首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clonal architecture is involved in performance of clonal fragments, as it determines spatial distribution of ramets. It is expected to rely on the species-specific expression of several architectural traits (structural blue-print). However, in contrasting environments, realized clonal architectures may differ, due to phenotypic plasticity. In this paper, we compared clonal architectures between two rhizomatous ecologically close Cyperaceae (Carex divisa and Eleocharis palustris) in non-defoliated and defoliated conditions. Two questions were addressed. (1) How much do the structural blue-print and resulting colonization and occupation of space differ between both species? (2) Does the structural blue-print constrain plastic responses of clonal architecture to defoliation? Traits related to performance, spatial pattern, architecture and biomass allocation of clonal fragments were monitored through an original non-destructive mapping method. In non-defoliated conditions, both species showed similar biomass but contrasting architectures and patterns of biomass allocation to rhizomes that resulted in different spatial patterns. The rhizome network of C. divisa, which consisted in only two primary rhizomes but several branches, was involved in resource storage rather than in spatial colonization. Conversely, E. palustris produced on average six primary rhizomes that grew in the whole horizontal plane, maximizing both occupation and colonization of space. These differences in structural constraints coupled with allometric relationships, resulted in differential responses to defoliation. In C. divisa, the costs associated to defoliation caused a decrease in branching, limiting the area occupied and number of ramets produced by clonal fragments, but increasing ramet density. Conversely, the weakly branched rhizome network of E. palustris was not affected by defoliation. Both spatial strategies (consolidation vs. colonization) are likely to provide ecological advantages allowing their coexistence in grazed meadows.  相似文献   

2.
Resource sharing between ramets of clonal plants is a well-known phenomenon, which allows stoloniferous and rhizomatous species to internally translocate water, mineral nutrients and carbohydrates from sites of high supply to sites of high demand. The mechanisms and implications of resource integration in clonal plants have extensively been studied in the past. Vascular ramet connections are likely to provide an excellent means to share substances other than resources, such as systemic defence signals and pathogens. The aim of this paper is to propose the idea that physical ramet connections of clonal plants can be used (1) to transmit signals, which enable members of clonal plant networks to share information about their biotic and abiotic environments, and (2) to facilitate the internal distribution of systemic pathogens in clonal plant networks and populations. We will focus on possible mechanisms as well as on potential ecological and evolutionary implications of clonal integration beyond resource sharing. More specifically, we will explore the role of physiological integration in clonal plant networks for the systemic transmission of direct and indirect defence signals after localized herbivore attack. We propose that sharing defence induction signals among ramets may be the basis for an efficient early warning system, and it may allow for effective indirect defence signalling to herbivore enemies through a systemic release of volatiles from entire clonal fragments. In addition, we will examine the role of clonal integration for the internal spread of systemic pathogens and pathogen defence signals within clonal plants. Clonal plants may use developmental mechanisms such as increased flowering and clone fragmentation, but also specific biochemical defence strategies to fight pathogens. We propose that clonal plant networks can act as stores and vectors of diseases in plant populations and communities and that clonal life histories favour the evolution of pathogens with a low virulence.  相似文献   

3.
Clonal growth occurring below the ground makes it difficult to identify individuals and demonstrate the demographic features of a focal plant species. In this study, genotypically identified ramets of a rhizomatous clonal herb, Convallaria keiskei Miq., were monitored for their growth, survival, and reproduction from 2003 to 2006. After the monitoring period, their subterranean organs were excavated to explore the underground connections of established ramets and the direction of clonal growth. We then combined data on the fate of the monitored ramets with the information of rhizome connections, clarifying reproductive demography at both the ramet and genet levels. Although each ramet initiated both sexual reproduction (via flowering) and clonal growth, clonal growth tended to precede sexual reproduction. In a surveyed genet, 51.0% of ramets produced flowers and 29.6% generated clonal offspring during the study period. Consequently, we clarified the reproductive demography of C. keiskei: clonal growth tended to precede flowering in a ramet, and a genet can keep reproducing every season at the genet level, despite a ramet not having inflorescence every year.  相似文献   

4.
Clonal growth enables plants to transport resources among separately rooted but connected ramets, a potential advantage in patchy or unpredictable habitats. Nevertheless, clonal plants are relatively scarce in deserts. To test whether clonal integration of water relations can increase plant performance under natural conditions in a desert species, water movement was traced and connection among ramets was manipulated in the rhizomatous grass Distichlis spicata in Death Valley, California. To examine potential costs of clonal growth form, connections were mapped and analyzed for dry mass and nitrogen content. Movement of dye showed potential transport of water among five ramets up to 1.4 m apart. Severance of connecting rhizomes increased mortality and decreased water potential of individual ramets within 36 hr, indicating that water sharing among ramets could be of significant benefit. However, plants had a high investment of mass and nitrogen in underground organs, which might be a cost of clonal growth associated with desert environments.  相似文献   

5.
Clonal plants spread vegetatively within their habitats by forming rooted ramets on stolons or rhizomes. Each of these ramets is capable of an independent existence after establishment. Nevertheless, ramets remain physically connected by stolon or rhizome internodes for variable periods of time, thereby allowing for resource movement and signal transduction within clones.Interconnected ramets of clonal plants, though potentially independent and totipotent, can specialize functionally in the performance of limited numbers of tasks such as the uptake of resources from above- vs below-ground sources, carbohydrate storage, vegetative spread and sexual reproduction. Such specialization and cooperation is comparable to a division of labour in economic systems or in colonies of social animals. The ecological significance of division of labour in clonal plants may be found in the increased efficiency of entire clones in exploiting their environments.Two different types of division of labour in clonal plants will be discussed in this review. The first type is an environmentally-induced specialization of ramets in the uptake of locally abundant resources (plastic division of labour), which can be found in several stoloniferous species. Evidence exists that this response increases resource uptake in spatially heterogeneous environments. The second type of division of labour, which occurs mainly in rhizomatous species, relates to a developmentally-programmed specialization and cooperation between interconnected ramets. This response pattern is thought to enhance plant performance by restricting the number of tasks for individual ramets and thereby significantly increasing the efficiency of task performance. In some plants, such an inherent division of labour is likely to contribute to nutrient extraction from poor and unpredictably variable sources.In this article not only benefits but also potential costs and constraints on division of labour in clonal plants are shown. The aim is to provide a review of existing knowledge and to develop concepts and hypotheses for future research.  相似文献   

6.
In arid and semi-arid inland deserts,one of the environmental stresses for plants is recurrent sand burial,which can influence the physical and biotic microenvironments of the plants and soil.Previous studies have shown that different levels of sand burial have different effects on plants.Slight sand burial could increase the height increment,leaf biomass and the number of new ramets of the plants while heavy sand burial could impair the growth of the plants and even decrease their chances of survival.In other words,below a certain threshold level of burial,the growth of plants is stimulated probably because of multiple factors.However,as the level of burial increases,the positive response starts to decline until it becomes a negative value.Arid and semi-arid inland deserts are frequently colonized and stabilized by many rhizomatous clonal plants.Clonal physiological integration often helps clonal plants buffer local environmental stress encountered by ramets.A rhizomatous clonal semishrub,Hedysarum laeve (H.laeve),is the dominant plant species and important for vegetation restoration in the Mu Us sandland.To investigate whether clonal integration can increase the threshold of sand burial and help rhizomatous H.laeve tolerate heavy sand burial,we conducted a field experiment.The results showed that slight sand burial could accelerate ramet growth and enhance leaf biomass,stem biomass and shoot biomass,while heavy sand burial reducesed the biomass of the plant and impairs survival and growth of the ramets.Clonal integration increased the threshold of sand burial.Under heavy sand burial,ramets connected to other ramets not buried in sand were more in terms of height increment,stem biomass,leaf biomass and shoot biomass compared to the ramets encountering sand burial but disconnected from other ramets.It suggested that clonal physiological integration could help H.laeve ramets tolerate relatively heavy sand burial.We also discussed that clonal integration plays a role in H.laeve presence in the Mu Us sandland.  相似文献   

7.
不同程度的沙埋是生长在干旱和半干旱区内陆沙丘的植物经常遭遇的事件,沙埋可以改变植物所处的生物和非生物环境条件。已有研究表明不同程度的沙埋对于植物的影响不同。轻微程度的沙埋可以增加植物高度、促进生物量的积累和新生分株的产生。如果沙埋强度不断增加,对植物的影响由正效应逐渐转变为负效应。即超过一定沙埋阈值后,沙埋会削弱植物的生长,甚至影响植物的存活。干旱和半干旱区内陆沙丘中常常生长着许多克隆植物,克隆整合常常可以缓解克隆植物分株所遭受的局部环境胁迫。根茎型克隆植物羊柴(Hedysarum laeve)是毛乌素沙地的优势半灌木之一,也是当地重要的固沙植物。为了探讨克隆整合的作用是否可以提高沙埋阈值,并有助于羊柴忍受高强度的沙埋,以其为研究对象开展了野外实验。结果表明:轻微程度的沙埋(例如沙埋深度是原始羊柴分株高的10%~20%)可以加速羊柴分株的高生长,提高叶片生物量、茎生物量以及整个地上部分的生物量。高强度的沙埋(例如沙埋深度是原始羊柴分株高的80%~100%)会削弱羊柴分株的存活和生长。在与不遭受沙埋分株相连的情况下,羊柴分株遭受沙埋的阈值高于没有分株相连的,而且在高强度的沙埋下,前者(有分株相连的遭受沙埋的分株)比后者(没有分株相连的遭受沙埋的分株)在株高增量、茎生物量、叶片生物量以及地上分株生物量上都要显著高。这暗示着克隆整合提高了羊柴遭受沙埋的阈值并有助于羊柴分株忍受高强度的沙埋。  相似文献   

8.
D. C. Hartnett 《Oecologia》1989,80(3):414-420
Summary Responses to defoliation were studied in two tallgrass prairie perennials (Andropogon gerardii and Panicum virgatum) established from seed at three densities. P. virgatum was also grown from transplanted rhizomes of established clones. Plants of both species displayed a continuum of responses to defoliation, from large reductions in biomass, tillering and seed production to significant increases in one or more performance measures. In crowded populations, defoliation shifted plants into subordinate positions within the competitive hierarchy. Plants competing intraspecifically and those that were initially small suffered more from defoliation than either plants grown at low density or those that were larger than their neighbors. At the highest plant density, the effects of defoliation or initial plant size were overshadowed by the effects of crowding. When defoliated and grown at similar densities, P. virgatum and A. gerardii grown from seed showed large reductions in biomass, seed production, and new rhizome production, but established P. virgatum ramets grown from rhizomes showed increases in these performance measures. Thus, herbivory may be particularly detrimental to P. virgatum during juvenile stages before perennating organs have developed. Overcompensation of P. virgatum clones in response to defoliation only occurred if all ramets within the clone were defoliated. In clones containing both defoliated and undamaged ramets, there were no differences in their performance, suggesting that genets are capable of integrating the effects of differential defoliation among shoots. Defoliated P. virgatum clones allocated a smaller fraction of their total biomass to new rhizomes, indicating that the short-term regrowth response following defoliation may incur a longer-term cost associated with gradual reduction in biomass of the perennating organs and reduced genet success.  相似文献   

9.
Hedysarum laeve, a rhizomatous clonal half-shrub, commonly dominates in inland dunes in semiarid areas of northern China. This species propagates vegetatively by the extension of horizontal rhizomes resulting in programmed reiteration of apical and/or axillary meristems. In this study, (14)C labeling and experimental defoliation were employed to test the photosynthate translocation within the interconnected parent-daughter ramet pairs. A proportion of (14)C-photosynthates was transported from the parent ramet into the daughter ramet, the roots of the daughter ramet, and the rhizome; these three components showed more than 70% sink activity after 24-h translocation. On the other hand, the basipetal translocation (from daughter ramet into parent ramet) was relatively small with sink activity of less than 5%, but sink activity of the rhizome exceeded 10%. Defoliation had an influence on the photosynthate translocation between parent and daughter ramets. The intact parent ramets significantly increased their (14)C-photosynthate translocation into defoliated daughter ramets when compared to intact daughter ramets. The daughter ramets transported significantly more (14)C-photosynthates to the defoliated parent ramets than to the intact parent ramets. A portion of (14)C-photosynthates was transported into the rhizome from both parent and daughter ramets, indicating that the rhizome is supported by both ramets for photosynthates. The clonal integration between ramets of the species through rhizome connection may confer benefit both to the ramets and the genet in adverse environments.  相似文献   

10.
克隆整合提高淹水胁迫下狗牙根根部的活性氧清除能力   总被引:2,自引:0,他引:2  
虽然国内外已开展大量关于克隆整合影响植物抗逆生理的研究,但迄今未见克隆整合是否会影响逆境下不同分株清除活性氧过程的报道。以河岸带适生克隆植物狗牙根(Cynodon dactylon)为例,研究克隆植物的抗氧化生理响应,检测了狗牙根在先端淹水/不淹水、先端与基端匍匐茎连接/切断两个因素的交互作用下的根部主要抗氧化酶:超氧化岐化酶(Superoxide dismutase, SOD)、抗坏血酸过氧化物酶(Ascorbate peroxidase, APX)、过氧化氢酶(Catalase, CAT)的活力以及生物量的变化。结果显示,淹水环境中狗牙根先端的生物量和根部SOD酶活力在匍匐茎连接处理下显著高于切断处理组,同一处理的生物量以及根部APX、CAT酶活力总体上表现出不同程度的提高趋势;与受淹先端连接的基端分株根部抗氧化酶活力均低于切断处理组,且SOD和CAT受连接处理影响显著;淹水和切断处理显著降低先端分株的生物量,但对基端和克隆片段影响不明显。这表明淹水胁迫下克隆整合提高了其根部活性氧清除能力,显著改善了先端分株的表现。  相似文献   

11.
该研究针对根茎型克隆植物羊草(Leymus chinensis)考察了以下内容:1)地上枝条和根茎中可溶性碳水化合物含量的时间动态及其对去叶干扰的响应;2)特定阶段植物体内一定部位的可溶性碳水化合物浓度差异;3)植物体各部分(地上部分、直立茎地下部分及根茎)间可溶性碳水化合物浓度变化之间的关联。基于上述研究结果,作者试图弄清碳水化合物对于羊草克隆分株和整个基株生长和存活的意义。实验共有4个处理:1个对照和3个不同频度(在整个实验进行期间分别去叶1次、3次和5次)的去叶处理。所有去叶处理都采取一个统一的强度,即留茬15 cm。地上枝条和根茎的取样频次为每10 d 1次。植物体各部分可溶性碳水化合物浓度以高效液相色谱法(HPLC)测定。对不同去叶频度处理间的碳水化合物含量差异显著性进行ANOVA分析。结果表明:不去叶对照处理在生长季盛期可溶性碳水化合物浓度的显著下降归因于植物体快速的生长而引起植物叶片旺盛的呼吸消耗,而去叶处理中植物的可溶性碳水化合物浓度并没有大的降低甚至在最频繁的去叶处理下还有所上升,主要是由于去叶处理减少叶片而造成地上部分总呼吸量下降所致。一次性去叶处理并没有影响植物地上部分最终的可溶性碳水化合物浓度,但是连续数次的去叶处理对地上部分可溶性碳水化合物浓度产生了一定的影响。在秋季气温下降时,碳水化合物自地上向地下的转移在去叶频度越大的处理下表现越为迅速。这表明当植物体接受到气温降低的信号后,去叶干扰加速碳水化合物自地上向地下的转移。可能由于地下枝条存在一定的贮藏功能,在实验过程中地下枝条中可溶性碳水化合物浓度比地上枝条中表现的更加稳定。根茎中的可溶性碳水化合物必要时会转移到地上以供应地上枝条的生长,而旺盛的生长会消耗可溶性碳水化合物,然而自未接受去叶处理的分株向接受去叶处理的分株的克隆整合(常常在较高频次的去叶处理中发生)可能会在一定程度上缓解这种消耗所造成的影响。  相似文献   

12.
We investigated the effects of ramet defoliation frequency on clonal propagation and the patterns of biomass production and allocation on five rhizomatous species (Carex divisa Hude., Eleocharis palustris L., Juncus articulatus L., Juncus gerardii Lois. and Elytrigia repens L.). Plants were grown during an 18-week experiment in greenhouse conditions. The above ground parts of ramets were clipped following three treatments: frequent (every 2 weeks), moderate (every 4 weeks) and unclipped (control). The growth of C. divisa, J. articulatus and E. repens was strongly affected by defoliation whereas E. palustris and J. gerardii maintained a similar performance when defoliated. The latter were able to compensate for the biomass loss even after six consecutive clippings. Defoliation frequency had a significant effect on total biomass production for C. divisa, J. articulatus and E. repens while J. gerardii and E. palustris maintained total biomass production. Most of the studied species showed a decrease in clonal traits when defoliated. Clipped plants displayed fewer and shorter rhizomes. Defoliation had a strong influence in biomass production with a decrease in rhizome mass in all clipped species. A greater allocation to aerial parts and a lower to rhizomes were also detected. Moderate defoliation entailed intermediate response in 1/3 of detected significant effects of defoliation on plant traits. Finally, in the experimental conditions, E. palustris and J. gerardii were the most tolerant species to defoliation, while J. articulatus was intermediate and C. divisa and E. repens had the lowest tolerance.  相似文献   

13.

Background and Aims

Grazing is a complex process involving the simultaneous occurrence of both trampling and defoliation. Clonal plants are a common feature of heavily grazed ecosystems where large herbivores inflict the simultaneous pressures of trampling and defoliation on the vegetation. We test the hypothesis that physiological integration (resource sharing between interconnected ramets) may help plants to deal with the interactive effects of trampling and defoliation.

Methods

In a field study, small and large ramets of the root-suckering clonal tree Populus simonii were subjected to two levels of trampling and defoliation, while connected or disconnected to other ramets. Plant responses were quantified via survival, growth, morphological and stem mechanical traits.

Key Results

Disconnection and trampling increased mortality, especially in small ramets. Trampling increased stem length, basal diameter, fibrous root mass, stem stiffness and resistance to deflection in connected ramets, but decreased them in disconnected ones. Trampling decreased vertical height more in disconnected than in connected ramets, and reduced stem mass in disconnected ramets but not in connected ramets. Defoliation reduced basal diameter, leaf mass, stem mass and leaf area ratio, but did not interact with trampling or disconnection.

Conclusions

Although clonal integration did not influence defoliation response, it did alleviate the effects of trampling. We suggest that by facilitating resource transport between ramets, clonal integration compensates for trampling-induced damage to fine roots.  相似文献   

14.
Hedysarum laeve, a rhizomatous clonal half-shrub, commonly dominates in inland dunes in semiarid areas of northern China. This species propagates vegetatively by the extension of horizontal rhizomes resulting in programmed reiteration of apical and/or axillary meristems. In this study, 14C labeling and experimental defoliation were employed to test the photosynthate translocation within the interconnected parent–daughter ramet pairs. A proportion of 14C-photosynthates was transported from the parent ramet into the daughter ramet, the roots of the daughter ramet, and the rhizome; these three components showed more than 70% sink activity after 24-h translocation. On the other hand, the basipetal translocation (from daughter ramet into parent ramet) was relatively small with sink activity of less than 5%, but sink activity of the rhizome exceeded 10%. Defoliation had an influence on the photosynthate translocation between parent and daughter ramets. The intact parent ramets significantly increased their 14C-photosynthate translocation into defoliated daughter ramets when compared to intact daughter ramets. The daughter ramets transported significantly more 14C-photosynthates to the defoliated parent ramets than to the intact parent ramets. A portion of 14C-photosynthates was transported into the rhizome from both parent and daughter ramets, indicating that the rhizome is supported by both ramets for photosynthates. The clonal integration between ramets of the species through rhizome connection may confer benefit both to the ramets and the genet in adverse environments. Received: April 12, 2001 / Accepted: November 26, 2001  相似文献   

15.
In arid and semi-arid inland deserts, one of the environmental stresses for plants is recurrent sand burial, which can influence the physical and biotic microenvironments of the plants and soil. Previous studies have shown that different levels of sand burial have different effects on plants. Slight sand burial could increase the height increment, leaf biomass and the number of new ramets of the plants while heavy sand burial could impair the growth of the plants and even decrease their chances of survival. In other words, below a certain threshold level of burial, the growth of plants is stimulated probably because of multiple factors. However, as the level of burial increases, the positive response starts to decline until it becomes a negative value. Arid and semi-arid inland deserts are frequently colonized and stabilized by many rhizomatous clonal plants. Clonal physiological integration often helps clonal plants buffer local environmental stress encountered by ramets. A rhizomatous clonal semishrub, Hedysarum laeve (H. laeve), is the dominant plant species and important for vegetation restoration in the Mu Us sandland. To investigate whether clonal integration can increase the threshold of sand burial and help rhizomatous H. laeve tolerate heavy sand burial, we conducted a field experiment. The results showed that slight sand burial could accelerate ramet growth and enhance leaf biomass, stem biomass and shoot biomass, while heavy sand burial reducesed the biomass of the plant and impairs survival and growth of the ramets. Clonal integration increased the threshold of sand burial. Under heavy sand burial, ramets connected to other ramets not buried in sand were more in terms of height increment, stem biomass, leaf biomass and shoot biomass compared to the ramets encountering sand burial but disconnected from other ramets. It suggested that clonal physiological integration could help H. laeve ramets tolerate relatively heavy sand burial. We also discussed that clonal integration plays a role in H. laeve presence in the Mu Us sandland. __________ Translated from Journal of Plant Ecology (formerly Acta Phytoecologica Sinica), 2006, 30(2): 278–285 [译自: 植物生态学报]  相似文献   

16.
This paper examines morphological plasticity of clonal plants of contrasting habitats and of contrasting architectures in response to nutrient supply. The hypotheses were tested that plants from rich habitats possess greater plasticity in response to variation in resource supply than species from poor habitats, and that rhizomatous species are less plastic in their response than stoloniferous species. Two sympodial rhizomatous herbs (Carex flacca, C. hirta) and two monopodial stoloniferous herbs (Trifolium fragiferum, T. repens) were subjected to four levels of nutrient supply in a garden experiment. One of the two species of each genus (C. hirta, T. repens) is from fertile and the other from infertile habitats. We measured 1) whole plant characters: total plant dry weight, number of modules (product of a single apical meristem) and number of ramets; 2) ramet characters: ramet leaf area and ramet height; and 3) spacer characters: branches per module, length per module and length per module internode.All measured characters in the Trifolium species significantly responded to treatment: the values for all measured characters increased with higher levels of fertilization. The differences in plant characters between fertilization levels were larger in Trifolium repens than in T. fragiferum in terms of whole plant characters, ramet characters and stolon internode length. The two Carex species did not differ in their responses to treatment in terms of most characters measured. In ramet characters and in some whole plant characters the species from fertile habitats were more plastic than those from infertile habitats. In spacer characters this pattern was not found. Foraging could not be demonstrated unequivocally.Morphological plasticity in the stoloniferous (Trifolium) species was much larger than in the rhizomatous (Carex) species. This seems in accordance with a foremost storage function of rhizomes, as against a foremost explorative function of stolons.  相似文献   

17.
18.
Many notorious alien invasive plants have the capacity for vigorous clonal growth, and clonal integration may contribute to their invasiveness in response to various disturbances. Here, it is hypothesized that clonal integration affects the growth, biomass allocation, physiology, and compensatory response of the alien invasive clonal plant Alternanthera philoxeroides when faced with defoliation. To test these hypotheses, a growth experiment was conducted to investigate the effect of clonal integration on the responses of A. philoxeroides to different levels of defoliation. Daughter ramets that had been grown with stolon connections that were either severed from or connected to the mother plant were subjected to four defoliation levels: 0 (control), 30% (mild), 60% (moderate) and 90% (heavy) removal of leaf tissue. Defoliation greatly decreased growth (total biomass, number of ramets and total stolon length) but increased the maximum quantum yield of photosystem II (Fv/Fm) of daughter ramets. Clonal integration significantly increased growth, Fv/Fm and contents of non-structural carbohydrates (soluble sugars and total non-structural carbohydrates) of A. philoxeroides, and these effects were larger under heavier defoliation. Moreover, clonal integration markedly reduced the shoot/root ratio of A. philoxeroides, and these effects tended to increase with increasing levels of defoliation. These results support our hypothesis that A. philoxeroides benefits from clonal integration in response to defoliation, suggesting that clonal integration may be closely related to the invasiveness of A. philoxeroides in natural habitats with frequent disturbances.  相似文献   

19.
Abstract Patch formation is common in grazed grasslands but the mechanisms involved in the formation and maintenance of patches are not clear. To increase our knowledge on this subject we examined possible reasons for patch formation and the influence of management on changes between patch states in three experiments in native pasture communities in the Crows Nest district, south‐east Queensland. In these communities, small‐scale patches (tall grassland (dominated by large and medium tussock grasses), short swards (dominated by short tussock grasses and sedges), and lawns (dominated by stoloniferous and/or rhizomatous grasses)) are readily apparent. We hypothesized that the formation of short sward and lawn patches in areas of tall grassland was due to combinations of grazing and soil fertility effects. This was tested in Experiment 1 by applying a factorial combination of defoliation, nutrient application and transplants of short tussock and stoloniferous species to a uniform area of tall grassland. Total species density declined during the experiment, was lower with high nutrient applications, but was not affected by defoliation. There were significant changes in abundance of species that provided support for our hypotheses. With light defoliation and low nutrients, the tall grassland remained dominated by large tussock grasses and contained considerable amounts of forbs. With heavy defoliation, the pastures were dominated by medium tussock grasses and there were significant decreases in forbs and increases in sedges (mainly with low nutrients) and stoloniferous grasses (mainly with high nutrients). Total germinable seed densities and those of most species groups were significantly lower in the heavy defoliation than the light defoliation plots. Total soil seed numbers were not affected by nutrient application but there were fewer seeds of the erect forbs and more sedge seeds in plots with high nutrients. The use of resting from grazing and fire to manage transitions between patches was tested. In Experiment 2 , changes in species density and abundance were measured for 5 years in the three patch types with and without grazing. Experiment 3 examined the effects of fire, grazing and resting on short sward patches over 4 years. In Experiment 2 , total species density was lower in lawn than short sward or tall grassland patches, and there were more species of erect forbs than other plant groups in all patch types. The lawn patches were originally dominated by Cynodon spp. This dominance continued with grazing but in ungrazed patches the abundance of Cynodon spp. declined and that of forbs increased. In the short sward patches, dominance of short tussock grasses continued with grazing but in ungrazed plots their abundance declined while that of large tussock grasses increased. The tall grassland patches remained dominated by large and medium tussock species. In Experiment 3 , fire had no effect on species abundance. On the grazed plots the short tussock grasses remained dominant but where the plots were rested from grazing the small tussock grasses declined and the large tussock grasses increased in abundance. The slow and relatively small changes in these experiments over 4 or 5 years showed how stable the composition of these pastures is, and that rapid changes between patch types are unlikely.  相似文献   

20.
在深度遮光(光照强度为高光条件的6.25%,约为自然光照的5.3%)或低养分条件下,金戴戴(Halerpestes ruthenica Ovcz.)生物量、初级分株叶面积、分株总数、匍匐茎总数和总长度均显著减小,而比节间长和比叶柄长显著增加.在低养分条件下,金戴戴匍匐茎平均节间长显著增加,而匍匐茎分枝强度和分株数显著减小.这些结果与克隆植物觅食模型相符合,表明当生长于异质性生境中,金戴戴可能通过以克隆生长和克隆形态的可塑性实现的觅养行为来增加对养分资源的摄取.在深度遮光条件下,金戴戴平均间隔子长度(即平均节间长和平均叶柄长)均显著减小.这一结果与以往实验中匍匐茎草本间隔子对中度和轻度遮光(光照强度为高光条件的13%~75%,>10%的自然光照)的反应不同.这表明,在深度遮光条件下匍匐茎克隆植物可能不发生通过间隔子可塑性实现的觅光行为.光照强度和基质养分条件的交互作用对许多性状如总生物量、匍匐茎总数和总长度、二级和三级分株数、分株总数、初级分株叶面积以及分枝强度均有十分显著的效应.在高光条件下,基质养分对这些性状有十分显著的影响;而在低光条件下,基质养分条件对这些性状不产生影响或影响较小.这表明,光照强度影响金戴戴对基质养分的可塑性反应.在深度遮光或低养分条件下,金戴戴可能通过减小匍匐茎节间粗度(增加比节间长)来增加或维持其相对长度,从而更有机会逃离资源丰度低的斑块.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号