首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sex chromosomes and autosomes spend different times in the germ line of the two sexes. If cell division is mutagenic and if the sexes differ in number of cell divisions, then we expect that sequences on the X and Y chromosomes and autosomes should mutate at different rates. Tests of this hypothesis for several mammalian species have led to conflicting results. At the same time, recent evidence suggests that the chromosomal location of genes on autosomes affects their rate of evolution at synonymous sites. This suggests a mutagenic source different from germ cell replication. To correctly interpret the previous estimates of male mutation bias, it is crucial to understand the degree and range of this local similarity. With a carefully chosen randomization protocol, local similarity in synonymous rates of evolution can be detected in human-rodent and mouse-rat comparisons. However, the synonymous-site similarity in the mouse-rat comparison remains weak. Simulations suggest that this difference between the mouse-human and the mouse-rat comparisons is not artifactual and that there is therefore a difference between humans and rodents in the local patterns of mutation or selection on synonymous sites (conversely, we show that the previously reported absence of a local similarity in nonsynonymous rates of evolution in the human-rodent comparison was a methodological artifact). We show that linkage effects have a long-range component: not one in a million random genomes shows such levels of autosomal heterogeneity. The heterogeneity is so great that more autosomes than expected by chance have rates of synonymous evolution comparable with that of the X chromosome. As autosomal heterogeneity cannot be owing to different times spent in the germ line, this demonstrates that the dominant determiner of synonymous rates of evolution is not, as has been conjectured, the time spent in the male germ line.  相似文献   

2.
Contrasting the efficacy of selection on the X and autosomes in Drosophila   总被引:1,自引:0,他引:1  
To investigate the relative efficacy of both positive and purifying natural selection on the X chromosome and the autosomes in Drosophila, we compared rates and patterns of molecular evolution between these chromosome sets using the newly available alignments of orthologous genes from 12 species. Parameters that may influence the relative X versus autosomal substitution rates include the relative effective population sizes, the male and female germline mutation rates, the distribution of allelic effects on fitness, and the degree of dominance of novel mutations. Our analysis reveals that codon usage bias is consistently greater for X-linked genes, suggesting that purifying selection consistently has greater efficacy on the X chromosome than on the autosomes across the Drosophila phylogeny. However, our results are less consistent with respect to the efficacy of positive selection, with only some lineages showing a higher substitution rate on the X chromosome. This suggests that either the distribution of selective effects of mutations or other relevant parameters are sufficiently variable across species to tip the balance in different ways in individual lineages. These data suggest that rates of substitution are not solely governed by adaptive evolution. This genome-wide analysis provides a clear picture that the efficacy of selection varies intragenomically and that this effect is markedly more consistent across the phylogeny in the case of purifying selection. Our results also suggest that simple models that predict systematic differences in rates of evolution between the X and the autosomes can only be made to be compatible with these Drosophila data if the relevant population genetic parameters that drive substitution rates differ among species and chromosomal contexts.  相似文献   

3.
除人Y染色体外,本文采用生物素标记的人全部整条染色体特异探针与白眉长臂猿(Hylobates hoolock)有丝分裂中期分裂相进行染色体原位杂交即染色体涂染法以研究人和白眉长臂猿染色体之间的同源性。在白眉长臂猿18对常染色体上检测出了与人22对常染色体同源的59对染色体片段,确定了人和白眉长臂猿之间的精度较高的染色体连锁群。结果表明:自人与白眉长臂猿的祖先分歧以来,大量的染色体间重排(至少发生了39次易位)和染色体内的重排导致了二者核型的差异。根据杂交结果绘制了首份人和白眉长臂猿比较染色体图谱,并结合已有的人和白掌长臂猿(Hylobates lar)(2n=44)和合趾长臂猿(Hylobates syndactylus)(2n=50)的比较染色体图谱对长臂猿属的染色体进化作了初步的探讨。  相似文献   

4.
Sex-linked mammalian sperm proteins evolve faster than autosomal ones   总被引:4,自引:0,他引:4  
X-linked genes can evolve slower or faster depending on whether most recessive, or at least partially recessive alleles are deleterious or beneficial due to their hemizygous expression in males. Molecular studies of X chromosome divergence have provided conflicting evidence for both a higher and lower rate of nucleotide substitution at both synonymous and nonsynonymous sites, depending on the nucleotide sites sampled. Using human and mouse orthologous genes, we tested the hypothesis that genes encoding male-specific sperm proteins are evolving faster on the X chromosome compared with autosomes. X-linked sperm proteins have an average nonsynonymous mutation rate almost twice as high as sperm genes found on autosomes, unlike other tissue-specific genes, where no significant difference in the nonsynonymous mutation rate between the X chromosome and autosomes was found. However, no difference was found in the average synonymous mutation rate of X-linked versus autosomal sperm proteins, which along with corresponding higher values of Ka/Ks in X-linked sperm proteins suggest that differences in selective forces and not mutation rates are the underlying cause of higher X-linked mammalian sperm protein divergence.  相似文献   

5.
To investigate mutation-rate variation between autosomes and sex chromosomes in the avian genome, we have analyzed divergence between chicken (Gallus gallus) and turkey (Meleagris galopavo) sequences from 33 autosomal, 28 Z-linked, and 14 W-linked introns with a total ungapped alignment length of approximately 43,000 bp. There are pronounced differences in the mean divergence among autosomes and sex chromosomes (autosomes [A] = 10.08%, Z chromosome = 10.99%, and W chromosome = 5.74%), and we use these data to estimate the male-to-female mutation-rate ratio (alpha(m)) from Z/A, Z/W, and A/W comparisons at 1.71, 2.37, and 2.52, respectively. Because the alpha(m) estimates of the three comparisons do not differ significantly, we find no statistical support for a specific reduction in the Z chromosome mutation rate (Z reduction estimated at 4.89%, P = 0.286). The idea of mutation-rate reduction in the sex chromosome hemizygous in one sex (i.e., X in mammals, Z in birds) has been suggested on the basis of theory on adaptive mutation-rate evolution. If it exists in birds, the effect would, thus, seem to be weak; a preliminary power analysis suggests that it is significantly less than 18%. Because divergence may vary within chromosomal classes as a result of variation in mutation and/or selection, we developed a novel double-bootstrapping method, bootstrapping both by introns and sites from concatenated alignments, to estimate confidence intervals for chromosomal class rates and for alpha(m). The narrowest interval for the alpha(m) estimate is 1.88 to 2.97 from the Z/W comparison. We also estimated alpha(m) using maximum likelihood on data from all three chromosome classes; this method yielded alpha(m) = 2.47 and approximate 95% confidence intervals of 2.27 to 2.68. Our data are broadly consistent with the idea that mutation-rate differences between chromosomal classes can be explained by the male mutation bias alone.  相似文献   

6.
T. B. Chou  N. Perrimon 《Genetics》1996,144(4):1673-1679
The production of female germline chimeras is invaluable for analyzing the tissue specificity of recessive female sterile mutations as well as detecting the maternal effect of recessive zygotic lethal mutations. Previously, we developed the ``FLP-DFS' technique to efficiently generate germline clones. This technique uses the X-linked germline-dependent dominant female sterile mutation ovo(D1) as a selection for the detection of germline recombination events, and the FLP-FRT recombination system to promote site-specific chromosomal exchange. This method allows the efficient production of germline mosaics only on the X chromosome. In this paper we have built chromosomes that allow the use of this technique to the autosomes. We describe the various steps involved in the development of this technique as well as the properties of the chromosomes utilized.  相似文献   

7.
ABSTRACT: BACKGROUND: The X and Y sex chromosomes are conspicuous features of placental mammal genomes. Mammalian sex chromosomes arose from an ordinary pair of autosomes after the proto-Y acquired a male-determining gene and degenerated due to suppression of X-Y recombination. Analysis of earlier steps in X chromosome evolution has been hampered by the long interval between the origins of teleost and amniote lineages as well as scarcity of X chromosome orthologs in incomplete avian genome assemblies. RESULTS: This study clarifies the genesis and remodelling of the X chromosome by using a combination of sequence analysis, meiotic map information, and cytogenetic localization to compare amniote genome organization with that of the amphibian Xenopus tropicalis. Nearly all orthologs of human X genes localize to X. tropicalis chromosomes 2 and 8, consistent with an ancestral X-conserved region and a single X-added region precursor. This finding contradicts a previous hypothesis of three evolutionary strata in this region. Homologies between human, opossum, chicken and frog chromosomes suggest a single X-added region predecessor in therian mammals, corresponding to opossum chromosomes 4 and 7. A more ancient X-added ancestral region, currently extant as a major part of chicken chromosome 1, is likely to have been present in the progenitor of synapsids and sauropsids. Analysis of X chromosome gene content emphasizes conservation of single protein coding genes and the role of tandem arrays in formation of novel genes. CONCLUSIONS: Chromosomal regions orthologous to Therian X chromosomes have been located in the genome of the frog X. tropicalis. These ancestral components experienced a series of fusion and breakage events to give rise to avian autosomes and mammalian sex chromosomes. The early branching tetrapod X. tropicalis' simple diploid genome and robust synteny to amniotes greatly enhances studies of vertebrate chromosome evolution.  相似文献   

8.
In contrast to mammals, birds exhibit a slow rate of chromosomal evolution. It is not clear whether high chromosome conservation is an evolutionary novelty of birds or was inherited from an earlier avian ancestor. The evolutionary conservatism of macrochromosomes between birds and turtles supports the latter possibility; however, the rate of chromosomal evolution is largely unknown in other sauropsids. In squamates, we previously reported strong conservatism of the chromosomes syntenic with the avian Z, which could reflect a peculiarity of this part of the genome. The chromosome 1 of iguanians and snakes is largely syntenic with chromosomes 3, 5 and 7 of the avian ancestral karyotype. In this project, we used comparative chromosome painting to determine how widely this synteny is conserved across nine families covering most of the main lineages of Squamata. The results suggest that the association of the avian ancestral chromosomes 3, 5 and 7 can be dated back to at least the early Jurassic and could be an ancestral characteristic for Unidentata (Serpentes, Iguania, Anguimorpha, Laterata and Scinciformata). In Squamata chromosome conservatism therefore also holds for the parts of the genome which are homologous to bird autosomes, and following on from this, a slow rate of chromosomal evolution could be a common characteristic of all sauropsids. The large evolutionary stasis in chromosome organization in birds therefore seems to be inherited from their ancestors, and it is particularly striking in comparison with mammals, probably the only major tetrapod lineage with an increased rate of chromosomal rearrangements as a whole.  相似文献   

9.
10.
Singh ND  Davis JC  Petrov DA 《Genetics》2005,171(1):145-155
Comparing patterns of molecular evolution between autosomes and sex chromosomes (such as X and W chromosomes) can provide insight into the forces underlying genome evolution. Here we investigate patterns of codon bias evolution on the X chromosome and autosomes in Drosophila and Caenorhabditis. We demonstrate that X-linked genes have significantly higher codon bias compared to autosomal genes in both Drosophila and Caenorhabditis. Furthermore, genes that become X-linked evolve higher codon bias gradually, over tens of millions of years. We provide several lines of evidence that this elevation in codon bias is due exclusively to their chromosomal location and not to any other property of X-linked genes. We present two possible explanations for these observations. One possibility is that natural selection is more efficient on the X chromosome due to effective haploidy of the X chromosomes in males and persistently low effective numbers of reproducing males compared to that of females. Alternatively, X-linked genes might experience stronger natural selection for higher codon bias as a result of maladaptive reduction of their dosage engendered by the loss of the Y-linked homologs.  相似文献   

11.
Ninety-nine loci have been assigned to river buffalo chromosomes, 67 of which are coding genes and 32 of which are anonymous DNA segments (microsatellites). Sixty-seven assignments were based on cosegregation of cellular markers in somatic cell hybrids (synteny), whereas 39 were based on in situ hybridization of fixed metaphase chromosomes with labeled DNA probes. Seven loci were assigned by both methods. Of the 67 assignments in somatic cell hybrids, 38 were based on polymerase chain reaction (PCR), 11 on isozyme electrophoresis, 10 on restriction endonuclease digestion of DNA, 4 on immunofluorescence, and 4 on chromosomal identification. A genetic marker or syntenic group has been assigned to each arm of the five submetacentric buffalo chromosomes as well as to the 19 acrocentric autosomes, and the X and Y chromosomes. These same markers map to the 29 cattle autosomes and the X and Y chromosomes, and without exception, cattle markers map to the buffalo chromosome or chromosomal region predicted from chromosome banding similarity.  相似文献   

12.
To determine whether male- or female-biased mutation rates have affected the molecular evolution of Drosophila melanogaster and D. simulans, we calculated the male-to-female ratio of germline cell divisions ([symbol: see text]) from germline generation data and the male-to-female ratio of mutation rate ([symbol: see text]) by comparing chromosomal levels of nucleotide divergence. We found that the ratio of germline cell divisions changes from indicating a weak female bias to indicating a weak male bias as the age of reproduction increases. The range of [symbol: see text] values that we observed, however, does not lead us to expect much, if any, difference in mutation rate between the sexes. Silent and intron nucleotide divergence were compared between nine loci on the X chromosome and nine loci on the second and third chromosomes. The average levels of nucleotide divergence were not significantly different across the chromosomes, although both silent and intron sites show a trend toward slightly more divergence on the X. These results indicate a lack of sex- or chromosome-biased molecular evolution in D. melanogaster and D. simulans.   相似文献   

13.
Zhu B  Dong Y  Gao J  Li P  Pang Y  Liu H  Chen H 《Hereditas》2006,143(2006):130-137
Here we describe our studies on Microtus mandarinus faeceus of Jiangyan in Jiangsu province of China. By karyotype and G-banding analysis we have found variation in chromosome number and polymorphisms of the X chromosome and the second pair of autosomes of the subspecies. Chromosome number of the subspecies is 2n=47-50. The subspecies has three kinds of chromosomal sex: XX, XO and XY, among which one of the X chromosomes is subtelocentric (X(ST)) and the other is metacentric (X(M)). After comparing karyotypes of different subspecies, we found the specific cytogenetic characteristics of Microtus mandarinus, that is they have three kinds of chromosomal sex: XX, XO and XY; X chromosomes are heteromorphic; the chromosome number of female individuals are one less than male individuals; chromosome number of XX individuals are equal to that of XO ones. We hypothesize that Robertsonian translocation is the main reason of the polymorphism of the second pair of autosomes and variety of chromosome number, and it also causes the chromosome number evolution in different subspecies of Microtus mandarinus.  相似文献   

14.
Sex chromosomes play a role in many important biological processes, including sex determination, genomic conflicts, imprinting, and speciation. In particular, they exhibit several unusual properties such as inheritance pattern, hemizygosity, and reduced recombination, which influence their response to evolutionary factors (e.g., drift, selection, and demography). Here, we examine the evolutionary forces driving X chromosome evolution in aphids, an XO system where females are homozygous (XX) and males are hemizygous (X0) at sex chromosomes. We show by simulations that the unusual mode of transmission of the X chromosome in aphids, coupled with cyclical parthenogenesis, results in similar effective population sizes and predicted levels of genetic diversity for X chromosomes and autosomes under neutral evolution. These results contrast with expectations from standard XX/XY or XX/X0 systems (where the effective population size of the X is three-fourths that of autosomes) and have deep consequences for aphid X chromosome evolution. We then localized 52 microsatellite markers on the X and 351 on autosomes. We genotyped 167 individuals with 356 of these loci and found similar levels of allelic richness on the X and on the autosomes, as predicted by our simulations. In contrast, we detected higher dN and dN/dS ratio for X-linked genes compared with autosomal genes, a pattern compatible with either positive or relaxed selection. Given that both types of chromosomes have similar effective population sizes and that the single copy of the X chromosome of male aphids exposes its recessive genes to selection, some degree of positive selection seems to best explain the higher rates of evolution of X-linked genes. Overall, this study highlights the particular relevance of aphids to study the evolutionary factors driving sex chromosomes and genome evolution.  相似文献   

15.
Although the X chromosome is usually similar to the autosomes in size and cytogenetic appearance, theoretical models predict that its hemizygosity in males may cause unusual patterns of evolution. The sequencing of several genomes has indeed revealed differences between the X chromosome and the autosomes in the rates of gene divergence, patterns of gene expression and rates of gene movement between chromosomes. A better understanding of these patterns should provide valuable information on the evolution of genes located on the X chromosome. It could also suggest solutions to more general problems in molecular evolution, such as detecting selection and estimating mutational effects on fitness.  相似文献   

16.
17.
18.
Measures of conserved synteny are important for estimating the relative rates of chromosomal evolution in various lineages. We present a natural way to view the synteny conservation between two species from an Oxford grid--an r x c table summarizing the number of orthologous genes on each of the chromosomes 1 through r of the first species that are on each of the chromosomes 1 through c of the second species. This viewpoint suggests a natural statistic, which we denote by rho and call syntenic correlation, designed to measure the amount of synteny conservation between two species. This measure allows syntenic conservation to be compared across many pairs of species. We improve the previous methods for estimating the true number of conserved syntenies given the observed number of conserved syntenies by taking into account the dependency of the numbers of orthologues observed in the chromosome pairings between the two species and by determining both point and interval estimators. We also discuss the application of our methods to genomes that contain chromosomes of highly variable lengths and to estimators of the true number of conserved segments between species pairs.  相似文献   

19.
Human chromosomes were separated by a dual laser FACS sorter and their DNA hybridized with a thyroglobulin gene probe. A strong hybridization signal was obtained with DNA from chromosome 8. A panel of mouse-rat cell hybrids was used to determine the chromosomal localization of the rat thyroglobulin gene by the Southern blotting method. Comparison of the cytogenetic data with the hybridization signals obtained with the rat thyroglobulin probe allowed assignment of this gene to rat chromosome 7. It is concluded that the synteny relationship between the thyroglobulin gene and the c-myc oncogene has been conserved in rat and man.  相似文献   

20.
Cross-species reciprocal chromosome painting was used to delineate homologous chromosomal segments between domestic dog, red fox, and human. Whole sets of chromosome-specific painting probes for the red fox and dog were made by PCR amplification of flow-sorted chromosomes from established cell cultures. Based on their hybridization patterns, a complete comparative chromosome map of the three species has been built. Thirty-nine of the 44 synteny groups from the published radiation hybrid map and 33 of the 40 linkage groups in the linkage map of the dog have been assigned to specific chromosomes by fluorescence in situ hybridization and PCR-based genotyping. Each canine chromosome has at least one DNA marker assigned to it. The human-canid map shows that the canid karyotypes are among the most extensively rearranged karyotypes in mammals. Twenty-two human autosomal paints delineated 73 homologous regions on 38 canine autosomes, while paints from 38 dog autosomes detected 90 homologous segments in the human genome. Of the 22 human autosomes, only the syntenies of three chromosomes (14, 20, and 21) have been maintained intact in the canid genome. The dog-fox map and DAPI banding comparison demonstrate that the remarkable karyotype differences between fox (2n = 34 + 0-8 Bs) and dog (2n = 78) are due to 26 chromosomal fusion events and 4 fission events. It is proposed that the more easily karyotyped fox chromosomes can be used as a common reference and control system for future gene mapping in the DogMap project and CGH analysis of canine tumor DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号