首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The core protein produced by mild proteolytic digestion of lactose repressor protein has been purified from native repressor by chromatography on phosphocellulose. The core protein isolated in this manner binds to operator DNA with an apparent dissociation constant of 10(-7) M, and the observed binding is decreased by the presence of inducer. Competition studies with nonspecific DNA indicate that the binding species in the core protein preparations is neither intact lactose repressor nor mixed tetramers containing varying numbers of intact NH2-terminal regions. This conclusion is supported by experiments designed to measure the rate of dissociation of the core protein from the operator DNA. Calculations based on the assumption that the isolated core protein binds similarly to the corresponding region in intact repressor protein indicate that the core region contributes approximately 40 to 50% of the energy of binding to operator DNA. Furthermore, the change in operator affinity upon inducer binding to core accounts for a minimum of 60% of the free energy change in binding to operator observed for the native protein. The demonstration that core protein binds to operator DNA requires a re-evaluation of the various models for repressor binding to DNA. A possible model based on the available information is presented.  相似文献   

2.
The effects of prior covalent cysteine modification or nonspecific DNA presence on the reaction of lac repressor protein with N-bromosuccinimide have been investigated. At low excesses, N-bromosuccinimide oxidation causes loss of operator DNA binding activity with simultaneous retention of inducer and nonspecific DNA binding activities. Cysteine and methionine are oxidized under the conditions utilized. Covalent modification of the cysteines of repressor prior to reaction decreased the observed loss of operator DNA binding capacity; the presence of nonspecific DNA partially prevented oxidation of the cysteines by N-bromosuccinimide, and concurrent protection of operator binding ability was observed. Methionine oxidation was observed in the cases where protection of the operator DNA binding capacity of repressor was seen. The region surrounding cysteine 107 was found to be influential in maintaining intact operator DNA binding function in repressor. This observation provides chemical evidence for the contribution of the core region of repressor in determining specificity of the protein in binding the lac operator. The protection from oxidation of cysteine residues in the core region by the presence of nonspecific DNA suggests that this binding influences the core region of the protein.  相似文献   

3.
Escherichia coli lac repressor is a tetrameric protein composed of 360 amino acid subunits. Considerable attention has focused on its N-terminal region which is isolated by cleavage with proteases yielding N-terminal fragments of 51 to 59 amino acid residues. Because these short peptide fragments bind operator DNA, they have been extensively examined in nuclear magnetic resonance structural studies. Longer N-terminal peptide fragments that bind DNA cannot be obtained enzymatically. To extend structural studies and simultaneously verify proper folding in vivo, the DNA sequence encoding longer N-terminal fragments were cloned into a vector system with the coliphage T7 RNA polymerase/promoter. In addition to the wild-type lacI gene sequence, single amino acid substitutions were generated at positions 3 (Pro3----Tyr) and 61 (Ser61----Leu) as well as the double substitution in a 64 amino acid N-terminal fragment. These mutations were chosen because they increase the DNA binding affinity of the intact lac repressor by a factor of 10(2) to 10(4). The expression of these lac repressor fragments in the cell was verified by radioimmunoassays. Both wild-type and mutant lac repressor N termini bound operator DNA as judged by reduced beta-galactosidase synthesis and methylation protection in vivo. These observations also resolve a contradiction in the literature as to the location of the operator-specific, inducer-dependent DNA binding domain.  相似文献   

4.
The trypsin-resistant core protein of the lac repressor was utilized in protecting operator DNA from two types of enzymatic digestion. Core repressor protects and enhances operator DNA digestion by DNase I in the same fashion as intact repressor, though to a lesser degree on the lower strand. DNase I patterns found for the ternary complexes (protein-sugar-operator) were consistent with the expected affinity alterations of the protein species in response to binding these ligands. The 3′ boundaries obtained by exonuclease III digestion for the intact repressor-operator complex varied slightly from those reported by Shalloway et al. (1980). Asymmetric binding to operator by the core repressor fragment was suggested by differences in the 3′ boundary for the core compared to intact repressor on the promoter-distal side of the complex. A composite picture of repressor structure and function emerges from the protection studies reported here and in the accompanying paper. In light of these and other results, models for repressor binding are examined.  相似文献   

5.
The interaction between the lac repressor headpiece and a small operator DNA fragment has been examined by fluorescence and circular dichroism (c.d.) measurements. Binding of the headpiece to the DNA fragment induces a strong quenching of the fluorescence of its tyrosine residues. Quantitative analysis of the fluorescence data demonstrates that, in a first step, two headpieces bind very strongly to the DNA fragment then weaker binding occurs. C.d. demonstrates that the binding induces conformational changes of the DNA. The c.d. change produced upon binding of the first two headpieces differs from that induced upon binding of two further headpieces . Binding of the second pair of headpieces is similar to non-specific binding to non-operator DNA. The conformation of the operator DNA in the presence of two headpieces differs drastically from that in presence of lac repressor. Addition of the core to the lac operator does not induce any conformational change of the nucleic acids. These results are discussed with respect to the relative roles of core and headpieces in the lac repressor-lac operator interaction.  相似文献   

6.
C F Sams  K S Matthews 《Biochemistry》1988,27(7):2277-2281
Modification of the lactose repressor protein of Escherichia coli with diethyl pyrocarbonate (DPC) results in decreased inducer binding as well as operator and nonspecific DNA binding. Spectrophotometric measurements indicated a maximum of three histidines per subunit was modified, and quantitation of lysine residues with trinitrobenzenesulfonate revealed the modification of one lysine residue. The loss of DNA binding, both operator and nonspecific, was correlated with histidine modification; removal of the carbethoxy groups from the histidines by hydroxylamine was accompanied by significant recovery of DNA binding function. The presence of inducing sugars during the DPC reaction had no effect on histidine modification or the loss of DNA binding activity. In contrast, inducer binding was not recovered upon reversal of the histidine modification. However, the presence of inducer during reaction protected lysine from reaction and also prevented the decrease in inducer binding; these results indicate that reaction of the lysine residue(s) may correlate to the loss of sugar binding activity. Since no difference in incorporation of radiolabeled carbethoxy was observed following reaction with diethyl pyrocarbonate in the presence or absence of inducer, the reagent appears to function as a catalyst in the modification of the lysine. The formation of an amide bond between the affected lysine and a nearby carboxylic acid moiety provides a possible mechanism for the activity loss. Reaction of the isolated NH2-terminal domain resulted in loss of DNA binding with modification of the single histidine at position 29. Results from the modification of core domain paralleled observations with intact repressor.  相似文献   

7.
W T Hsieh  K S Matthews 《Biochemistry》1985,24(12):3043-3049
Chemical modification using 5-(dimethylamino)naphthalene-1-sulfonyl chloride (dansyl chloride) has been used to explore the importance of lysine residues involved in the binding activities of the lactose repressor and to introduce a fluorescent probe into the protein. Dansyl chloride modification of lac repressor resulted in loss of operator DNA binding at low molar ratios of reagent/monomer. Loss of nonspecific DNA binding was observed only at higher molar ratios, while isopropyl beta-D-thiogalactoside binding was not affected at any of the reagent levels studied. Lysine residues were the only modified amino acids detected. Protection of lysines-33 and -37 from modification by the presence of nonspecific DNA correlated with maintenance of operator DNA binding activity, and reaction of lysine-37 paralleled operator binding activity loss. Energy transfer between dansyl incorporated in the core region of the repressor protein and tryptophan-201 was observed, with an approximate distance of 23 A calculated between these two moieties.  相似文献   

8.
Falcon CM  Matthews KS 《Biochemistry》2000,39(36):11074-11083
The mechanism by which genetic regulatory proteins discern specific target DNA sequences remains a major area of inquiry. To explore in more detail the interplay between DNA and protein sequence, we have examined binding of variant lac operator DNA sequences to a series of mutant lactose repressor proteins (LacI). These proteins were altered in the C-terminus of the hinge region that links the N-terminal DNA binding and core sugar binding domains. Variant operators differed from the wild-type operator, O(1), in spacing and/or symmetry of the half-sites that contact the LacI N-terminal DNA binding domain. Binding of wild-type and mutant proteins was affected differentially by variations in operator sequence and symmetry. While the mutant series exhibits a 10(4)-fold range in binding affinity for O(1) operator, only a approximately 20-fold difference in affinity is observed for a completely symmetric operator, O(sym), used widely in studies of the LacI protein. Further, DNA sequence influenced allosteric response for these proteins. Binding of this LacI mutant series to other variant operator DNA sequences indicated the importance of symmetry-related bases, spacing, and the central base pair sequence in high affinity complex formation. Conformational flexibility in the DNA and other aspects of the structure influenced by the sequence may establish the binding environment for protein and determine both affinity and potential for allostery.  相似文献   

9.
A mutant of the Escherichia coli lactose repressor (BG124) in which serine at position 77 is replaced by leucine has been examined by physical methods. Consistent with the phenotypic character of this i-d mutant, BG124 protein did not bind lactose operator specifically, but did bind to DNA nonspecifically. Titration with inducer monitoring tryptophan fluorescence changes yielded a biphasic saturation curve, and Scatchard and Hill plots of the fluorescence and equilibrium dialysis data demonstrated heterogeneity of inducer binding sites. Although ultraviolet difference spectra and potassium iodide quenching of fluorescence indicated that BG124 repressor has structural distinctions from wild-type protein, circular dichroism spectra and acrylamide quenching of fluorescence for the two proteins were quite similar. A significantly greater increase of 1-anilino-8-naphthalenesulfonate fluorescence was observed in the presence of mutant versus wild-type repressor. Unlike wild-type behavior, changes in both 1-anilino-8-naphthalenesulfonate fluorescence intensity and maximum emission wavelength in response to inducer were found for the BG124 protein. These results are consistent with conformational alterations in the interface between NH2-terminal and core domains of this mutant repressor. The single amino acid alteration in the hinge between the core and NH2 terminus yields conformational effects which influence physical and functional properties associated with both domains.  相似文献   

10.
Trp repressor of Escherichia coli K-12 is a dimeric protein (monomer size, 108 amino acids) that acquires high affinity for certain operator targets in double-stranded DNA upon interaction with L-tryptophan. High titer antiserum directed against E. coli Trp repressor protein, elicited in rabbits, was monospecific toward native or denatured Trp repressor. Using an enzyme-linked immunosorbent assay to measure antigen-antibody reaction, we found that the binding of L-tryptophan to Trp repressor was associated with a marked decrease in antibody reactivity that presumably accompanied a conformational change in this protein to a state with strong affinity for trp operator-bearing DNA. We analyzed the pattern of cleavage of Trp repressor by chymotrypsin and trypsin and the effect of L-tryptophan on such hydrolytic cleavages. Chymotrypsin cleaved Trp repressor mainly between residues 71 and 72. In the presence of L-tryptophan this cleavage was slowed. The first-order rate constants for chymotryptic digestion of Trp repressor were 7.6 X 10(-2) and 4.6 X 10(-2) min-1 in the absence and presence of L-tryptophan, respectively. Tryptic digestion was more complex. Initial cleavage of Trp repressor occurred with approximately equal facility between residues 69-70 or 84-85. Subsequent tryptic hydrolyses led eventually to a major core fragment containing the first 54 amino acids of Trp repressor plus four other fragments from the carboxyl-terminal half of the protein. In the presence of L-tryptophan, cleavage by trypsin between residues 54-55 and 84-85 was retarded, even when a previous hydrolytic event elsewhere in the protein had occurred. Tryptophan had essentially no effect on the tryptic hydrolysis of peptide bond 97-98, but accelerated cleavage at peptide bond 69-70. The first-order rate constants for the first tryptic cleavage of Trp receptor were 1.55 X 10(-1) and 1.33 X 10(-1) min-1 in the absence and presence of ligand, respectively. Our results are compatible with a structural model wherein certain amino acid side chains and peptide bonds of Trp repressor (specifically, those of residues 69-85) lie on or near the surface of the protein. This region of Trp repressor has been predicted to contain the operator recognition site. The susceptibility to proteolytic attack of at least four peptide bonds in this area changes when the protein interacts with L-tryptophan.  相似文献   

11.
In order to compare the structures of the DNA-binding sites on variants of the lac repressor, we have studied the influence of these variants on the dimethylsulfate methylation of the lac operator. Since a bound protein changes the availability of specific purines in the operator to this chemical attack, comparisons of the methylation patterns will show similarities or differences in the protein DNA contacts. We compared lac repressor, induced lac repressor (repressor bound to the gratuitous inducer isopropyl-β-d-thiogalactoside), mutant repressors having increased operator affinities (X86, I12 and the X86-I12 double mutant) and repressor peptides (long headpiece, residues 1 to 59 and short headpiece. residues 1 to 51). All of these repressors and repressor peptides exhibit the same general pattern of protection and enhancement in the operator; however, the short headpiece pattern differs most from that of the repressor while the induced repressor and the long headpiece show intermediate patterns that are strikingly similar to each other. The mutant repressors do not show an isopropyl-β-d-thiogalactoside effect but otherwise are almost indistinguishable from wild-type repressor. These results demonstrate that all molecules bind to the operator using basically the same protein-DNA contacts; they imply that (1) most and possibly all repressor contacts to operator lie within amino acids 1 to 51, (2) inducer weakens many contacts rather than totally disrupting one or even a few and (3) the tight-binding mutants do not make additional contacts to the DNA.These results are consistent with a model in which the amino-terminal portions of two repressor monomers make the DNA contacts. We show that one can understand the affinity of binding as related to the accuracy of the register of the two amino-terminal portions along the DNA. Furthermore, the action of inducer and the behaviour of the tight binding mutants can be accomodated within a two-state model in which the strongly or weakly binding states correspond to structures in which the amino-terminal regions are rigidly or loosely held with respect to each other.  相似文献   

12.
Reaction of the lactose repressor protein from Escherichia coli with high molar excesses (up to 800 fold) of tetranitromethane resulted in modification of tyrosine residues in the amino-terminal and core regions of the molecule. Tyrosines 7 and 17 exhibit significant reactivity at low levels (5-10 fold molar excess) of tetranitromethane. The loss of operator binding activity upon nitration at these low concentrations of reagent indicates involvement of these two tyrosines in the binding process. Inducer binding activity was maintained at approx. 90% of unreacted repressor for all excesses of reagent studied. Addition of inducer to the repressor prior to reaction resulted in decreased modification of tyrosines in the core region, but anti-inducers did not affect the reaction significantly. The effect of inducers on the pattern of reaction apparently reflects the conformational change which occurs upon binding of these ligands. Acetylation of the repressor protein with N-acetylimidazole modified lysines and tyrosines with complete loss of operator binding activity and retention of 75-80% of inducer binding activity.  相似文献   

13.
Single amino acid substitutions have been introduced throughout the N-terminal DNA binding region of the Mnt repressor, and the operator binding properties of the resulting mutant repressors have been assayed. These studies show that the side chains of Arg2, His6, Asn8, and Arg10 are critical for high affinity binding to operator DNA. Other side chains in the N-terminal region do not appear to play major roles in DNA recognition and binding. Specific alterations in the pattern of methylation protection afforded by the Arg2----Lys mutant protein suggest that Arg2 contacts the N7 groups of guanines 10 and 12 in the operator. In conjunction with previous results, these findings suggest that part of the N-terminal region of Mnt binds as an extended polypeptide strand within the major groove of the mnt operator.  相似文献   

14.
The binding of lactose repressor to non-operator DNA was studied by the modification of several DNA's, including glycosylated DNA, with dimethyl sulphate, which affects the minor and major grooves of DNA and single stranded DNA regions. The non-specific binding of the repressor to DNA protected the minor groove but apparently not the major groove of the DNA double helix against methylation and did not increase the content of single stranded DNA regions. This suggests that the repressor on binding to non-operator DNA makes contacts mainly in the minor groove of DNA and does not uncoil the DNA double helix. This is different from the interaction of the repressor with lactose operator DNA which occurs, as shown by Gilbert et al. (1), along both the major and the minor groove.  相似文献   

15.
In the present work, we employ a combination of CD spectroscopy and gel retardation technique to characterize thermodynamically the binding of lambda phage cro repressor to a 17 base pair operator OR3. We have found that three minor groove-binding antibiotics, distamycin A, netropsin and sibiromycin, compete effectively with the cro for binding to the operator OR3. Among these antibiotics, sibiromycin binds covalently to DNA in the minor groove at the NH2 of guanine, whereas distamycin A and netropsin interact preferentially with runs of AT base pairs and avoid DNA regions containing guanine bases in the two polynucleotide strands. Only subtle DNA conformation changes are known to take place upon binding of these antibiotics. Both the CD spectral profiles and the results of the gel retardation experiments indicate that distamycin A and netropsin can displace cro repressor from the operator OR3. The binding of cro repressor to the OR3 is accompanied by considerable changes in CD in the far-UV region which appear to be attributed to a DNA-dependent structural transition in the protein. Spectral changes are also induced in the wavelength region of 270-290 nm. The CD spectral profile of the cro-OR3 mixture in the presence of distamycin A can be represented as a sum of the CD spectrum of the repressor-operator complex and spectrum of distamycin-DNA complex at the appropriate molar ratio of the bound antibiotic to the operator DNA (r). When r tends to the saturation level of binding the CD spectrum in the region of 270-360 nm approaches a CD pattern typical of complexes of the antibiotic with the free DNA oligomer. This suggests that simultaneous binding of cro repressor and distamycin A to the same DNA oligomer is not possible and that distamycin A and netropsin can be used to determine the equilibrium affinity constant of cro repressor to the synthetic operator from competition-type experiments. The binding constant of cro repressor to the OR3 is found to be (6 +/- 1).10(6)M-1 at 20 degrees C in 10 mM sodium cacodylate buffer (pH 7.0) in the presence of 0.1 M NH4F.  相似文献   

16.
BACKGROUND: Lactose repressor protein (Lac) controls the expression of the lactose metabolic genes in Escherichia coli by binding to an operator sequence in the promoter of the lac operon. Binding of inducer molecules to the Lac core domain induces changes in tertiary structure that are propagated to the DNA-binding domain through the connecting hinge region, thereby reducing the affinity for the operator. Protein-protein and protein-DNA interactions involving the hinge region play a crucial role in the allosteric changes occurring upon induction, but have not, as yet, been analyzed in atomic detail. RESULTS: We have used nuclear magnetic resonance (NMR) spectroscopy and restrained molecular dynamics (rMD) to determine the structure of the Lac repressor DNA-binding domain (headpeice 62; HP62) in complex with a symmetrized lac operator. Analysis of the structures reveals specific interactions between Lac repressor and DNA that were not found in previously investigated Lac repressor-DNA complexes. Important differences with the previously reported structures of the HP56-DNA complex were found in the loop following the helix-turn-helix (HTH) motif. The protein-protein and protein-DNA interactions involving the hinge region and the deformations in the DNA structure could be delineated in atomic detail. The structures were also used for comparison with the available crystallographic data on the Lac and Pur repressor-DNA complexes. CONCLUSIONS: The structures of the HP62-DNA complex provide the basis for a better understanding of the specific recognition in the Lac repressor-operator complex. In addition, the structural features of the hinge region provide detailed insight into the protein-protein and protein-DNA interactions responsible for the high affinity of the repressor for operator DNA.  相似文献   

17.
Role of the purine repressor hinge sequence in repressor function.   总被引:4,自引:0,他引:4       下载免费PDF全文
A protease-hypersensitive hinge sequence in Escherichia coli purine repressor (PurR) connects an N-terminal DNA-binding domain with a contiguous corepressor-binding domain. Binding of one molecule of dimeric repressor to operator DNA protects the hinge against proteolytic cleavage. Mutations in the hinge region impair repressor function in vivo. Several nonfunctional hinge mutants were defective in low-affinity binding to operator DNA in the absence of corepressor as well as in high-affinity corepressor-dependent binding to operator DNA, although binding of corepressor was similar to binding of the wild-type repressor. These results establish a role for the hinge region in operator binding and lead to a proposal for two routes to form the holoPurR-operator complex.  相似文献   

18.
Modification of the lysine residues in the lactose repressor protein has been carried out with trinitrobenzenesulfonate. Reaction of lysine residues at positions 33, 37, 108, 290, and 327 was observed. Inducer binding was increased by modification with this reagent, while both nonspecific DNA binding and operator DNA binding were diminished, although to differing degrees. The loss in operator DNA binding capacity was complete with modification of approximately 2 equiv of lysine per monomer. The extent of reaction was affected by the presence of both sugar and DNA ligands; binding activities of the modified protein and reaction pattern of the lysines were perturbed by these ligands. The presence of operator or nonspecific DNA during the reaction protected against specific and nonspecific DNA binding activity loss. This protection presumably occurs by steric restriction of reagent access to lysine residues which are essential for both nonspecific and operator binding interactions. Lysines-33 and -108 were protected from modification in the presence of DNA. These experiments suggest that the charge on the lysine residues is important for protein interaction with DNA and that steric constraints for operator DNA interaction with the protein are more restrictive than for nonspecific DNA binding. In contrast, inducer (isopropyl beta-D-thiogalactoside) presence partially protected lysine-290 from modification while significantly enhancing reaction at lysine-327. Conformational alterations consequent to inducer binding are apparently reflected in these altered lysine reactivities.  相似文献   

19.
Amino acid alterations were designed at the C terminus of the hinge segment (amino acids approximately 51-59) that links two functional domains within lactose repressor protein (LacI). Gly was introduced between Gly(58) and Lys(59) to generate Gly(58+1); Gln(60) was changed to Gly or Pro, and up to three additional glycines were inserted following Gln(60) --> Gly. All mutant proteins exhibited purification behavior, CD spectra, assembly state, and inducer binding properties similar to wild-type LacI and only small differences in trypsin proteolysis patterns. In contrast, significant differences were observed in DNA binding properties. Gly(58+1) exhibited a decrease of approximately 100-fold in affinity for O(1) operator, and sequential Gly insertion C-terminal to Gln(60) --> Gly resulted in progressively decreased affinity for O(1) operator, approaching nonspecific levels for insertion of >/=2 glycines. Where sufficient affinity for O(1) operator existed, decreased binding to O(1) in the presence of inducer indicated no disruption in the allosteric response for these proteins. Collectively, these results indicate that flexibility and/or spacing between the core and N-terminal domains did not significantly affect folding or assembly, but these alterations in the hinge domain profoundly altered affinity of the lactose repressor protein for its wild-type target sequence.  相似文献   

20.
T J Daly  J S Olson  K S Matthews 《Biochemistry》1986,25(19):5468-5474
The lactose repressor protein has been modified with three sulfhydryl-specific reagents which form mixed disulfide adducts. Methyl methanethiosulfonate (MMTS) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) completely reacted with all three cysteine residues, whereas only partial reaction was observed with didansylcystine. Cysteines-107 and -140 reacted stoichiometrically with MMTS and DTNB, while Cys-281 was modified only at higher molar ratios. Didansylcystine reacted primarily with cysteines-107 and -140. Affinity of MMTS-modified repressor for 40 base pair operator DNA was decreased 30-fold compared to unmodified repressor, and this decrease correlated with modification of cysteine-281. DTNB-modified repressor bound operator DNA with a 50-fold weaker affinity than unmodified repressor. Modification of the lac repressor with didanylcystine decreased operator binding only 4-fold, and nonspecific DNA binding increased 3-fold compared to unmodified repressor. No change in the inducer equilibrium binding constant was observed following modification with any of these reagents. In contrast, inducer association and dissociation rate constants were decreased approximately 50-fold for repressor completely modified with MMTS or DTNB, while didansylcystine had minimal effect on inducer binding kinetics. Correlation between modification of Cys-281 and the observed decrease in rate constants indicates that this region of the protein regulates the accessibility of the sugar binding site. The parallel between the increase in the Kd for repressor binding to operator, the altered rate constant for inducer binding, and modification of cysteine-281 suggests that this region of the protein is crucially involved in the function of the repressor protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号