首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Last instar larvae of the tobacco budworm, Heliothis virescens F., fail to pupate and have little 20-hydroxyecdysone when parasitized by Toxoneuron nigriceps (Viereck). In this paper, we extend these observations to juvenile hormone (JH) to determine if parasitism by this wasp affects other endocrine systems. To this end, we compared the production of JH by corpora cardiaca-corpora allata complexes (CC-CA), the metabolism of JH by haemolymph enzymes, and the haemolymph titre of JH in parasitized and non-parasitized control larvae of H. virescens during the last larval instar. CC-CA from parasitized and control larvae had similar peaks of JH synthesis on day 1 of the fifth instar, with JH II accounting for more than 90% of total JH in both groups. On subsequent days, JH synthesis dropped to undetectable levels more quickly in non-parasitized controls than in parasitized larvae. JH metabolism by haemolymph of parasitized and control animals increased from low levels on day 1 of the fifth instar to high levels on days 2 and 3 of the instar. JH metabolism was significantly higher in control larvae than in parasitized larvae. After day 3, JH metabolism decreased in both groups, but was significantly higher in parasitized larvae. The major metabolite of JH in both groups was JH acid, though traces of JH diol and JH acid diol were also detected. The haemolymph titre of JH in both groups peaked on day 1 of the fifth instar and, similar to the synthesis of JH by CC-CA, decreased more rapidly in control larvae. As a result, non-parasitized animals had significantly lower JH titres on day 2. The higher JH titres observed in parasitized larvae during the early fifth instar may contribute to their developmental arrest. The possible role of these JH alterations in the host developmental and metabolic redirection is discussed and a more comprehensive physiological model accounting for host-parasitoid interactions is proposed.  相似文献   

2.
In experiments on the synthesis of the vitellogenic protein, farnesylmethylester, a juvenile hormone (JH) analogue, was injected into female Nauphoeta cinerea larvae at various stages during their development. Two and 4 days after injection, 2 μl of haemolymph were assayed in a vitellogenin immunodiffusion test. In second last and last instar larvae less than 6 days before adult ecdysis, high doses (100 μg) of farnesylmethylester are necessary to induce vitellogenin synthesis, whereas older last stage larvae and decapitated adults respond to small doses (1 μg) with the synthesis of vitellogenin. It seems that the competence to synthesize the vitellogenic protein changes at the time of induction of the moulting process. If farnesylmethylester is injected into last instar larvae with a supposedly high titre of ecdysone, the vitellogenic protein can be detected in the haemolymph of a small percentage of animals only.Oöcyte maturation can be observed in last instar larvae injected after the fifth to ninth day with farnesylmethylester. The observed volume changes of the corpora allata suggest that an absence of JH for a short time is necessary for the oöcytes to become competent to grow. Last instar larvae treated with farnesylmethylester become larval-adult intermediates with partly developed oöcytes, demonstrating a simultaneous juvenilizing and gonadotropic influence of the JH analogue. In last instar larvae injected with farnesylmethylester a partial degeneration of already maturing oöcytes is induced at the time when the ecdysone titre is supposedly high and the possible reasons for this are discussed.  相似文献   

3.
The haemolymph ecdysteroid titre and in vitro capacities of prothoracic glands and corpora allata to synthesize ecdysone and juvenile hormone, respectively, during the last-larval instar of diapause-destined (short-day) and non-diapause-destined (long-day) Manduca sexta were investigated. In general, the ecdysteroid titres for both populations of larvae were the same and exhibited the two peaks characteristic of the haemolymph titre during this developmental stage in Manduca. The only difference in the titre occurred between day 7 plus 12 h and day 7 plus 20 h, when the short-day larval titre did not decrease as quickly as the long-day titre. The in vitro synthesis of ecdysone by prothoracic glands of short- and long-day larvae during the pharate pupal phase of the instar were also essentially the same. Activity fluctuated at times which would support the idea that ecdysone synthesis by the glands is a major contributing factor to the changes in the haemolymph ecdysteroid titre. There was one subtle difference in prothoracic gland activity between the two populations, occurring on day 7 plus 2 h. By day 7 plus 10 h, however, rates of ecdysone synthesis by the short- and long-day glands were comparable. This elevated activity of the short-day glands occurred just prior to the period the haemolymph ecdysteroid titre remained elevated in these larvae. The capacities of corpora allata to synthesize juvenile hormone I and III in vitro were not markedly different in long- and short-day last-instar larvae. At the time of prothoracicotropic hormone release in the early pupa, activity of corpora allata from short- and long-day reared animals was low and also essentially the same. There were a few differences in the levels of synthesis at isolated times, but they were not consistent for both homologues. Overall, there are no compelling differences in the fluctuations of ecdysteroids and juvenile hormones between diapause-destined and non-diapause-destined Manduca larvae. Since these hormones do not appear to play any obviously significant role in the induction of pupal diapause in this insect, the photoperiodic induction of diapause in Manduca appears to be a predominantly brain-centred phenomenon not involving endocrine effectors.  相似文献   

4.
A haemolymph ecdysteroid titre of the fifth (last)-larval instar of the hemipteran, Rhodnius prolixus has been determined by radioimmunoassay. During the last-larval stadium the ecdysteroid titre increases from a negligible level in the unfed insect to a detectable level within minutes following a blood meal. The titre reaches a plateau of ~50–70 ng/ml at 3–4 hr and this level is maintained until day 5–6, the time of the head-critical period in Rhodnius. At the head-critical period the titre begins to increase again, this time dramatically, reaching a peak of ~ 3500 ng/ml at day 13. From day 14 to ecdysis (day 21) the titre declines to a low level, ~ 30 ng/ml. Basal levels of ecdysteroids, ~ 15 ng/ml, were detectable in young adult males and females. A survey of haemolymph volumes during the last-larval instar indicates that the changes in the ecdysteroid titre reflect changes in the rates of ecdysteroid synthesis, and not changes in haemolymph volume. Excretion of ecdysteroids varies systematically during the instar, suggesting that control of ecdysteroid excretion may be important in regulation of the haemolymph titre. Qualitative analysis of the haemolymph ecdysteroid RIA activity revealed the presence of only ecdysone and 20-hydroxy-ecdysone. For the large peak preceding larval-adult ecdysis, 20-hydroxy-ecdysone was the predominant hormone. These results indicate that there may be two periods of release of prothoracicotropic hormone (PTTH) from the brain in Rhodnius, one immediately following the blood meal and the second on day 5 or 6. The significance of these times of PTTH release is discussed in relation to classical evidence of the timing of moulting hormone action, the response of target tissues, and with more recent findings on the timing of release of neurosecretory material from the brain of Rhodnius during moulting.  相似文献   

5.
The effect of topical application of Artemisia annua oil on the development and reproduction of Dysdercus koenigii was studied. On the basis of 48 h mortality, the LD50 for fifth instar nymphs was 0.48 μl/nymph. The treated nymphs showed 2 days delay in development, and also produced intermediates. The treatment decreased haemolymph protein concentration and disturbed its electrophoretic protein pattern. The adults which emerged from treated nymphs showed poor ovary development. There was a greater median neurosecretory activity in the treated insects compared with control insects till day 6 of adult life.  相似文献   

6.
Starvation of 48 h old fifth instar larvae depressed storage protein titres initially for 48 h but retained the levels comparable to control thereafter, possibly due to nutrients obtained during the 48 h feeding after fourth ecdysis. After an initial decline ligated larvae accumulated maximum storage proteins in haemolymph. This is because of inhibitory juvenile hormone titre at the basal level besides the appropriate release of 20-hydroxyecdysone from the ectopic source(s). Injection of methoprene (10 Μg/larva) repressed accumulation of storage proteins while 20-hydroxyecdysone (10 Μg/larva) increased the same. P-soyatose injection to starved and ligated larvae accelerated storage protein accumulation in haemolymph, signalling nutrient indispensability for initiation of storage protein synthesis at the appropriate time of last instar development inBombyx mori.  相似文献   

7.
8.
The primary regulator of ecdysone biosynthesis by insect prothoracic glands is the prothoracicotropic hormone. However, it now appears that other factors, secondary regulators, may modulate prothoracic gland activity. One such factor has been isolated from the haemolymph of Manduca larvae. This haemolymph factor stimulates in vitro ecdysone synthesis by larval and pupal prothoracic glands by approx. 5-fold. It has an apparent mol. wt of ~330 kD, is protease-sensitive and is heat labile, the latter clearly distinguishing it from the prothoracicotropic hormone. Further, its steroidogenic effects and those of prothoracicotropic hormone are additive. Treatment of larval or pupal prothoracic glands with both moieties simultaneously effects an approx. 10-fold increase in ecdysone synthesis. The haemolymph titre of the stimulatory factor is low at commitment of the last-larval instar, then increases by approx. 3-fold later in the instar during pharate-pupal development. This increase in the titre is sufficient to effect a significant increase in prothoracic gland activity that could be physiologically important. Thus, it appears that the fluctuating level of this haemolymph stimulatory factor may act in conjunction with prothoracicotropic hormone to regulate the haemolymph ecdysteroid titre by modulating the ecdysone biosynthetic activity of the prothoracic glands.  相似文献   

9.
Abstract  Nineteen kinds of spiro enol ether analogues were screened with larvae of Pieris rapae for antifeedant activity. The results showed that the antifeedant activity of compounds No.20 and No. 12 was higher than others. In non-choice test, AFC50 values within 24 h of compounds No.20 and No. 12 against 3rd instar larvae of P. rapae were 226.93 μg/mL and 370.00 μg/mL, and that in choice test against 4th larvae were 280.54 μg/mL and 398.88 μg/mL, respectively. Compd. No.20 could prolong the eggs hatch time and reduce the haemolymph content and the protein content in haemolymph of 4th instar larvae obviously. Compd. No.20 could protect tested leaves and control larvae of P. rapae effectively.  相似文献   

10.
Larval haemolymph proteins (LHP), LHP49 and LHP46 are produced in the penultimate and last larval instars. Starvation during the early and mid stage of last instar development prevents the production of both LHPs. Decapitation in early and mid last instar stimulates LHP synthesis and their concentration in haemolymph increases, while ligation in last instar larvae blocks the production of LHPs. Application of exogenous JH lowers the synthesis of LHP49 and LHP46 in Corcyra. These observations suggests that LHP49 and LHP46 synthesis is activated during the periods when JH titres are either low or undetectable.  相似文献   

11.
The proteins of the fat body of non-diapausing, pre-diapausing, and newly-diapaused larvae of the southwestern corn borer, Diatraea grandiosella, were examined. Since a low titre of juvenile hormone (JH) is present in the haemolymph throughout the final instar of non-diapausing larvae, the hormone does not appear to stimulate the pre-metamorphic synthesis of proteins. In contrast, the high titre of JH in the haemolymph during the final instar of pre-diapausing larvae appears to stimulate the synthesis of selected proteins. For example, pre-diapausing larvae store in their fat body a low molecular weight protein which has been named the ‘diapause-associated protein’. When non-diapausing larvae were treated topically with C17-JH or a JH mimic, from 50 to 70% entered a diapause-like state as fully grown larvae. These hormone-treated larvae accumulated the diapause-associated protein and a high molecular weight protein in their fat bodies. Both of these proteins were shown to be released from the fat body of newly-diapaused larvae in vitro, and may function in the haemolymph during diapause. The high molecular weight protein, isolated from the haemolymph, was shown to contain neutral and polar lipids, including biochromes. Its storage in the fat body and release into the haemolymph may be essential for the transport of lipids during diapause. The fat body proteins of newly-diapaused larvae of the southern cornstalk borer, Diatraea crambidiodes, were also examined electrophoretically. They were found to contain a similar protein pattern to that of D. grandiosella, including the presence of a diapause-associated protein.  相似文献   

12.
Heavy metal contamination of the forest pest insect Lymantria dispar (L.) (Lepidoptera; Lymantriidae), the gypsy moth, can alter its haemolymph composition, as has already been shown for carbohydrates and lipids in recent studies. L. dispar larvae are frequently parasitized by Glyptapanteles liparidis (Bouché) (Hymenoptera; Braconidae) larvae, which can—to some extent—regulate the population size of the pest insect. The parasitoids feed on the haemolymph of L. dispar larvae; hence, a different haemolymph composition of the host alters the trophic situation of the parasitoids. The aim of the present study was to investigate whether metal contamination also affects the concentrations of free amino acids in L. dispar haemolymph, and protein concentrations in their haemolymph and tissue. L. dispar larvae were parasitized on the first day of the second instar and then reared on diets contaminated with Cd, Pb, Cu or Zn at two concentrations each. Haemolymph and total body tissue of the larvae (fourth instar/third day) were analyzed. The concentrations of the free amino acids were elevated in five out of the eight contamination groups (Cd6, Pb4, Cu6, Cu10, Zn60), whereas haemolymph protein concentrations were significantly reduced in all contaminated individuals. The haemolymph protein concentration was 18 mg/ml in the control group and decreased to less than 10 mg/ml due to cadmium and zinc contamination at both concentrations and in the low copper contamination group. In contrast, total body proteins (136 g/mg dry weight in the control group) were elevated due to heavy metal stress. Analyses of haemolymph protein concentrations during the fourth instar demonstrated an increase of the proteins from day one to day four (followed by a decrease on the fifth day) in the control group and the cadmium contamination group. A steady increase of proteins from the first to the fifth day in the copper and zinc contaminated larvae indicated a retarded development in these groups. Thus, the present study along with other recent studies demonstrated, that heavy metal stress changes the concentrations of all main haemolymph compounds of L. dispar larvae.  相似文献   

13.
Growth-blocking peptide (GBP) has been isolated for the first time from the haemolymph of the host armyworm Pseudaletia separata whose development was halted in the last larval instar stage by parasitization with the parasitoid wasp Cotesia kariyai. Recent studies demonstrated that GBP not only exists in the plasma (haemolymph without cells) of parasitized last instar larvae, but also in the plasma of nonparasitized penultimate (5th) instar larvae. Monoclonal antibodies were prepared to measure the titers of GBP in nonparasitized and parasitized larval plasma. One of three monoclonal antibodies raised against GBP, which is the most specific for GBP, was used to quantify the concentration of plasma GBP. As this antibody recognized two plasma peptides other than GBP in crude plasma fractions, each plasma peptide fraction was separated by a reversed phase HPLC, and then plasma GBP level was measured by ELISA. The highest level of plasma GBP detected on Day 0 of the penultimate instar larvae was gradually decreased throughout the larval growth except for the temporary increase on Day 0 of last larval instar. After parasitization on Day 0 of last larval instar, two peaks of plasma GBP titer were detected during the last larval instar, one day and six days after parasitization. This characteristic increase and decrease in plasma GBP level was also observed by transferring last instar larvae of the armyworm from 25 to 10°C, as a result of which larvae delayed pupation by more than 15 days. From these results, it is reasonable to propose that plasma GBP in lepidopteran larvae might control certain upstream steps in a cascade of events leading to pupation; thus, an elevated level of plasma GBP interferes with normal metamorphosis from larvae to pupae.  相似文献   

14.
Simultaneous quantitative determination of the three naturally occurring juvenile hormones in insects (JH-I, JH-II and JH-III) was performed on haemolymph samples of both normally developing locusts and locusts implanted with active corpora allata, using capillary gas chromatography with electron capture detection.In fourth instar female larvae, 24–48 hr after the third ecdysis, as well as in adult females, 18 days after the imaginal ecdysis, only JH-III was detected. In fifth instar female larvae JH-III was present in very low concentrations, if at all.After implantation of four pairs of corpora allata taken from young fourth instar female larvae or one pair or corpora allata taken from adult females into fifth instar female larvae 0–24 hr after ecdysis, an elevation of the JH-III titre was observed. Neither JH-I nor JH-II could be detected. The amount of JH-III, already elevated 2 hr after implantation, remained high for several days in comparison to that of control insects. On the third day after the subsequent moult the JH-III level was comparable to that of normally developing fifth instar larvae. Factors involved in the achievement of the haemolymph JH-titre are discussed.  相似文献   

15.
Changes in prothoracic gland morphology were correlated to developmental events and ecdysteroid titres (20-hydroxyecdysone equivalents) during the last-larval instar in Spodoptera littoralis. After ecdysis to the last-larval instar the haemolymph ecdysteroid titre remained at about 45 ng/ml, when the prothoracic glands appeared quiescent. The first signs of distinct gland activity, indicated by increased cell size and radial channel formation, were observed at about 12 h prior to the cessation of feeding (36 h after the last-larval moult), accompanied by a gradual increase in ecdysteroid titre to 110 ng/ml haemolymph, at the onset of metamorphosis. During this phase ecdysteroid titres remained at a constant level (140–210 ng/ml haemolymph) and prothoracic gland cellular activity was absent for a short period. The construction of pupation cells occurred when haemolymph ecdysteroids titres increased to 700 ng/ml. A rapid increase in ecdysteroids began on the fourth night (1600 ng/ml haemolymph) reaching a maximal level (4000 ng/ml haemolymph) at the beginning of the fourth day. In freshly moulted pupae a relatively high ecdysteroid titre (1100 ng/ml haemolymph) was still observed, although during a decrease to almost negligible levels. The increase in ecdysteroid level during the third and the fourth nights of the last-larval instar was correlated with the period when almost all the prothoracic gland cells showed signs of high activity. Neck-ligation experiments indicated the necessity of head factors for normal metamorphosis up to the second to third day of the instar. The possibility that the prothoracic glands are under prothoracicotropic hormone regulation at these times is discussed.  相似文献   

16.
A ninhydrin-positive compound, called peptide I (PI), has been found in the haemolymph of Pieris brassicae. The substance has been partially purified and is presumed to be a peptide of low molecular weight and rich in tyrosine, or a derivative of tyrosine. Its phenolic nature is evident.PI is not present in fourth instar larvae but is first found in fifth instar larvae a few hours after ecdysis. Its concentration rises almost linearly and is 25 times higher at the end of feeding. The concentration falls to one-third of the peak value shortly after pupation. Some PI is still found in pharate adults and young emerged adults. Both sexes contain about equal amounts of PI.The content of tyrosine in the haemolymph was about 4 μmole/ml during the period studied (ecdysis was not examined). The content of tyrosine increases towards the end of the feeding period during both the fourth and fifth instars. This occurs also after pupation, when the concentration of PI decreases. PI is distributed in the ratio of 1 : 5 between tissues and haemolymph at the end of the fifth instar.PI is not of dietary origin. Its occurrence during development suggests a rôle in pupation. It is possible that PI is a reserve of tyrosine, owing to its greater solubility in comparison to that of tyrosine.A substance identical or very similar to the PI of P. brassicae was also found in four other randomly chosen species, Smerinthus ocellatus L., Pergesa elpenor L., Celerio galii L., and, possibly, Dicranula vinula, L. This would suggest that such a compound occurs rather commonly in Lepidoptera.  相似文献   

17.
Although estrogen is well known as a vertebrate sex steroid, its presence in insects, including Bombyx mori, raises questions about its precise role in the physiology of insects. It was reported earlier that estradiol-17beta (E(2)) exerts a specific effect on silk-gland function in B. mori and that it may act in a nuclear-mediated way. To evaluate further the effect of E(2) on cocoon characters, larval growth and development, 1μg/g of E(2) was applied topically to the first and second day of fifth instar larvae. This resulted in a significant enhancement of cocoon characters, such as cocoon shell weight, silk filament length per cocoon, denier per filament and reelability of the cocoons, without any adverse effect on fecundity and hatchability. In the present study, E(2) levels in the haemolymph were quantified on different days of the fifth instar larvae and age-dependent changes in the endogenous E(2) titre have been demonstrated. These age-dependent variations in E(2) content coincide with physiological events occurring during the fifth instar. Such observations exclude the possibility of a dietary origin for E(2), as a sudden and sharp rise of the E(2) level in the haemolymph was observed on the 10th day of the fifth instar, preceded by a small increase on the ninth day after an eight-day feeding period. The increased level of estradiol in the haemolymph of larvae treated topically with E(2) indicates effective penetration of this hormone through the larval cuticle. Moreover, similar patterns of alteration of E(2) levels on different days of the fifth instar in both control and treated groups suggests the existence of some internal metabolic pathway in the silkworm body to regulate the hormone titre. Thus, the present investigation offers a system for investigating the unique function of E(2) in B. mori and offers potential for improvement of silk production.  相似文献   

18.
In the solitary egg-larval parasitoid Chelonus inanitus (Braconidae) both polydnavirus and the parasitoid larva manipulate host development. Parasitization leads to a premature drop in juvenile hormone titre and a precocious onset of metamorphosis in the 5th larval instar. The C. inanitus bracovirus (CiBV) alone causes a reduction in host ecdysteroid titres at the pupal cell formation stage and prevents pupation. Here we report three new findings. (1) We show that parasitization causes a reduction in haemolymph ecdysteroid titre immediately after the moult to the 5th instar; similarly low values were seen in nonparasitized larvae after the moult to the 6th instar. These data along with parasitoid removal experiments indicate that the low ecdysteroid titre after the moult is a very early sign of the upcoming metamorphosis. (2) In vitro experiments with prothoracic glands and brain extracts showed that CiBV affects both prothoracic glands and prothoracicotropic hormone after the stage of pupal cell formation. (3) In the haemolymph of parasitized larvae the ecdysteroid titre increased in the late cell formation stage, i.e. immediately before egression of the parasitoid. In vitro experiments showed that late 2nd instar parasitoids release ecdysteroids and are thus very likely responsible for the rise in host ecdysteroids.  相似文献   

19.
At day two, a sharp peak of octopamine (OA) was observed in last instar female Bombyx mori larvae. This peak also appeared in male larvae a day later than in females at day three. An OA peak was also observed before the 3rd ecdysis. However, no OA peaks were observed in 4th instar larvae. At day eight and nine of the 5th instar, another OA peak was observed for male and female, respectively. A peak of tyramine (TA) was found at day one followed by a peak of OA at day two in 3rd instar larvae. At day two, a day before OA peak, a peak of TA was observed for male insects and before the 2nd peak of OA, TA titre was also high in 5th instar larvae. Immediately after 3rd ecdysis, a high titre of DL-beta-(3,4-dihydroxyphenyl)alanine (DOPA) was observed, followed by a peak of dopamine (DA) at day five. A peak of DOPA was found at day one followed by a peak of DA at day two in 3rd instar larvae. Similarly, a small peak of DOPA was observed at day two, followed by an increase of DA at days eight and nine after the 4th ecdysis. Ecdysteroid peaks were observed just before the 3rd and 4th ecdysis and an ecdysteroid titre increased after the start of spinning. The effects of OA and JH on production of ecdysteroids by prothoracic glands (PGs) were examined in order to identify neuromediators responsible for triggering pupation in B. mori larvae. Exogeneous OA (10-100 mM) reduced and 10 &mgr;M OA stimulated the production of ecdysteroids in the presence and absence of brain extracts by PGs in the final instar (day five) of B. mori in vitro. Meanwhile, exogeneous JHI (10 &mgr;g/ml) stimulated and at 5 &mgr;g/ml it reduced production of ecdysteroids in the presence of brain extracts. Gramine, an OA antagonist, delayed pupation when applied in the diet. Thus, OA may produce some biological effects on the programming of larval-pupal development.  相似文献   

20.
Juvenile hormone esterase (JHE) activity, ecdysone titre, and developmental competence of the epidermis were determined in last instar larvae and pupae of Galleria mellonella. Haemolymph JHE activity reaches a peak before increases are observed in ecdysone titre both during larval-pupal and pupal-adult metamorphosis. JHE activity is low during the penultimate larval instar although general esterase activity is relatively high. In last instar larvae two ecdysone peaks are noted after the increase in JHE activity. Furthermore, epidermal cell reprogramming occurs just after the increase in haemolymph JHE activity and possibly before the first increase in ecdysone titre. This was tested by injection of high doses of β-ecdysone into last instar larvae of different ages resulting in rapid cuticle deposition. Reprogramming occurred if the resulting cuticle was of the pupal type. These correlative observations may increase our understanding of the relative importance of an ecdysone surge in the absence of JH in reprogramming of the insect epidermis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号