首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The influence of endogenous and exogenous atrial natriuretic factor (ANF) on pulmonary hemodynamics was investigated in anesthetized pigs during both normoxia and hypoxia. Continuous hypoxic ventilation with 11% O2 was associated with a uniform but transient increase of plasma immunoreactive (ir) ANF that peaked at 15 min. Plasma irANF was inversely related to pulmonary arterial pressure (Ppa; r = -0.66, P less than 0.01) and pulmonary vascular resistance (PVR; r = -0.56, P less than 0.05) at 30 min of hypoxia in 14 animals; no such relationship was found during normoxia. ANF infusion after 60 min of hypoxia in seven pigs reduced the 156 +/- 20% increase in PVR to 124 +/- 18% (P less than 0.01) at 0.01 microgram.kg-1.min-1 and to 101 +/- 15% (P less than 0.001) at 0.05 microgram.kg-1.min-1. Cardiac output (CO) and systemic arterial pressure (Psa) remained unchanged, whereas mean Ppa decreased from 25.5 +/- 1.5 to 20.5 +/- 15 mmHg (P less than 0.001) and plasma irANF increased two- to nine-fold. ANF infused at 0.1 microgram.kg-1.min-1 (resulting in a 50-fold plasma irANF increase) decreased Psa (-14%) and reduced CO (-10%); systemic vascular resistance (SVR) was not changed, nor was a further decrease in PVR induced. No change in PVR or SVR occurred in normoxic animals at any ANF infusion rate. These results suggest that ANF may act as an endogenous pulmonary vasodilator that could modulate the pulmonary pressor response to hypoxia.  相似文献   

3.
4.
Alterations in the nitric oxide (NO) pathway have been implicated in the pathogenesis of chronic hypoxia-induced pulmonary hypertension. Chronic hypoxia can either suppress the NO pathway, causing pulmonary hypertension, or increase NO release in order to counteract elevated pulmonary arterial pressure. We determined the effect of NO synthase inhibitor on hemodynamic responses to acute hypoxia (10% O(2)) in anesthetized rats following chronic exposure to hypobaric hypoxia (0.5 atm, air). In rats raised under normoxic conditions, acute hypoxia caused profound systemic hypotension and slight pulmonary hypertension without altering cardiac output. The total systemic vascular resistance (SVR) decreased by 41 +/- 5%, whereas the pulmonary vascular resistance (PVR) increased by 25 +/- 6% during acute hypoxia. Pretreatment with N(omega)-nitro-L-arginine methyl ester (L-NAME; 25 mg/kg) attenuated systemic vasodilatation and enhanced pulmonary vasoconstriction. In rats with prior exposure to chronic hypobaric hypoxia, the baseline values of mean pulmonary and systemic arterial pressure were significantly higher than those in the normoxic group. Chronic hypoxia caused right ventricular hypertrophy, as evidenced by a greater weight ratio of the right ventricle to the left ventricle and the interventricular septum compared to the normoxic group (46 +/- 4 vs. 28 +/- 3%). In rats which were previously exposed to chronic hypoxia (half room air for 15 days), acute hypoxia reduced SVR by 14 +/- 6% and increased PVR by 17 +/- 4%. Pretreatment with L-NAME further inhibited the systemic vasodilatation effect of acute hypoxia, but did not enhance pulmonary vasoconstriction. Our results suggest that the release of NO counteracts pulmonary vasoconstriction but lowers systemic vasodilatation on exposure to acute hypoxia, and these responses are attenuated following adaptation to chronic hypoxia.  相似文献   

5.
Strength of pulmonary vascular response to regional alveolar hypoxia.   总被引:1,自引:0,他引:1  
Regional alveolar hypoxia in the lung induces regional pulmonary vasoconstriction which diverts blood flow from the hypoxic area. However, the predominant determinant of the distribution of perfusion in the normal erect lung is gravity so that more perfusion occurs at the base than at the apex. To determine the strength of the regional alveolar hypoxic response in diverting flow with or against the gravity gradient a divided tracheal cannula was placed in anesthetized dogs and unilateral alveolar hypoxia created by venilating one lung with nitrogen while ventilating the other lung with oxygen to preserve normal systemic oxygentation. Scintigrams of the distribution of perfusion obtained with intravenous 13-N and the MGH positron camera revealed a 34 and 32 per cent decrease in perfusion to the hypoxic lung in the supine and erect positions and a 26 per cent decrease in the decubitus position with the hypoxic lung dependent (P equal to 0.94 from supine shift), indicating nearly equal vasoconstriction with shift of perfusion away from the hypoxic lung in all positions. Analysis of regional shifts in perfusion revealed an equal vasoconstrictor response from apex to base in the supine position but a greater response in the lower lung zones in the erect position where perfusion was also greatest.  相似文献   

6.
7.
Pulmonary intralobar arteries express heme oxygenase (HO)-1 and -2 and release carbon monoxide (CO) during incubation in Krebs buffer. Acute hypoxia elicits isometric tension development (0.77 +/- 0.06 mN/mm) in pulmonary vascular rings treated with 15 micromol/l chromium mesoporphyrin (CrMP), an inhibitor of HO-dependent CO synthesis, but has no effect in untreated vessels. Acute hypoxia also induces contraction of pulmonary vessels taken from rats injected with HO-2 antisense oligodeoxynucleotides (ODN), which decrease pulmonary HO-2 vascular expression and CO release. Hypoxia-induced contraction of vessels treated with CrMP is attenuated (P < 0.05) by endothelium removal, by CO (1-100 micromol/l) in the bathing buffer, and by endothelin-1 (ET-1) receptor blockade with L-754142 (10 micromol/l). CrMP increases ET-1 levels in pulmonary intralobar arteries, particularly during incubation in hypooxygenated media. CrMP also causes a leftward shift in the concentration-response curve to ET-1, which is offset by exogenous CO. In anesthetized rats, pretreatment with CrMP (40 micromol/kg iv) intensifies the elevation of pulmonary artery pressure elicited by breathing a hypoxic gas mixture. However, acute hypoxia does not elicit augmentation of pulmonary arterial pressure in rats pretreated concurrently with CrMP and the ET-1 receptor antagonist L-745142 (15 mg/kg iv). These data suggest that a product of HO activity, most likely CO, inhibits hypoxia-induced pulmonary vasoconstriction by reducing ET-1 vascular levels and sensitivity.  相似文献   

8.
9.
10.
Polycythemia increases blood viscosity so that systemic O2 delivery (QO2) decreases and its regional distribution changes. We examined whether hypoxia, by promoting local vasodilation, further modified these effects in resting skeletal muscle and gut in anesthetized dogs after hematocrit had been raised to 65%. One group (CON, n = 7) served as normoxic controls while another (HH, n = 6) was ventilated with 9% O2--91% N2 for 30 min between periods of normoxia. Polycythemia decreased cardiac output so that QO2 to both regions decreased approximately 50% in both groups. In compensation, O2 extraction fraction increased to 65% in muscle and to 50% in gut. When QO2 was reduced further during hypoxia, blood flow increased in muscle but not in gut. Unlike previously published normocythemic studies, there was no initial hypoxic vasoconstriction in muscle. Metabolic vasodilation during hypoxia was enhanced in muscle when blood O2 reserves were first lowered by increased extraction with polycythemia alone. The increase in resting muscle blood flow during hypoxia with no change in cardiac output may have decreased O2 availability to other more vital tissues. In that sense and under these experimental conditions, polycythemia caused a maladaptive response during hypoxic hypoxia.  相似文献   

11.
12.
The purposes of this study were to determine 1) the presence of the major ion transport activities that regulate cytoplasmic pH (pH(c)) in cat pulmonary artery smooth muscle cells, i.e., Na+/H+ and the Na+-dependent and -independent Cl-/HCO3- exchange, 2) whether pH(c) changes in cells from small (SPAs) and large (LPAs) pulmonary arteries during hypoxia, and 3) whether changes in pH(c) are due to changes in the balance of exchange activities. Exchange activities as defined by physiological maneuvers rather than molecular identity were ascertained with fluorescence microscopy to document changes in the ratio of the pH(c) indicator 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein. Steady-state pH(c) was higher in LPA than in SPA normoxic smooth muscle cells. SPAs and LPAs possessed all three transport activities; in HCO3- containing normoxic solutions, Cl-/HCO3- exchange rather than Na+/H+ exchange set the level of pH(c); in HCO3- containing hypoxic solutions, pH(c) increased in SPA and decreased in LPA cells; altering the baseline pH(c) of a cell type to that of the other did not change the direction of the pH(c) response during hypoxia. The absence of Na+ prevented hypoxia-induced alkalinization in SPA cells; in both cell types, inhibiting the Cl-/HCO3- exchange activities reversed the normal direction of pH(c) changes during hypoxia.  相似文献   

13.
To understand the mechanisms of ceramide-based responses to hypoxia, we performed a mass spectrometry-based survey of ceramide species elicited by a wide range of hypoxic conditions (0.2-5% oxygen). We describe a rapid, time-dependent, marked up-regulation of dihydroceramides (DHCs) in mammalian cells and in the lungs of hypoxic rats. The increase affected all DHC species and was proportional with the depth and duration of hypoxia, ranging from 2- (1 h) to 10-fold (24 h), with complete return to normal after 1 h of reoxygenation at the expense of increased ceramides. We demonstrate that a DHC-based response to hypoxia occurs in a hypoxia-inducible factor-independent fashion and is catalyzed by the DHC desaturase (DEGS) in the de novo ceramide pathway. Both the impact of hypoxia on DHC molecular species and its inhibitory effect on cell proliferation were reproduced by knockdown of DEGS1 or DEGS2 by siRNA during normoxia. Conversely, overexpression of DEGS1 or DEGS2 attenuated the DHC accumulation and increased cell proliferation during hypoxia. Based on the amplitude and kinetics of DHC accumulation, the enzymatic desaturation of DHCs fulfills the criteria of an oxygen sensor across physiological hypoxic conditions, regulating the balance between biologically active components of ceramide metabolism.  相似文献   

14.
Both prostacyclin analogs and phosphodiesterase 5 (PDE5) inhibitors are effective treatments for pulmonary arterial hypertension (PAH). In addition to direct effects on vascular smooth muscle, prostacyclin analogs increase cAMP levels and ATP release from healthy human erythrocytes. We hypothesized that UT-15C, an orally available form of the prostacyclin analog, treprostinil, would stimulate ATP release from erythrocytes of humans with PAH and that this release would be augmented by PDE5 inhibitors. Erythrocytes were isolated and the effect of UT-15C on cAMP levels and ATP release were measured in the presence and absence of the PDE5 inhibitors, zaprinast or tadalafil. In addition, the ability of a soluble guanylyl cyclase inhibitor to prevent the effects of tadalafil was determined. Erythrocytes of healthy humans and humans with PAH respond to UT-15C with increases in cAMP levels and ATP release. In both groups, UT-15C-induced ATP release was potentiated by zaprinast and tadalafil. The effect of tadalafil was prevented by pre-treatment with an inhibitor of soluble guanylyl cyclase in healthy human erythrocytes. Importantly, UT-15C-induced ATP release was greater in PAH erythrocytes than in healthy human erythrocytes in both the presence and the absence of PDE5 inhibitors. The finding that prostacyclin analogs and PDE5 inhibitors work synergistically to enhance release of the potent vasodilator ATP from PAH erythrocytes provides a new rationale for the co-administration of these drugs in this disease. Moreover, these results suggest that the erythrocyte is a novel target for future drug development for the treatment of PAH.  相似文献   

15.
16.
17.
Proliferation of fibroblasts contributes to the adventitial thickening observed during the development of hypoxia-induced pulmonary hypertension. However, whether all or only specific subpopulations of fibroblasts proliferate during this process is unknown. Because lung, skin, and gingiva contain multiple fibroblast subpopulations, we hypothesized that the pulmonary artery (PA) adventitia of neonatal calves is composed of multiple fibroblast subpopulations and that only selective subpopulations expand under chronic hypoxic conditions. Fibroblast subpopulations were isolated from PA adventitia of control calves using limited dilution cloning techniques. These subpopulations exhibited marked differences in morphology, actin expression, and serum-stimulated growth. Only select fibroblast subpopulations demonstrated the ability to proliferate in response to hypoxia. Fibroblast subpopulations were similarly isolated from calves exposed to hypoxia (14 days). With regard to morphology, actin expression, and serum-stimulated growth of subpopulations, there were no obvious differences in fibroblast subpopulations between the hypoxic and the control calves. However, the number of fibroblast subpopulations with about a twofold increase in hypoxia-induced DNA synthesis was significantly greater in the hypoxic calves (26%) compared with control calves (10%). We conclude that the bovine PA adventitia comprises numerous phenotypically and biochemically distinct fibroblast subpopulations and that select subpopulations expand in response to chronic hypoxia.  相似文献   

18.
Chronic hypoxia (CH) increases pulmonary endothelial nitric oxide synthase (eNOS) protein levels in adult rats but decreases eNOS protein levels in neonatal pigs. We hypothesized that this differing response to CH is due to developmental rather than species differences. Adult and neonatal rats were placed in either hypobaric hypoxia or normoxia for 2 wk. At that time, body weight, hematocrit, plasma nitrite/nitrate (NOx(-)), and right ventricular and total ventricular heart weights were measured. Percent pulmonary arterial wall area of 20-50 and 51-100 microm arteries were also determined. Total lung protein extracts were assayed for eNOS levels by using immunoblot analysis. Compared with their respective normoxic controls, both adult and neonatal hypoxic groups demonstrated significantly decreased body weight, elevated hematocrit, and elevated right ventricular-to-total ventricular weight ratios. Both adult and neonatal hypoxic groups also demonstrated significantly larger percent pulmonary arterial wall area compared with their respective normoxic controls. Hypoxic adult pulmonary eNOS protein and plasma NOx(-) were significantly greater than levels found in normoxic adults. In contrast, hypoxic neonatal pulmonary eNOS protein and plasma NOx(-) were significantly less compared with normoxic neonates. We conclude that there is a developmental difference in eNOS expression and nitric oxide production in response to CH.  相似文献   

19.
Heterozygous mutations of the bone morphogenetic protein type II receptor (BMPR-II) gene have been identified in patients with primary pulmonary hypertension. The mechanisms by which these mutations contribute to the pathogenesis of primary pulmonary hypertension are not fully elucidated. To assess the impact of a heterozygous mutation of the BMPR-II gene on the pulmonary vasculature, we studied mice carrying a mutant BMPR-II allele lacking exons 4 and 5 (BMPR-II(+/-) mice). BMPR-II(+/-) mice had increased mean pulmonary arterial pressure and pulmonary vascular resistance compared with their wild-type littermates. Histological analyses revealed that the wall thickness of muscularized pulmonary arteries (<100 mum in diameter) and the number of alveolar-capillary units were greater in BMPR-II(+/-) than in wild-type mice. Breathing 11% oxygen for 3 wk increased mean pulmonary arterial pressure, pulmonary vascular resistance, and hemoglobin concentration to similar levels in BMPR-II(+/-) and wild-type mice, but the degree of muscularization of small pulmonary arteries and formation of alveolar-capillary units were reduced in BMPR-II(+/-) mice. Our results suggest that, in mice, mutation of one copy of the BMPR-II gene causes pulmonary hypertension but impairs the ability of the pulmonary vasculature to remodel in response to prolonged hypoxic breathing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号