首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzymatic properties of four chalcone synthase homologues CHS_H1, VPS, CHS 2 and CHS 4 from Humulus lupulus L. were investigated after heterologous expression in Escherichia coli. It was found that both VPS and CHS_H1 can utilize isovaleryl-CoA and isobutyryl-CoA as substrates producing compounds with positions in thin layer chromatography characteristic for phloroisovalerophenone and phloroisobutyrophenone. These reactions are accompanied by the formation of associated byproducts. The formation of naringenin chalcone can be catalyzed primarily by CHS_H1. Comparatively the ability of VPS to perform chalcone synthase reaction is very limited. Since only CHS_H1 has true chalcone synthase activity, this enzyme can be considered a key enzyme in prenylflavonoid biosynthesis. Both CHS 2 and CHS 4 utilize isovaleryl-CoA and isobutyryl-CoA as substrates, but the reactions were prematurely terminated. In comparison with VPS and CHS_H1, the optimum pH of CHS 2 was shifted to lower value. High expression of chalcone synthase-like genes were found in maturating hop cones of cultivars with high bitter acid content (Agnus, Magnum, Target) by Northern and Western blotting using probes specific for vps, chs_H1, chs 4 and polyspecific serum risen against recombinant protein CHS4, respectively. It was also found that these cultivars maintained expression of CHS homologues for a longer period of time during cone development in contrast to time-limited expression of CHS homologues in cultivars with low bitter acids content.  相似文献   

2.
Substrate specificity of recombinant chalcone synthase (CHS) from Scutellaria baicalensis (Labiatae) was investigated using chemically synthesized aromatic and aliphatic CoA esters. It was demonstrated for the first time that CHS converted benzoyl-CoA to phlorobenzophenone (2,4,6-trihydroxybenzophenone) along with pyrone by-products. On the other hand, phenylacetyl-CoA was enzymatically converted to an unnatural aromatic polyketide, phlorobenzylketone (2, 4,6-trihydroxyphenylbenzylketone), whose structure was finally confirmed by chemical synthesis. Furthermore, in agreement with earlier reports, S. baicalensis CHS also accepted aliphatic CoA esters, isovaleryl-CoA and isobutyryl-CoA, to produce phloroacylphenones. In contrast, hexanoyl-CoA only afforded pyrone derivatives without formation of a new aromatic ring. It was noteworthy that both aromatic and aliphatic CoA esters were accepted in the active site of the enzyme as a starter substrate for the complex condensation reaction. The low substrate specificity of CHS thus provided further insight into the structure and function of the enzyme.  相似文献   

3.
Benzalacetone synthase (BSA) is a novel plant-specific polyketide synthase that catalyzes a one step decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce the C6-C4 skeleton of phenylbutanoids in higher plants. A cDNA encoding BAS was for the first time cloned and sequenced from rhubarb (Rheum palmatum), a medicinal plant rich in phenylbutanoids including pharmaceutically important phenylbutanone glucoside, lindleyin. The cDNA encoded a 42-kDa protein that shares 60-75% amino-acid sequence identity with other members of the CHS-superfamily enzymes. Interestingly, R. palmatum BAS lacks the active-site Phe215 residue (numbering in CHS) which has been proposed to help orient substrates and intermediates during the sequential condensation of 4-coumaroyl-CoA with malonyl-CoA in CHS. On the other hand, the catalytic cysteine-histidine dyad (Cys164-His303) in CHS is well conserved in BAS. A recombinant enzyme expressed in Escherichia coli efficiently afforded benzalacetone as a single product from 4-coumaroyl-CoA and malonyl-CoA. Further, in contrast with CHS that showed broad substrate specificity toward aliphatic CoA esters, BAS did not accept hexanoyl-CoA, isobutyryl-CoA, isovaleryl-CoA, and acetyl-CoA as a substrate. Finally, besides the phenylbutanones in rhubarb, BAS has been proposed to play a crucial role for the construction of the C6-C4 moiety of a variety of natural products such as medicinally important gingerols in ginger plant.  相似文献   

4.
A cDNA encoding a novel plant type III polyketide synthase was cloned and sequenced from the Chinese club moss Huperzia serrata (Huperziaceae). The deduced amino acid sequence of Hu. serrata polyketide synthase 1 showed 44-66% identity to those of other chalcone synthase superfamily enzymes of plant origin. Further, phylogenetic tree analysis revealed that Hu. serrata polyketide synthase 1 groups with other nonchalcone-producing type III polyketide synthases. Indeed, a recombinant enzyme expressed in Escherichia coli showed unusually versatile catalytic potential to produce various aromatic tetraketides, including chalcones, benzophenones, phloroglucinols, and acridones. In particular, it is remarkable that the enzyme accepted bulky starter substrates such as 4-methoxycinnamoyl-CoA and N-methylanthraniloyl-CoA, and carried out three condensations with malonyl-CoA to produce 4-methoxy-2',4',6'-trihydroxychalcone and 1,3-dihydroxy-N-methylacridone, respectively. In contrast, regular chalcone synthase does not accept these bulky substrates, suggesting that the enzyme has a larger starter substrate-binding pocket at the active site. Although acridone alkaloids have not been isolated from Hu. serrata, this is the first demonstration of the enzymatic production of acridone by a type III polyketide synthase from a non-Rutaceae plant. Interestingly, Hu. serrata polyketide synthase 1 lacks most of the consensus active site sequences with acridone synthase from Ruta graveolens (Rutaceae).  相似文献   

5.
Abe I  Utsumi Y  Oguro S  Noguchi H 《FEBS letters》2004,562(1-3):171-176
A cDNA encoding a novel plant type III polyketide synthase (PKS) was cloned from rhubarb (Rheum palmatum). A recombinant enzyme expressed in Escherichia coli accepted acetyl-CoA as a starter, carried out six successive condensations with malonyl-CoA and subsequent cyclization to yield an aromatic heptaketide, aloesone. The enzyme shares 60% amino acid sequence identity with chalcone synthases (CHSs), and maintains almost identical CoA binding site and catalytic residues conserved in the CHS superfamily enzymes. Further, homology modeling predicted that the 43-kDa protein has the same overall fold as CHS. This provides new insights into the catalytic functions of type III PKSs, and suggests further involvement in the biosynthesis of plant polyketides.  相似文献   

6.
Tolerance and specificity of recombinant 6-methylsalicyclic acid synthase   总被引:2,自引:0,他引:2  
BACKGROUND: 6-Methylsalicylic acid synthase (MSAS), a fungal polyketide synthase from Penicillium patulum, is perhaps the simplest polyketide synthase that embodies several hallmarks of this family of multifunctional enzymes--a large multidomain protein, a high degree of specificity toward acetyl-CoA and malonyl-CoA substrates, chain length control, and regiospecific ketoreduction. MSAS has recently been functionally expressed in Escherichia coli and Saccharomyces cerevisiae, leading to the engineered biosynthesis of 6-methylsalicylic acid in these hosts. These developments have set the stage for detailed mechanistic studies of this model system. RESULTS: A three--step purification procedure was developed to obtain >95% pure MSAS from extracts of E. coli. As reported earlier for the enzyme isolated from P. patulum, the recombinant enzyme produced 6-methylsalicylic acid (a reduced tetraketide) in the presence of acetyl-CoA, malonyl-CoA, and NADPH, but triacetic acid lactone (an unreduced triketide) in the absence of NADPH. Consistent with this observation, point mutations in the highly conserved nucleotide-binding motif of the ketoreductase domain also led to production of triacetic acid lactone in vivo. The enzyme showed some tolerance toward nonnatural primer units including propionyl- and butyryl-CoA, but was incapable of incorporating extender units from (R, S)-methylmalonyl-CoA. Interestingly, MSAS readily accepted the N-acetylcysteamine (NAC) analog of malonyl-CoA as a substrate. CONCLUSIONS: NAC thioesters are simple, cost-effective analogs of CoA thioester substrates, and therefore provide a facile strategy for probing the molecular recognition features of polyketide synthases using unnatural building blocks. The ability to produce 4-hydroxy-6-methyl-2-pyrone in both E. coli and yeast illustrates the feasibility of metabolic engineering of these hosts to produce unnatural polyketides. Finally, the abundant source of recombinant MSAS described here provides an opportunity to study this fascinating model system using a combination of structural, mechanistic, and mutagenesis approaches.  相似文献   

7.
Hyperforin is an important antidepressant constituent of Hypericum perforatum (St. John's wort). Cell cultures of the related species H. calycinum were found to contain the homologue adhyperforin and to a low extent hyperforin, when grown in BDS medium in the dark. Adhyperforin formation paralleled cell culture growth. Cell-free extracts from the cell cultures contained isobutyrophenone synthase activity catalyzing the condensation of isobutyryl-CoA with three molecules of malonyl-CoA to give phlorisobutyrophenone, i.e. the hyperforin skeleton. The formation of the hyperforins during cell culture growth was preceded by an increase in isobutyrophenone synthase activity. The cell cultures also contained benzophenone synthase and chalcone synthase activities which are involved in xanthone and flavonoid biosyntheses, respectively. The three type III polyketide synthases were separated by anion exchange chromatography.  相似文献   

8.
Type III polyketide synthases (PKSs) are responsible for aromatic polyketide synthesis in plants and bacteria. Genome analysis of filamentous fungi has predicted the presence of fungal type III PKSs, although none have thus far been functionally characterized. In the genome of Neurospora crassa, a single open reading frame, NCU04801.1, annotated as a type III PKS was found. In this report, we demonstrate that NCU04801.1 is a novel type III PKS catalyzing the synthesis of pentaketide alkylresorcylic acids. NCU04801.1, hence named 2'-oxoalkylresorcylic acid synthase (ORAS), preferred stearoyl-CoA as a starter substrate and condensed four molecules of malonyl-CoA to give a pentaketide intermediate. For ORAS to yield pentaketide alkylresorcylic acids, aldol condensation and aromatization of the intermediate, which is still attached to the enzyme, are presumably followed by hydrolysis for release of the product as a resorcylic acid. ORAS is the first type III PKS that synthesizes pentaketide resorcylic acids.  相似文献   

9.
10.
Chalcone synthase and stilbene synthase are plant-specific polyketide synthases. They catalyze three common consecutive decarboxylative condensations and specific cyclization reactions. They are highly homologous to each other, and are likely to fall into a family of polyketide synthases along with acridone synthase and bibenzyl synthase. Two cDNA clones (named HmC and HmS), both of which show high homology to the known chalcone synthases, were obtained from leaves of Hydrangea macrophylla var. thunbergii. They were expressed in Escherichia coli in order to determine their enzyme functions. Detection of chalcone formation clearly indicated that HmC encoded chalcone synthase, while HmS protein catalyzed the formation of neither chalcone nor stilbene. However, a novel pyrone, a lactonization product of a linear tetraketide was detected in reaction products of HmS protein. This proves that HmS encodes a novel polyketide synthase that catalyzes only chain elongation without cyclization.  相似文献   

11.
Raspberry ketone accounts for the characteristic aroma of the raspberry fruit. A bifunctional enzyme with both chalcone synthase (CHS) and benzalacetone synthase (BAS) activity is thought to play a crucial role in the synthesis of p-hydroxybenzalacetone, yet the in vitro enzymatic properties and reaction products of the CHS/BAS recombinant enzyme from raspberry have not been characterized. In this work, a type III polyketide synthase (PKS) gene (RinPKS1) and its corresponding cDNA were isolated from raspberry. Sequence and phylogenetic analyses demonstrated that RinPKS1 is a CHS. However, functional and enzymatic analyses showed that recombinant RinPKS1 is a bifunctional enzyme with both CHS and BAS activity. RinPKS1 showed some interesting characteristics: (1) no traces of bis-noryangonin and 4-coumaroyltriacetic acid lactone could be detected in the enzyme reaction mixture at different pH values; and (2) recombinant RinPKS1 overexpressed in Escherichia coli effectively yielded p-hydroxybenzalacetone as a dominant product at high pH; however, it effectively yielded naringenin as a dominant product at low pH. Furthermore, 4-coumaroyl-CoA and feruloyl-CoA were the only cinnamoyl-CoA derivatives accepted as starter substrates. RinPKS1 did not accept isobutyryl-CoA, isovaleryl-CoA or acetyl-CoA as substrates.  相似文献   

12.
13.
14.
The enzyme activities encoded in five cDNAs for chalcone synthase (CHS) homologs from hop were investigated. Only valerophenone synthase (VPS) and CHS_H1 showed both naringenin-chalcone and phlorisovalerophenone forming activity. Narigenin-chalcone production by VPS was much lower than by CHS_H1. Therefore, it is highly possible that flavonoid depends mainly on CHS_H1, while bitter acid biosynthesis depends mainly on VPS and CHS_H1.  相似文献   

15.
RppA, a chalcone synthase-related polyketide synthase (type III polyketide synthase) in the bacterium Streptomyces griseus, catalyzes the formation of 1,3,6,8-tetrahydroxynaphthalene (THN) from five molecules of malonyl-CoA. The K(m) value for malonyl-CoA and the k(cat) value for THN synthesis were determined to be 0.93 +/- 0.1 microm and 0.77 +/- 0.04 min(-1), respectively. RppA accepted aliphatic acyl-CoAs with the carbon lengths from C(4) to C(8) as starter substrates and catalyzed sequential condensation of malonyl-CoA to yield alpha-pyrones and phloroglucinols. In addition, RppA yielded a hexaketide, 4-hydroxy-6-(2',4',6'-trioxotridecyl)-2-pyrone, from octanoyl-CoA and five molecules of malonyl-CoA, suggesting that the size of the active site cavity of RppA is larger than any other chalcone synthase-related enzymes found so far in plants and bacteria. RppA was also found to synthesize a C-methylated pyrone, 3,6-dimethyl-4-hydroxy-2-pyrone, by using acetoacetyl-CoA as the starter and methylmalonyl-CoA as an extender. Thus, the broad substrate specificity of RppA yields a wide variety of products.  相似文献   

16.
This paper gives an overview of existing knowledge concerning the structure and deduced functions of polyketide synthases active in antibiotic-producing streptomycetes. Using monensin A as an example of a structurally complex polyketide metabolite, the problem of understanding how individual strains of microorganism are 'programmed' to produce a given polyketide metabolite is first outlined. The question then arises, how is the programming of polyketide assembly related to the structural organization of individual polyketide synthase complexes at the biochemical and genetic levels? Experimental results that help to illuminate these relations are described, in particular, those giving information about the structures and deduced functions of polyketide synthases involved in aromatic polyketide biosynthesis (actinorhodin, granaticin, tetracenomycin, whiE spore pigment and an act homologous region from the monensin-producing organism), as well as the macrolide polyketide synthase active in the biosynthesis of 6-deoxyerythronolide A.  相似文献   

17.
Biosynthesis of the enediyne natural product dynemicin in Micromonospora chersina is initiated by DynE8, a highly reducing iterative type I polyketide synthase that assembles polyketide intermediates from the acetate units derived solely from malonyl-CoA. To understand the substrate specificity and the evolutionary relationship between the acyltransferase (AT) domains of DynE8, fatty acid synthase, and modular polyketide synthases, we overexpressed a 44-kDa fragment of DynE8 (hereafter named ATDYN10) encompassing its entire AT domain and the adjacent linker domain. The crystal structure at 1.4 Å resolution unveils a α/β hydrolase and a ferredoxin-like subdomain with the Ser-His catalytic dyad located in the cleft between the two subdomains. The linker domain also adopts a α/β fold abutting the AT catalytic domain. Co-crystallization with malonyl-CoA yielded a malonyl-enzyme covalent complex that most likely represents the acyl-enzyme intermediate. The structure explains the preference for malonyl-CoA with a conserved arginine orienting the carboxylate group of malonate and several nonpolar residues that preclude α-alkyl malonyl-CoA binding. Co-crystallization with acetyl-CoA revealed two noncovalently bound acetates generated by the enzymatic hydrolysis of acetyl-CoA that acts as an inhibitor for DynE8. This suggests that the AT domain can upload the acyl groups from either malonyl-CoA or acetyl-CoA onto the catalytic Ser651 residue. However, although the malonyl group can be transferred to the acyl carrier protein domain, transfer of the acetyl group to the acyl carrier protein domain is suppressed. Local structural differences may account for the different stability of the acyl-enzyme intermediates.  相似文献   

18.
Unusual polyketide synthases (PKSs), that are structurally type I but act in an iterative manner for aromatic polyketide biosynthesis, are a new family found in bacteria. Here we report the cloning of the iterative type I PKS gene chlB1 from the chlorothricin (CHL) producer Streptomyces antibioticus DSM 40725 by a rapid PCR approach, and characterization of the function of the gene product as a 6-methylsalicyclic acid synthase (6-MSAS). Sequence analysis of various iterative type I PKSs suggests that the resulting aromatic or aliphatic structure of the products might be intrinsically determined by a catalytic feature of the paired KR-DH domains in the control of the double bond geometry. The finding of ChlB1 as a 6-MSAS not only enriches the current knowledge of aromatic polyketide biosynthesis in bacteria, but will also contribute to the generation of novel polyketide analogs via combinatorial biosynthesis with engineered PKSs.  相似文献   

19.
Ma SM  Tang Y 《The FEBS journal》2007,274(11):2854-2864
The biosynthesis of lovastatin in Aspergillus terreus requires two megasynthases. The lovastatin nonaketide synthase, LovB, synthesizes the intermediate dihydromonacolin L using nine malonyl-coenzyme A molecules, and is a reducing, iterative type I polyketide synthase. The iterative type I polyketide synthase is mechanistically different from bacterial type I polyketide synthases and animal fatty acid synthases. We have cloned the minimal polyketide synthase domains of LovB as standalone proteins and assayed their activities and substrate specificities. The didomain proteins ketosynthase-malonyl-coenzyme A:acyl carrier protein acyltransferase (KS-MAT) and acyl carrier protein-condensation (ACP-CON) domain were expressed solubly in Escherichia coli. The monodomains MAT, ACP and CON were also obtained as soluble proteins. The MAT domain can be readily labeled by [1,2-(14)C]malonyl-coenzyme A and can transfer the acyl group to both the cognate LovB ACP and heterologous ACPs from bacterial type I and type II polyketide synthases. Using the LovB ACP-CON didomain as an acyl acceptor, LovB MAT transferred malonyl and acetyl groups with k(cat)/K(m) values of 0.62 min(-1).mum(-1) and 0.032 min(-1).mum(-1), respectively. The LovB MAT domain was able to substitute the Streptomyces coelicolor FabD in supporting product turnover in a bacterial type II minimal polyketide synthase assay. The activity of the KS domain was assayed independently using a KS-MAT (S656A) mutant in which the MAT domain was inactivated. The KS domain displayed no activity towards acetyl groups, but was able to recognize malonyl groups in the absence of cerulenin. The relevance of these finding to the priming mechanism of fungal polyketide synthase is discussed.  相似文献   

20.
Benzalacetone synthase (BAS) and chalcone synthase (CHS) are plant-specific type III polyketide synthases (PKSs), sharing 70% amino acid sequence identity and highly homologous overall protein structures. BAS catalyzes the decarboxylative coupling of 4-coumaroyl-CoA with malonyl-CoA to produce the diketide benzalacetone, whereas CHS produces the tetraketide chalcone by iterative condensations with three molecules of malonyl-CoA, and folding the resulting intermediate into a new aromatic ring system. Recent crystallographic analyses of Rheum palmatum BAS revealed that the characteristic substitution of Thr132 (numbering of Medicago sativa CHS2), a conserved CHS residue lining the active-site cavity, with Leu causes steric contraction of the BAS active-site to produce the diketide, instead of the tetraketide. To test this hypothesis, we constructed a set of R. palmatum BAS site-directed mutants (L132G, L132A, L132S, L132C, L132T, L132F, L132Y, L132W and L132P), and investigated the mechanistic consequences of the point mutations. As a result, the single amino acid substitution L132T restored the chalcone-forming activity in BAS, whereas the Ala, Ser, and Cys substitutions expanded the product chain length to produce 4-coumaroyltriacetic acid lactone (CTAL) after three condensations with malonyl-CoA, but without the formation of the aromatic ring system. Homology modeling suggested that this is probably caused by the restoration of the ‘coumaroyl binding pocket’ in the active-site cavity. These findings provide further insights into the structural details of the catalytic mechanism of the type III PKS enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号