首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nup53 is required for nuclear envelope and nuclear pore complex assembly   总被引:1,自引:0,他引:1  
Transport across the nuclear envelope (NE) is mediated by nuclear pore complexes (NPCs). These structures are composed of various subcomplexes of proteins that are each present in multiple copies and together establish the eightfold symmetry of the NPC. One evolutionarily conserved subcomplex of the NPC contains the nucleoporins Nup53 and Nup155. Using truncation analysis, we have defined regions of Nup53 that bind to neighboring nucleoporins as well as those domains that target Nup53 to the NPC in vivo. Using this information, we investigated the role of Nup53 in NE and NPC assembly using Xenopus egg extracts. We show that both events require Nup53. Importantly, the analysis of Nup53 fragments revealed that the assembly activity of Nup53 depleted extracts could be reconstituted using a region of Nup53 that binds specifically to its interacting partner Nup155. On the basis of these results, we propose that the formation of a Nup53-Nup155 complex plays a critical role in the processes of NPC and NE assembly.  相似文献   

2.
The conserved Nup107-160 complex is critical for nuclear pore complex assembly   总被引:21,自引:0,他引:21  
Nuclear pore complexes (NPCs) are large multiprotein assemblies that allow traffic between the cytoplasm and the nucleus. During mitosis in higher eukaryotes, the Nuclear Envelope (NE) breaks down and NPCs disassemble. How NPCs reassemble and incorporate into the NE upon mitotic exit is poorly understood. We demonstrate a function for the conserved Nup107-160 complex in this process. Partial in vivo depletion of Nup133 or Nup107 via RNAi in HeLa cells resulted in reduced levels of multiple nucleoporins and decreased NPC density in the NE. Immunodepletion of the entire Nup107-160 complex from in vitro nuclear assembly reactions produced nuclei with a continuous NE but no NPCs. This phenotype was reversible only if Nup107-160 complex was readded before closed NE formation. Depletion also prevented association of FG-repeat nucleoporins with chromatin. We propose a stepwise model in which postmitotic NPC assembly initiates on chromatin via early recruitment of the Nup107-160 complex.  相似文献   

3.
Blower MD  Nachury M  Heald R  Weis K 《Cell》2005,121(2):223-234
Centrosome-independent microtubule polymerization around chromosomes has been shown to require a local gradient of RanGTP, which discharges mitotic cargoes from the nuclear import receptor importin beta. Here, we have used an activity-based assay in Xenopus egg extracts to purify the mRNA export protein Rae1 as a spindle assembly factor regulated by this pathway. Rae1 is a microtubule-associated protein that binds directly to importin beta. Depletion of Rae1 from extracts or cells severely inhibits mitotic spindle assembly. A purified Rae1 complex stabilizes microtubules in egg extracts in a RanGTP/importin beta-regulated manner. Interestingly, Rae1 exists in a large ribonucleoprotein complex, which requires RNA for its activity to control microtubule dynamics in vitro. Furthermore, we provide evidence that RNA associates with the mitotic spindle and that it plays a direct, translation-independent role in spindle assembly. Our studies reveal an unexpected function for RNA in spindle morphogenesis.  相似文献   

4.
Nuclear pore complexes (NPCs) fuse the two membranes of the nuclear envelope (NE) to a pore, connecting cytoplasm and nucleoplasm and allowing exchange of macromolecules between these compartments. Most NPC proteins do not contain integral membrane domains and thus it is largely unclear how NPCs are embedded and anchored in the NE. Here, we show that the evolutionary conserved nuclear pore protein Nup53 binds independently of other proteins to membranes, a property that is crucial for NPC assembly and conserved between yeast and vertebrates. The vertebrate protein comprises two membrane binding sites, of which the C‐terminal domain has membrane deforming capabilities, and is specifically required for de novo NPC assembly and insertion into the intact NE during interphase. Dimerization of Nup53 contributes to its membrane interaction and is crucial for its function in NPC assembly.  相似文献   

5.
《The Journal of cell biology》1996,133(6):1141-1152
The amino-terminal domain of Nic96p physically interacts with the Nsp1p complex which is involved in nucleocytoplasmic transport. Here we show that thermosensitive mutations mapping in the central domain of Nic96p inhibit nuclear pore formation at the nonpermissive temperature. Furthermore, the carboxyterminal domain of Nic96p functionally interacts with a novel nucleoporin Nup188p in an allele-specific fashion, and when ProtA-Nup188p was affinity purified, a fraction of Nic96p was found in physical interaction. Although NUP188 is not essential for viability, a null mutant exhibits striking abnormalities in nuclear envelope and nuclear pore morphology. We propose that Nic96p is a multivalent protein of the nuclear pore complex linked to several nuclear pore proteins via its different domains.  相似文献   

6.
Nuclear pore complexes (NPCs) are large macromolecular assemblies that control all transport across the nuclear envelope. They are formed by about 30 nucleoporins (Nups), which can be roughly categorized into those forming the structural skeleton of the pore and those creating the central channel and thus providing the transport and gating properties of the NPC. Here we show that the conserved nucleoporin Nup93 is essential for NPC assembly and connects both portions of the NPC. Although the C-terminal domain of the protein is necessary and sufficient for the assembly of a minimal structural backbone, full-length Nup93 is required for the additional recruitment of the Nup62 complex and the establishment of transport-competent NPCs.  相似文献   

7.
The Nup107-160 complex is a critical subunit of the nuclear pore. This complex localizes to kinetochores in mitotic mammalian cells, where its function is unknown. To examine Nup107-160 complex recruitment to kinetochores, we stained human cells with antisera to four complex components. Each antibody stained not only kinetochores but also prometaphase spindle poles and proximal spindle fibers, mirroring the dual prometaphase localization of the spindle checkpoint proteins Mad1, Mad2, Bub3, and Cdc20. Indeed, expanded crescents of the Nup107-160 complex encircled unattached kinetochores, similar to the hyperaccumulation observed of dynamic outer kinetochore checkpoint proteins and motors at unattached kinetochores. In mitotic Xenopus egg extracts, the Nup107-160 complex localized throughout reconstituted spindles. When the Nup107-160 complex was depleted from extracts, the spindle checkpoint remained intact, but spindle assembly was rendered strikingly defective. Microtubule nucleation around sperm centrosomes seemed normal, but the microtubules quickly disassembled, leaving largely unattached sperm chromatin. Notably, Ran-GTP caused normal assembly of microtubule asters in depleted extracts, indicating that this defect was upstream of Ran or independent of it. We conclude that the Nup107-160 complex is dynamic in mitosis and that it promotes spindle assembly in a manner that is distinct from its functions at interphase nuclear pores.  相似文献   

8.
We have established that two homologous nucleoporins, Nup170p and Nup157p, play an essential role in the formation of nuclear pore complexes (NPCs) in Saccharomyces cerevisiae. By regulating their synthesis, we showed that the loss of these nucleoporins triggers a decrease in NPCs caused by a halt in new NPC assembly. Preexisting NPCs are ultimately lost by dilution as cells grow, causing the inhibition of nuclear transport and the loss of viability. Significantly, the loss of Nup170p/Nup157p had distinct effects on the assembly of different architectural components of the NPC. Nucleoporins (nups) positioned on the cytoplasmic face of the NPC rapidly accumulated in cytoplasmic foci. These nup complexes could be recruited into new NPCs after reinitiation of Nup170p synthesis, and may represent a physiological intermediate. Loss of Nup170p/Nup157p also caused core and nucleoplasmically positioned nups to accumulate in NPC-like structures adjacent to the inner nuclear membrane, which suggests that these nucleoporins are required for formation of the pore membrane and the incorporation of cytoplasmic nups into forming NPCs.  相似文献   

9.
10.
In vertebrate cells, the nucleoporin Nup358/RanBP2 is a major component of the filaments that emanate from the nuclear pore complex into the cytoplasm. Nup358 forms a complex with SUMOylated RanGAP1, the GTPase activating protein for Ran. RanGAP1 plays a pivotal role in the establishment of a RanGTP gradient across the nuclear envelope and, hence, in the majority of nucleocytoplasmic transport pathways. Here, we investigate the roles of the Nup358-RanGAP1 complex and of soluble RanGAP1 in nuclear protein transport, combining in vivo and in vitro approaches. Depletion of Nup358 by RNA interference led to a clear reduction of importin alpha/beta-dependent nuclear import of various reporter proteins. In vitro, transport could be partially restored by the addition of importin beta, RanBP1, and/or RanGAP1 to the transport reaction. In intact Nup358-depleted cells, overexpression of importin beta strongly stimulated nuclear import, demonstrating that the transport receptor is the most rate-limiting factor at reduced Nup358-concentrations. As an alternative approach, we used antibody-inhibition experiments. Antibodies against RanGAP1 inhibited the enzymatic activity of soluble and nuclear pore-associated RanGAP1, as well as nuclear import and export. Although export could be fully restored by soluble RanGAP, import was only partially rescued. Together, these data suggest a dual function of the Nup358-RanGAP1 complex as a coordinator of importin beta recycling and reformation of novel import complexes.  相似文献   

11.
Here, we report the first evidence that the Ran GTPase cycle is required for nuclear pore complex (NPC) assembly. Using a genetic approach, factors required for NPC assembly were identified in Saccharomyces cerevisiae. Four mutant complementation groups were characterized that correspond to respective mutations in genes encoding Ran (gsp1), and essential Ran regulatory factors Ran GTPase-activating protein (rna1), Ran guanine nucleotide exchange factor (prp20), and the RanGDP import factor (ntf2). All the mutants showed temperature-dependent mislocalization of green fluorescence protein (GFP)-tagged nucleoporins (nups) and the pore-membrane protein Pom152. A decrease in GFP fluorescence associated with the nuclear envelope was observed along with an increase in the diffuse, cytoplasmic signal with GFP foci. The defects did not affect the stability of existing NPCs, and nup mislocalization was dependent on de novo protein synthesis and continued cell growth. Electron microscopy analysis revealed striking membrane perturbations and the accumulation of vesicles in arrested mutants. Using both biochemical fractionation and immunoelectron microscopy methods, these vesicles were shown to contain nups. We propose a model wherein a Ran-mediated vesicular fusion step is required for NPC assembly into intact nuclear envelopes.  相似文献   

12.
Nuclear pore complexes (NPCs) span the nuclear envelope and mediate communication between the nucleus and the cytoplasm. To obtain insight into the structure and function of NPCs of multicellular organisms, we have initiated an extensive analysis of Caenorhabditis elegans nucleoporins. Of 20 assigned C. elegans nucleoporin genes, 17 were found to be essential for embryonic development either alone or in combination. In several cases, depletion of nucleoporins by RNAi caused severe defects in nuclear appearance. More specifically, the C. elegans homologs of vertebrate Nup93 and Nup205 were each found to be required for normal NPC distribution in the nuclear envelope in vivo. Depletion of Nup93 or Nup205 caused a failure in nuclear exclusion of nonnuclear macromolecules of approximately 70 kDa without preventing active nuclear protein import or the assembly of the nuclear envelope. The defects in NPC exclusion were accompanied by abnormal chromatin condensation and early embryonic arrest. Thus, the contribution to NPC structure of Nup93 and Nup205 is essential for establishment of normal NPC function and for cell viability.  相似文献   

13.
The nuclear pore complex (NPC) is a large proteinaceous structure through which bidirectional transport of macromolecules across the nuclear envelope (NE) takes place. Nup153 is a peripheral NPC component that has been implicated in protein and RNP transport and in the interaction of NPCs with the nuclear lamina. Here, Nup153 is localized by immunogold electron microscopy to a position on the nuclear ring of the NPC. Nuclear reconstitution is used to investigate the role of Nup153 in nucleo- cytoplasmic transport and NPC architecture. NPCs assembled in the absence of Nup153 lacked several nuclear basket components, were unevenly distributed in the NE and, unlike wild-type NPCs, were mobile within the NE. Importin alpha/beta-mediated protein import into the nucleus was strongly reduced in the absence of Nup153, while transportin-mediated import was unaffected. This was due to a reduction in import complex translocation rather than to defective receptor recycling. Our results therefore reveal functions for Nup153 in NPC assembly, in anchoring NPCs within the NE and in mediating specific nuclear import events.  相似文献   

14.
Saccharomyces cerevisiae Upf1p is a 971-amino-acid protein that is required for the nonsense-mediated mRNA decay (NMD) pathway, a pathway that degrades mRNAs with premature translational termination codons. We have identified a two-hybrid interaction between Upf1p and the nuclear pore (Nup) proteins, Nup100p and Nup116p. Both nucleoporins predominantly localize to the cytoplasmic side of the nuclear pore and participate in mRNA transport. The two-hybrid interaction between Upf1p and the nuclear pore proteins, Nup100p and Nup116p, is dependent on the presence of the C-terminal 158 amino acids of Upf1p. Nup100p and Nup116p can be co-immunoprecipitated from whole-cell extracts with Upf1p, confirming in vitro the interaction identified by the two-hybrid analysis. Finally, we see a genetic interaction between UPF1 and NUP100. The growth of upf1Delta, can1-100 cells is inhibited by canavanine. The deletion of NUP100 allows upf1Delta, can1-100 cells to grow in the presence of canavanine. Physiologically, the interaction between Upf1p and the nuclear pore proteins, Nup100p and Nup116p, is significant because it suggests a mechanism to ensure that Upf1p associates with newly synthesized mRNA as it is transported from the nucleus to the cytoplasm prior to the pioneer round of translation.  相似文献   

15.
The bidirectional nucleocytoplasmic transport of macromolecules is mediated by the nuclear pore complex (NPC) which, in yeast, is composed of approximately 30 different proteins (nucleoporins). Pre-embedding immunogold-electron microscopy revealed that Nic96p, an essential yeast nucleoporin, is located about the cytoplasmic and the nuclear periphery of the central channel, and near or at the distal ring of the yeast NPC. Genetic approaches further implicated Nic96p in nuclear protein import. To more specifically explore the potential role of Nic96p in nuclear protein import, we performed a two-hybrid screen with NIC96 as the bait against a yeast genomic library to identify transport factors and/or nucleoporins involved in nuclear protein import interacting with Nic96p. By doing so, we identified the yeast nucleoporin Nup53p, which also exhibits multiple locations within the yeast NPC and colocalizes with Nic96p in all its locations. Whereas Nup53p is directly involved in NLS-mediated protein import by its interaction with the yeast nuclear import receptor Kap95p, it appears not to participate in NES-dependent nuclear export.  相似文献   

16.
Nuclear pore complexes (NPCs) are huge assemblies formed from ∼30 different nucleoporins, typically organized in subcomplexes. One module, the conserved Nup82 complex at the cytoplasmic face of NPCs, is crucial to terminate mRNA export. To gain insight into the structure, assembly, and function of the cytoplasmic pore filaments, we reconstituted in yeast the Nup82–Nup159–Nsp1–Dyn2 complex, which was suitable for biochemical, biophysical, and electron microscopy analyses. Our integrative approach revealed that the yeast Nup82 complex forms an unusual asymmetric structure with a dimeric array of subunits. Based on all these data, we developed a three-dimensional structural model of the Nup82 complex that depicts how this module might be anchored to the NPC scaffold and concomitantly can interact with the soluble nucleocytoplasmic transport machinery.  相似文献   

17.
The protein Gle1 is required for export of mRNAs from the nucleus to the cytoplasm in both lower and higher eukaryotic cells. In human (h) cells, shuttling of hGle1 between the nucleus and cytoplasm is essential for bulk mRNA export. To date, no hGle1-interacting proteins have been reported and the mechanism by which hGle1 interacts with the nuclear pore complex (NPC) and mediates export is unknown. To identify proteins that can interact with hGle1, a genome-wide yeast two-hybrid screen was performed. Three potential hGle1-interacting partners were isolated, including clones encoding the C-terminal region of the NPC protein hNup155. This interaction between hGle1 and full-length hNup155 was confirmed in vitro, and deletion analysis identified the N-terminal 29 residues of hGle1 as the hNup155-binding domain. Experiments in HeLa cells confirmed that the nuclear rim localization of the major hGle1 protein variant (hGle1B) was dependent on the presence of these 29 N-terminal residues. This suggests that this domain of hGle1 is necessary for targeting to the NPC. This work also characterizes the first domain in hNup155, a 177 C-terminal amino acid span that binds to hGle1. The mutual interaction between hGle1 and the symmetrically distributed nuclear pore protein Nup155 suggests a model in which hGle1's association with hNup155 may represent a step in the Gle1-mediated mRNA export pathway.  相似文献   

18.
19.
《The Journal of cell biology》1996,133(6):1153-1162
We have isolated a major protein constituent from a highly enriched fraction of yeast nuclear pore complexes (NPCs). The gene encoding this protein, Nup188p, was cloned, sequenced, and found to be nonessential upon deletion. Nup188p cofractionates with yeast NPCs and gives an immunofluorescent staining pattern typical of nucleoporins. Using immunoelectron microscopy, Nup188p was shown to localize to both the cytoplasmic and nucleoplasmic faces of the NPC core. There, Nup188p interacts with an integral protein of the pore membrane domain, Pom152p, and another abundant nucleoporin, Nic96p. The effects of various mutations in the NUP188 gene on the structure of the nuclear envelope and the function of the NPC were examined. While null mutants of NUP188 appear normal, other mutants allelic to NUP188 exhibit a dominant effect leading to the formation of NPC-associated nuclear envelope herniations and growth inhibition at 37 degrees C. In addition, depletion of the interacting protein Pom152p in cells lacking Nup188p resulted in severe deformations of the nuclear envelope. We suggest that Nup188p is one of a group of proteins that form the octagonal core structure of the NPC and thus functions in the structural organization of the NPC and nuclear envelope.  相似文献   

20.
《Developmental cell》2022,57(1):19-31.e6
  1. Download : Download high-res image (204KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号