首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Docking represents a versatile and powerful method to predict the geometry of protein–protein complexes. However, despite significant methodical advances, the identification of good docking solutions among a large number of false solutions still remains a difficult task. We have previously demonstrated that the formalism of mutual information (MI) from information theory can be adapted to protein docking, and we have now extended this approach to enhance its robustness and applicability. A large dataset consisting of 22,934 docking decoys derived from 203 different protein–protein complexes was used for an MI-based optimization of reduced amino acid alphabets representing the protein–protein interfaces. This optimization relied on a clustering analysis that allows one to estimate the mutual information of whole amino acid alphabets by considering all structural features simultaneously, rather than by treating them individually. This clustering approach is fast and can be applied in a similar fashion to the generation of reduced alphabets for other biological problems like fold recognition, sequence data mining, or secondary structure prediction. The reduced alphabets derived from the present work were converted into a scoring function for the evaluation of docking solutions, which is available for public use via the web service score-MI: http://score-MI.biochem.uni-erlangen.de  相似文献   

2.
We investigated the interacting amino acids critical for the stability and ATP binding of Mycobacterium tuberculosis PII protein through a series of site specific mutagenesis experiments. We assessed the effect of mutants using glutaraldehyde crosslinking and size exclusion chromatography and isothermal titration calorimetry. Mutations in the amino acid pair R60–E62 affecting central electrostatic interaction resulted in insoluble proteins. Multiple sequence alignment of PII orthologs displayed a conserved pattern of charged residues at these positions. Mutation of amino acid D97 to a neutral residue was tolerated whereas positive charge was not acceptable. Mutation of R107 alone had no effect on trimer formation. However, the combination of neutral residues both at positions 97 and 107 was not acceptable even with the pair at 60–62 intact. Reversal of charge polarity could partially restore the interaction. The residues including K90, R101 and R103 with potential to form H-bonds to ATP are conserved throughout across numerous orthologs of PII but when mutated to Alanine, they did not show significant differences in the total free energy change of the interaction as examined through isothermal titration calorimetry. The ATP binding pattern showed anti-cooperativity using three-site binding model. We observed compensatory effect in enthalpy and entropy changes and these may represent structural adjustments to accommodate ATP in the cavity even in absence of some interactions to perform the requisite function. In this respect these small differences between the PII orthologs may have evolved to suite species specific physiological niches.  相似文献   

3.
The effect of nutrients and growth conditions on the accumulation of glutamyl endopeptidase in the culture liquid ofBacillus intermedius 3–19 was studied. Glucose and other readily metabolizable carbon sources were found to suppress the production of the enzyme, whereas inorganic phosphate and ammonium cations enhanced it. Protein substrates, such as casein, gelatin, and hemoglobin, did not affect enzyme production. Some bivalent cations (Ca2+, Mg2+, Co2+) increased the production of glutamyl endopeptidase, but others (Zn2+, Fe2+, Cu2+) acted in the opposite way. The rate of enzyme accumulation in the culture liquid increased as the growth rate of the bacterium decreased, so that the maximum enzyme activity was observed in the stationary growth phase. Based on the results of this investigation, an optimal medium for the maximum production of glutamyl endopeptidase byB. intermedius 3–19 was elaborated.  相似文献   

4.
Protein p6 of the Bacillus subtilis phage ø29 is essential for in vivo viral DNA replication. This protein activates the initiation of ø29 DNA replication in vitro by forming a multimeric nucleoprotein complex at the replication origins. The N-terminal region of protein p6 is involved in DNA binding, as shown by in vitro studies with p6 proteins altered by deletions or missense mutations. We report on the development of an in vivo functional assay for protein p6. This assay is based on the ability of protein p6-producing B. subtilis non-suppressor (su ?) cells to support growth of a ø29 sus6 mutant phage. We have used this trans-complementation assay to investigate the effect on in vivo viral DNA synthesis of missense mutations introduced into the protein p6 N-terminal region. The alteration of lysine to alanine at position 2 resulted in a partially functional protein, whereas the replacement of arginine by alanine at position 6 gave rise to an inactive protein. These results indicate that arginine at position 6 is critical for the in vivo activity of protein p6. Our complementation system provides a useful genetic approach for the identification of functionally important amino acids in protein p6.  相似文献   

5.
Systematic calculations of stopping power (SPs) and inelastic mean free path (IMFP) values for 20–20,000 eV electrons in a group of 15 amino acids and a simple protein have been performed. The calculations are based on the dielectric response model and take into account the exchange effect between the incident electron and target electrons. The optical energy-loss functions for the 15 investigated amino acids and the protein are evaluated by using an empirical approach, because of the lack of experimental optical data. For all the considered materials, the calculated mean ionization potentials are in good agreement with those given by Bragg’s rule, and the evaluated SP values at 20 keV converge well to the Bethe–Bloch predictions. The data shown represent the first results of SP and IMFP, for these 15 amino acids and the protein in the energy range below 20 keV, and might be useful for studies of various radiation effects in these materials. In addition, the average energy deposited by inelastic scattering of the electrons on this group of 15 amino acids, on the protein, on Formvar and on DNA, respectively, has been estimated for energies below 20 keV. The dependences of the average energy deposition on the electron energy are given. These results are important for any detailed studies of radiation-induced inactivation of proteins and the DNA.  相似文献   

6.
Protein p6 of the Bacillus subtilis phage ø29 is essential for in vivo viral DNA replication. This protein activates the initiation of ø29 DNA replication in vitro by forming a multimeric nucleoprotein complex at the replication origins. The N-terminal region of protein p6 is involved in DNA binding, as shown by in vitro studies with p6 proteins altered by deletions or missense mutations. We report on the development of an in vivo functional assay for protein p6. This assay is based on the ability of protein p6-producing B. subtilis non-suppressor (su ) cells to support growth of a ø29 sus6 mutant phage. We have used this trans-complementation assay to investigate the effect on in vivo viral DNA synthesis of missense mutations introduced into the protein p6 N-terminal region. The alteration of lysine to alanine at position 2 resulted in a partially functional protein, whereas the replacement of arginine by alanine at position 6 gave rise to an inactive protein. These results indicate that arginine at position 6 is critical for the in vivo activity of protein p6. Our complementation system provides a useful genetic approach for the identification of functionally important amino acids in protein p6.  相似文献   

7.
A new 3D, spin-state-selective coherence transfer NMR experiment is described that yields accurate measurements for eight scalar or dipolar couplings within a spin system composed of a methylene adjacent to a methine group. Implementations of the experiment have been optimized for proteins and for nucleic acids. The experiments are demonstrated for C–C moieties of the third IgG-binding domain from Streptococcal Protein G (GB3) and for C –C groups in a 24-nt RNA oligomer. Chemical shifts of C, C and H (respectively C , C and H ) are dispersed in the three orthogonal dimensions, and the absence of heteronuclear decoupling leads to distinct and well-resolved E.COSY multiplet patterns. In an isotropic sample, the E.COSY displacements correspond to 1JCH, 2JCH2+2JCH3, 2JCH, 1JCH2+1JCH3, 1JCH22JH2H3, 1JCH32JH2H3, 3JHH2 and 3JHH3 for proteins, and 1J , 2J J , 2J , 1J +1J , 1J J , 1J J , 3J and 3J in nucleic acids. The experiment, based on relaxation-optimized spectroscopy, yields best results when applied to residues where the methine–methylene group corresponds to a reasonably isolated spin system, as applies for C, F, Y, W, D, N and H residues in proteins, or the C –C groups in nucleic acids. Splittings can be measured under either isotropic or weakly aligned conditions, yielding valuable structural information both through the 3J couplings and the one-, two- and three-bond dipolar interactions. Dipolar couplings for 10 out of 13 sidechains in GB3 are found to be in excellent agreement with its X-ray structure, whereas one residue adopts a different backbone geometry, and two residues are subject to extensive 1 rotamer averaging. The abundance of dipolar couplings can also yield stereospecific assignments of the non-equivalent methylene protons. For the RNA oligomer, dipolar data yielded stereospecific assignments for six out of the eight C H2 groups in the loop region of the oligomer, in all cases confirmed by 1J ^{1} $$" align="middle" border="0"> J , and H resonating downfield of H .Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s10858-005-0175-z.  相似文献   

8.
Summary The seasonal changes in the pattern of 21 amino acids occurring in the xylem vessels of Populus twigs have been studied in connection to the mobilization of protein bodies in ray parenchyma cells at the electron microscopic level. Hydrolysis of protein bodies in spring and movement of amino acids into vessels are found to be closely linked. Comprising more than 75% of total amino acid content, glutamine (Gln) is by far the dominant N-constituent of the sap. Gln reaches up to 11 mol ml-1 in the spring sap while other amino acids only show 1/20 to 1/100 of this amount. From the measured Gln accumulation rates in the vessels in nature and in the vessels of isolated shoots, a minimum flux rate for Gln of 5.6 pmol cm-2 min-1 is calculated for the ray contact cell/vessel interface. Furthermore, because Gln constitutes 75% of the amino acid content of the sap but only 1.3% of the amino acids in the 32 kDa storage protein of the ray cells in the wood (Clausen and Apel 1991), it becomes evident that most amino acids originating from protein body mobilization do not enter the vessels but are used for Gln synthesis preceding Gln release into the vessels.  相似文献   

9.
The content of the endogenous amine, 1-methyl-1,2,3,4-tetrahydroisoquinoline (1-MeTIQ), in mouse brain, treated with the antipsychotic agent haloperidol (HP) was determined by GC–SIM (selected ion monitoring) system. 1-MeTIQ in brain was extracted with chloroform at pH 11–12 and was detected as PFP derivative by GC–SIM. The 1-MeTIQ contents in mouse brains following intraperitoneal administration of HP or its dehydrated product, HPTP (1 and 4 mg/kg per day, for four days), were markedly reduced compared with control groups. This result agrees well with the findings in human idiopathic parkinsonianism and in MPTP-treated mouse brain. In addition, this finding suggests that the change of the endogenous amine 1-MeTIQ content in the brain plays an important role in the pathogenesis of toxin-induced parkinsonism.  相似文献   

10.
Protein–protein interactions (PPIs) are essential in the regulation of biological functions and cell events, therefore understanding PPIs have become a key issue to understanding the molecular mechanism and investigating the design of drugs. Here we highlight the major developments in computational methods developed for predicting PPIs by using types of artificial intelligence algorithms. The first part introduces the source of experimental PPI data. The second part is devoted to the PPI prediction methods based on sequential information. The third part covers representative methods using structural information as the input feature. The last part is methods designed by combining different types of features. For each part, the state-of-the-art computational PPI prediction methods are reviewed in an inclusive view. Finally, we discuss the flaws existing in this area and future directions of next-generation algorithms.  相似文献   

11.
A number of interesting issues have been addressed on biological networks about their global and local properties. The connection between the topological properties of proteins in Protein–Protein Interaction (PPI) networks and their biological relevance has been investigated focusing on hubs, i.e. proteins with a large number of interacting partners. We will survey the literature trying to answer the following questions: Do hub proteins have special biological properties? Do they tend to be more essential than non-hub proteins? Are they more evolutionarily conserved? Do they play a central role in modular organization of the protein interaction network? Are there structural properties that characterize hub proteins?  相似文献   

12.
The purpose of this work was to examine whether changes in dietary protein levels could elicit differential responses of tissue proteolysis and the pathway involved in this response. In rats fed with a high protein diet (55%) for 14?days, the liver was the main organ where adaptations occurred, characterized by an increased protein pool and a strong, meal-induced inhibition of the protein breakdown rate when compared to the normal protein diet (14%). This was associated with a decrease in the key-proteins involved in expression of the ubiquitin-proteasome and autophagy pathway gene and a reduction in the level of hepatic ubiquitinated protein. In hepatocytes, we demonstrated that the increase in amino acid (AA) levels was sufficient to down-regulate the ubiquitin proteasome pathway, but this inhibition was more potent in the presence of insulin. Interestingly, AICAR, an adenosine monophosphate-activated protein kinase (AMPK) activator, reversed the inhibition of protein ubiquination induced by insulin at high AA concentrations. Rapamycin, an mammalian target of rapamycin (mTOR) inhibitor, reversed the inhibition of protein ubiquination induced by a rise in insulin levels with both high and low AA concentrations. Moreover, in both low and high AA concentrations in the presence of insulin, AICAR decreased the mTOR phosphorylation, and in the presence of both AICAR and rapamycin, AICAR reversed the effects of rapamycin. These results demonstrate that the inhibition of AMPK and the activation of mTOR transduction pathways, are required for the down-regulation of protein ubiquitination in response to high amino acid and insulin concentrations.  相似文献   

13.
The objectives of this study were to compare the in situ ruminal degradation of CP and amino acids (AAs) of dried distillers’ grains with solubles (DDGS), and to estimate intestinal digestibility (ID) of undegradable crude protein (UDP) with the in vitro pepsin–pancreatin solubility of CP (PPS), using either DDGS samples (DDGS-s) or DDGS residues (DDGS-r) obtained after 16 h ruminal incubation. Thirteen samples originating from wheat, corn, barley and blends were studied. Lysine and methionine content of DDGS-s varied from 1.4 to 4.0 and 1.3 to 2.0 g/16 g N, respectively. The milk protein score (MPS) of DDGS-s was low and ranged from 0.36 to 0.51, and lysine and isoleucine were estimated to be the most limiting AAs in DDGS-s and DDGS-r. DDGS-r contained slightly more essential AAs (EAAs) than did the DDGS-s. Rumen degradation after 16 h varied from 44% to 94% for CP, from 39% to 90% for lysine and from 35% to 92% for methionine. Linear regressions showed that the ruminal degradation of individual AAs can be predicted from CP degradation. The PPS of DDGS-s was higher than that of DDGS-r and it varied from 70% to 89% and from 47% to 81%, respectively. There was no significant correlation between the PPS of DDGS-s and PPS of DDGS-r (R2=0.31). The estimated intestinally absorbable dietary protein (IADP) averaged 21%. Moderate correlation was found between the crude fibre (CF) content and PPS of DDGS-r (R2=0.43). This study suggests an overestimation of the contribution of UDP of DDGS to digestible protein supply in the duodenum in some currently used protein evaluation systems. More research is required and recommended to assess the intestinal digestibility of AAs from DDGS.  相似文献   

14.
Earlier studies on the synthesis of C3-derived amino acids, plastidic isoprenoids and fatty acids from CO2 by isolated chloroplasts in the light indicate the presence of a complete, but low-capacity, chloroplast (chlp) 3-phosphoglycerate acetyl-CoA pathway which is predominantely active in immature (developing) chloroplasts (A. Heintze et al., 1990, Plant Physiol. 93, 1121–1127). In this paper, we demonstrate the activity of the enzymes involved i.e. chlp phosphoglycerate mutase, chlp enolase, chlp pyruvate kinase and chlp pyruvate-dehydrogenase complex (PDC), in the stroma of purified barley (Hordeum sativum L.) chloroplasts of different developmental stages. The chlp phosphoglycerate mutase was partially purified for the first time. The activities of the enzymes of this chlp pathway (except PDC) were about a magnitude lower than those of the cytosolic enzymes. The chlp PDC of barley was more active than that of spinach. The apparent K m values of the enzymes of this pathway were about 100 M or lower except for the chlp phosphoglycerate mutase which had a K m of 1.6–1.8 mM for 3-phospho-d-glycerate. Interestingly, no appreciable change in the activity of these enzymes was observed during maturation of the chloroplasts. In contrast, the activity of the reversible NADP+-glyceraldehyde 3-phosphate dehydrogenase increased about five times (from 140 to 590 nkat per g leaf dry weight). The following hypothesis is put forward to explain the regulation of carbon metabolism during chloroplast development: 3-phospho-d-glycerate is withdrawn from a common pool by the actions of 3-phosphoglycerate kinase and NADP+-glyceraldehyde-3-phosphate dehydrogenase, the activity of which increases considerably during maturation of chloroplasts. This leads to an insufficient supply of 3-phospho-glycerate for the chlp phosphoglycerate mutase, which has a low affinity for its substrate.Abbreviations C3 C25 pathway 3-phospho-d-glycerate acetyl-CoA pathway - Chl chlorophyll - chlp chloroplast(ic) - GAP d-glyceraldehyde-3-phosphate - GAPDH glyceraldehyde-3-phosphate dehydrogenase - PDC pyruvate dehydrogenase complex - PEP phosphoenolpyruvate - 2- and 3-PGA 2- and 3-phospho-d-glycerate - U unit - mmol·mint-1 (=16.67 nkat) This work was supported by the Deutsche Forschungsgemeinschaft, Bonn, FRG and Stiftung Stipendien-Fonds des Verbandes der Chemischen Industrie e. V., Frankfurt/Main, FRG, (scholarship to P.H.). The authors thank Dr. K.P. Heise (Institut für Biochemie der Pflanzen, Universität Göttingen, FRG) for the gas-liquid chromatography measurements, Gabriele Böl, Dietmar Budde, Daniel Gruber, Andreas Haaf, and Antje Wassmann (all Zentrum Biochemie, Medizinische Hochschule Hannover, FRG) and Kerstin Meereis, Martin Preiss, Uwe Schwanke (all Botanisches Institut, Tierärztliche Hochschule Hannover, FRG) for detailed and skillful work, Dr. Indra Willms-Hoff, Carola Leuschner and Dr. Christian L. Schmidt for constructive criticism, and Mrs. Saime Aydogdu for technical assistance.  相似文献   

15.
The activation of a β-class carbonic anhydrase (CAs, EC 4.2.1.1) from Leishmania donovani chagasi (LdcCA) was investigated using a panel of natural and non-natural amino acids and amines. The most effective activators belonged to the amine class, with histamine, dopamine, serotonin, 2-pyridyl-methylamine and 4-(2-aminoethyl)-morpholine with activation constants in the range of 0.23–0.94 µM. In addition, 2-(2-aminoethyl)pyridine and 1-(aminoethyl)-piperazine were even more effective activators (KAs of 9–12 nM). Amino acids such as L-/D-His, L-/D-Phe, L-/D-DOPA, L-/D-Trp and L-/D-Tyr were slightly less effective activators compared to the amines, but showed activation constants in the low micromolar range (1.27–9.16 µM). Many of the investigated activators are autacoids that are present in rather high concentrations in different tissues of the host mammals infected by these parasites. As CA activators have not yet been investigated for protozoan CAs, this study may be relevant for an improved understanding of the role of this enzyme in the life cycle of Leishmania.  相似文献   

16.
Nicotine dependence is the primary addictive stage of cigarette smoking. Although a lot of studies have been performed to explore the molecular mechanism underlying nicotine dependence, our understanding on this disorder is still far from complete. Over the past decades, an increasing number of candidate genes involved in nicotine dependence have been identified by different technical approaches, including the genetic association analysis. In this study, we performed a comprehensive collection of candidate genes reported to be genetically associated with nicotine dependence. Then, the biochemical pathways enriched in these genes were identified by considering the gene’s propensity to be related to nicotine dependence. One of the most widely used pathway enrichment analysis approach, over-representation analysis, ignores the function non-equivalence of genes in candidate gene set and may have low discriminative power in identifying some dysfunctional pathways. To overcome such drawbacks, we constructed a comprehensive human protein–protein interaction network, and then assigned a function weighting score to each candidate gene based on their network topological features. Evaluation indicated the function weighting score scheme was consistent with available evidence. Finally, the function weighting scores of the candidate genes were incorporated into pathway analysis to identify the dysfunctional pathways involved in nicotine dependence, and the interactions between pathways was detected by pathway crosstalk analysis. Compared to conventional over-representation-based pathway analysis tool, the modified method exhibited improved discriminative power and detected some novel pathways potentially underlying nicotine dependence. In summary, we conducted a comprehensive collection of genes associated with nicotine dependence and then detected the biochemical pathways enriched in these genes using a modified pathway enrichment analysis approach with function weighting score of candidate genes integrated. Our results may provide insight into the molecular mechanism underlying nicotine dependence.  相似文献   

17.
The α- and β-class carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic bacterium Vibrio cholerae, VchCAα, and VchCAβ, were investigated for their activation with natural and non-natural amino acids and amines. The most effective VchCAα activators were L-tyrosine, histamine, serotonin, and 4-aminoethyl-morpholine, which had KAs in the range of 8.21–12.0?µM. The most effective VchCAβ activators were D-tyrosine, dopamine, serotonin, 2-pyridyl-methylamine, 2-aminoethylpyridine, and 2-aminoethylpiperazine, which had KAs in the submicromolar – low micromolar range (0.18–1.37?µM). The two bacterial enzymes had very different activation profiles with these compounds, between each other, and in comparison to the human isoforms hCA I and II. Some amines were selective activators of VchCAβ, including 2-pyridylmethylamine (KA of 180?nm for VchCAβ, and more than 20?µM for VchCAα and hCA I/II). The activation of CAs from bacteria, such as VchCAα/β has not been considered previously for possible biomedical applications. It would be of interest to study in more detail the extent that CA activators are implicated in the virulence and colonisation of the host by such pathogenic bacteria, which for Vibrio cholerae, is highly dependent on the bicarbonate concentration and pH in the surrounding tissue.  相似文献   

18.
19.
The peripheral anionic site (PAS) of human butyrylcholinesterase is involved in the mechanism of substrate activation by positively charged substrates and ligands. Two substrate binding loci, D70 in the PAS and W82 in the active site, are connected by the Ω loop. To determine whether the Ω loop plays a role in the signal transduction between the PAS and the active site, residues involved in stabilization of the loop, N83, K339 and W430, were mutated. Mutations N83A and N83Q caused loss of substrate activation, suggesting that N83 which interacts with the D70 backbone may be an element of the transducing system. The K339M and W430A mutant enzymes retained substrate activation. Residues W82, E197, and A328 in the active site gorge have been reported to be involved in substrate activation. At butyrylthiocholine concentrations greater then 2 mM, W82A showed apparent substrate activation. Mutations E197Q and E197G strongly reduced substrate activation, while mutation E197D caused a moderate effect, suggesting that the carboxylate of residue E197 is involved in substrate activation. Mutations A328F and A328Y showed no substrate activation, whereas A328G retained substrate activation. Substrate activation can result from an allosteric effect due to binding of the second substrate molecule on the PAS. Mutation W430A was of special interest because this residue hydrogen bonds to W82 and Y332. W430A had strongly reduced affinity for tetramethylammonium. The bimolecular rate constant for reaction with diisopropyl fluorophosphate was reduced 10 000-fold, indicating severe alteration in the binding area in W430A. The kcat values for butyrylthiocholine, o-nitrophenyl butyrate, and succinyldithiocholine were lower. This suggested that the mutation had caused misfolding of the active site gorge without altering the Ω loop conformation/dynamics. W430 as well as W231 and W82 appear to form the wall of the active site gorge. Mutation of any of these tryptophans disrupts the architecture of the active site.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号