common early summer feeding ground in the eastern North Sea, Skagerrak and Kattegat were investigated through analysis of acoustic survey data from six consecutive years. No change was detected in biomass of North Sea autumn spawning C. harengus (NSAS) over time, whereas the biomass of western Baltic spring spawning C. harengus (WBSS) declined severely. Analyses of centre of abundance by stock showed no change in NSAS distribution, whereas the WBSS changed to a more western distribution over time. Contrary to previous perception of the juvenile migration, NSAS were found to leave the study area at the age between 1 and 2 years and WBSS 1 year olds were encountered in the Skagerrak. The estimated parameters of von Bertalanffy growth equations showed marked differences between areas with fish in the eastern part of the area having the lowest size at age at all ages. Further, their growth conditions appeared to deteriorate progressively over the period studied. Both NSAS and WBSS showed the highest condition in the North Sea and Skagerrak while condition was substantially lower in age Kattegat. The westward movement of spring spawners over time suggests that growth rate and possibly density of conspecifics influence the migration pattern and distribution of C. harengus in the area. In contrast, there was no evidence to suggest that distribution was constant over time within stocks or that distribution reflected size‐dependent limitations on migration distance.  相似文献   

14.
Genetic divergence among populations arises through natural selection or drift and is counteracted by connectivity and gene flow. In sympatric populations, isolating mechanisms are thus needed to limit the homogenizing effects of gene flow to allow for adaptation and speciation. Chromosomal inversions act as an important mechanism maintaining isolating barriers, yet their role in sympatric populations and divergence with gene flow is not entirely understood. Here, we revisit the question of whether inversions play a role in the divergence of connected populations of the marine fish Atlantic cod (Gadus morhua), by exploring a unique data set combining whole‐genome sequencing data and behavioural data obtained with acoustic telemetry. Within a confined fjord environment, we find three genetically differentiated Atlantic cod types belonging to the oceanic North Sea population, the western Baltic population and a local fjord‐type cod. Continuous behavioural tracking over 4 year revealed temporally stable sympatry of these types within the fjord. Despite overall weak genetic differentiation consistent with high levels of gene flow, we detected significant frequency shifts of three previously identified inversions, indicating an adaptive barrier to gene flow. In addition, behavioural data indicated that North Sea cod and individuals homozygous for the LG12 inversion had lower fitness in the fjord environment. However, North Sea and fjord‐type cod also occupy different depths, possibly contributing to prezygotic reproductive isolation and representing a behavioural barrier to gene flow. Our results provide the first insights into a complex interplay of genomic and behavioural isolating barriers in Atlantic cod and establish a new model system towards an understanding of the role of genomic structural variants in adaptation and diversification.  相似文献   

15.
Climate change and overfishing may lead to ecosystem instability and may benefit nonexploited organisms such as jellyfish. In the Irish Sea, an increase in jellyfish abundance was evident (r2=0.29, P=0.03) in a 16‐year time‐series (1994–2009) collected during juvenile fish surveys. Jellyfish abundance correlated positively with sea surface temperature (SST) over the preceding 18 months (r=0.65, pACF<0.001) and copepod biomass in the previous year (r=0.56, pACF=0.03) and negatively with spring (February–May) precipitation (r=?0.57, pACF=0.02). Principal components regression indicated that climatic indices explained 68% of the interannual variability in jellyfish abundance (P=0.003), where the components were based on the North Atlantic Oscillation Index, SST and precipitation. The frequency of cnidarian material present in Continuous Plankton Recorder (CPR) samples has also increased since 1970, with a period of frequent outbreaks between 1982 and 1991. Before this period, the herring stock in the northern Irish Sea declined rapidly to a low level, potentially stimulating structural change in the ecosystem. In 1985, there was a step decrease in CPR copepod biomass and in 1989, a step increase in the phytoplankton colour index, suggesting a cascading regime shift during the 1980s. Subsequent overexploitation of gadids, coupled with warm temperatures and the poor recruitment of cod, led to the rapid decline in cod biomass from 1990. While the biomass of sprat has decreased in the last decade, the herring stock has recovered partially. Reductions in demersal fishing pressure since 2000, intended to stimulate cod recovery, appear to have facilitated further rises in haddock biomass. Since the 1980s regime shift, sea temperatures have increased, the fish community has altered and jellyfish abundance has risen such that jellyfish and haddock may now play an increasingly important role in the ecosystem.  相似文献   

16.
A previous report concerning the high incidence of Clostridium botulinum type E in marine deposits in Swedish coastal waters has been confirmed. The organism was not found in the North Sea or in fish caught in the North Sea or the Skagerrak.  相似文献   

17.
We investigated the winter feeding ecology of cod ( Gadus morhua ) in the Risørfjord and Flødevigen areas on the Skagerrak coast, southern Norway. Diets from the ice-covered Risørfjord were compared with diets from the more coastal Flødevigen area. In the Risørfjord area the diet featured numerically both decapods (56.0%) and fish (27.8%), but fish dominated by mass (75.1%). The most numerous dietary items from the Flødevigen area were decapods (48.1%) and isopods (30.6%), although fish still made up the bulk of the diet's mass (52.6%). Diets at Flødevigen shifted from winter to spring, as polychaetes became important numerically (67.8%) and also contributed substantially by weight (53.6%). Since cod feed opportunistically, differences between areas and seasons probably reflected differences in prey diversity and abundance. Prey size variability increased with increasing predator length, but maximum prey size relative to predator length was constant at about 9%. Prey fish increased in both length and numbers with the length of cod, particularly in the Risørfjord area, where fish were more important in the diet than at Flødevigen. However, the majority of fish consumed in both areas were small gobiids. Based on growth patterns observed in otoliths, with opaque zones (indicating faster growth) formed during winter, the quality and quantity of the winter diet may determine annual growth rates of cod on the Skagerrak coast. Fish and decapods constituted important, high energy food sources, and there was little indication that cod were food limited during winter in this area.  相似文献   

18.
In order to provide better fisheries management and conservation decisions, there is a need to discern the underlying relationship between the spawning stock and recruitment of marine fishes, a relationship which is influenced by the environmental conditions. Here, we demonstrate how the environmental conditions (temperature and the food availability for fish larvae) influence the stock–recruitment relationship and indeed what kind of stock–recruitment relationship we might see under different environmental conditions. Using unique zooplankton data from the Continuous Plankton Recorder, we find that food availability (i.e. zooplankton) in essence determines which model applies for the once large North Sea cod (Gadus morhua) stock. Further, we show that recruitment is strengthened during cold years and weakened during warm years. Our combined model explained 45 per cent of the total variance in cod recruitment, while the traditional Ricker and Beverton–Holt models only explained about 10 per cent. Specifically, our approach predicts that a full recovery of the North Sea cod stock might not be expected until the environment becomes more favourable.  相似文献   

19.
The Barents Sea is a transition zone between North Atlantic and Arctic waters, so its marine ecosystem is highly sensitive to climate dynamics. Understanding of marine biota response to climate changes is necessary to assess the environmental stability and the state of marketable biological resources. These processes are analyzed using a database from the Murmansk Marine Biological Institute which holds oceanographic and hydrobiological data sets collected for more than 100?years along the meridional Kola Transect in the Barents Sea. The data demonstrate high variability in thermal state of the upper layer of the Barents Sea, which is regulated by varying the inflow of Atlantic water and by regional climate. At irregular intervals, cold periods with extended seasonal ice cover are followed by warm periods. The most recent warm period started in the late 1980s and reached its maximum from 2001 to 2006. These cyclic changes in hydrologic regime across the twentieth century and first decade of the twenty-first century are reflected (with a specific lag of 1–5?years) by changes in species composition, as well as abundance and distribution of boreal and arctic groups of macrozoobenthos and fish fauna. For instance, cod and cod fisheries in the Barents Sea are closely linked to the marine climate. Furthermore, Kamchatka crab stock recruitment benefited from the warm climate of 1989 and 1990. In general, studies in this region have shown that climatic dynamics may be assessed using biological indices of abundance, biomass, and migration of marine organisms, including commercial species.  相似文献   

20.
Abstract   Broad scale survey distributions of fish are dominated by some extremely high catches. With a novel survey design we resolved the small-scale fish distribution in the spatio-temporal vicinity of these extreme hauls and showed that in the North Sea they generally do not occur in isolation. An additional case study where stomach contents of fish predators were analyzed revealed that they actually indicate aggregations of piscivorous fish predators on prey aggregations. We show that the predation impact can reach immense dimensions, an aggregation of more than 50 million juvenile cod (Gadus morhua) was entirely wiped out in 5 days by predatory whiting (Merlangius merlangus), aggregating on these juveniles in an area of approximately 18 km2. The consumption of only 32 hot spots of similar magnitude as observed in our study adds up to the average size of an incoming North Sea cod year class. These findings support the hypothesis of predation as the major source of mortality in young-of-the-year demersal fish species and questions the generality of fish aggregation as an effective anti-predator strategy. This study highlights the system-wide structuring force of small-scale predation hot spots and further points to the importance of a more realistic implementation of local high-intensity predation events in food web models. Electronic supplementary material:   The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号