首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the membrane dipole potential (Phid) on a conductance and a steady-state number of functioning channels formed by cyclic lipodepsipeptide syringomycin E (SRE) in bilayer lipid membranes made from phosphocholine and bathed in 0.4 M solution of sodium salts of aspartate, gluconate and chloride was shown. The magnitude of Phid was varied with the introduction to membrane bathing solutions of phloretin, which reduces the Phid, and RH 421, increasing the Phid. It was established that in all studied systems the increase in the membrane dipole potential cause a decrease in the steady-state number of open channels. In the systems containing sodium salts of aspartate (Asp) or gluconate (Glc), changes in the number of functioning channels are in an order of magnitude smaller than in systems containing sodium chloride. At the same time, the conductance (g) of single SRE-channels on the membranes bathed in NaCI solution increases with the increase in Phid, and in the systems containing NaAsp or NaGlc the conductance of single channels does not depend on the Phid. The latter is due to the lack of cation/anion selectivity of the SRE-channels in these systems. The different channel-forming activity of SRE in the experimental systems is defined by the gating charge of the channel and the partition coefficient of the dipole modifiers between the lipid and aqueous phases.  相似文献   

2.
The effect of the membrane dipole potential (φ d ) on conductance and the steady-state number of functioning channels formed by cyclic lipodepsipeptide syringomycin E (SRE) in bilayer lipid membranes made from phosphocholine and bathed in 0.4 M solution of sodium salts of aspartate, gluconate, and chloride was shown. The φ d value varied with the introduction of phloretin to membrane bathing solutions, which reduces φ d and RH 421, which increases φ d . It was established that, in all studied systems, an increase in the membrane dipole potential caused a decrease in the steady-state number of open channels. In systems containing sodium salts of aspartate (Asp) or gluconate (Glc), changes in the number of functioning channels are one order lower than those of systems that contain sodium chloride. At the same time, the conductance (g) of single SRE channels in the membranes bathed in NaCl solution increases with increase in φ d and in the systems containing NaAsp or NaGlc the conductance of single channels does not depend on the φ d . The latter is due to the lack of cation/anion selectivity of the SRE channels in these systems. The different channel-forming activity of SRE in the experimental systems is determined by the gating charge of the channel and the partition coefficient of the dipole modifiers between the lipid and aqueous phases.  相似文献   

3.
The effect of membrane dipole potential (? d ) on the properties of ion channels formed in bilayer lipid membranes by syringomycin E (SRE), a toxin produced by Pseudomonas syringae, has been studied. It has been shown that ? d affects the conductance and lifetime of elementary SRE channels as well as their cluster organization, in particular, the number of elementary channels synchronously opened in the cluster and the lifetime of these clusters. The channel-forming activity of SRE was found to be ? d -dependent. The analysis of experimental data has revealed that (i) the mechanisms of the observed effects involve the dipole-dipole and charge-dipole interactions responsible for the cooperative functioning of the elementary SRE channels; (ii) about 95% of membrane dipole potential is shielded in the SRE pore; and (iii) the channel-forming activity of SRE is mainly determined by the gating charge of the SRE channels. At the same time, the partition coefficient for the toxin distribution between the membrane and aqueous phase as well as the chemical component of the channel formation work are also responsible for the ? d -dependence of the SRE channel forming activity.  相似文献   

4.
The phloretin-induced reduction in the dipole potential of planar lipid bilayers containing cholesterol, ergosterol, stigmasterol, 7-dehydrocholesterol and 5α-androstan-3β-ol was investigated. It is shown that effects depend on the type and concentration of membrane sterol. It is supposed that the effectiveness of phloretin in reducing the dipole potential of the bilayers that contain cholesterol, ergosterol and 7-dehydrocholesterol correlates with the ordering and condensing effects. The role of the concentration-dependent ability of different sterols to promote lateral heterogeneity in membranes is also discussed.  相似文献   

5.
Antifungal lipodepsipeptide syringomycin E (SRE) forms two major conductive states in lipid bilayers: "small" and "large". Large SRE channels are cluster of several small ones, demonstrating synchronous opening and closure. To get insight into the mechanism of such synchronization we investigated how transmembrane potential, membrane surface charge, and ionic strength affect the number of small SRE channels synchronously functioning in the cluster. Here, we report that the large SRE channels can be presented as 3-8 simultaneously gating small channels. The increase in the absolute value of the transmembrane potential (from 50 to 200 mV) decreases the number of synchronously gated channels in the clusters. Voltage-dependence of channel synchronization was influenced by the ionic strength of the bathing solution, but not by membrane surface charge. We propose a mechanism for the voltage-dependent cluster behavior that involves a voltage-induced reorientation of lipid dipoles associated with the channel pores.  相似文献   

6.
Sphingolipids with long chain bases hydroxylated at the C4 position are a requisite for the yeast, Saccharomyces cerevisia, to be sensitive to the ion channel forming antifungal agent, syringomycin E (SRE). A mutant S. cerevisiae strain, Δsyr2, having sphingolipids with a sphingoid base devoid of C4-hydroxylation, is resistant to SRE. To explore the mechanism of this resistance, we investigated the channel forming activity of SRE in lipid bilayers of varying composition. We found that the addition of sphingolipid-rich fraction from Δsyr2 to the membrane-forming solution (DOPS/DOPE/ergosterol) resulted in lipid bilayers with lower sensitivity to SRE compared with those containing sphingolipid fraction from wild-type S. cerevisiae. Other conditions being equal, the rate of increase of bilayer conductance was about 40 times slower, and the number of SRE channels was about 40 times less, with membranes containing Δsyr2 versus wild-type sphingolipids. Δsyr2 sphingolipids altered neither SRE single channel conductance nor the gating charge but the ability of SRE channels to open synchronously was diminished. The results suggest that the resistance of the Δsyr2 mutant to SRE may be partly due to the ability of sphingolipids without the C4 hydroxyl group to decrease the channel forming activity of SRE.  相似文献   

7.
Recently, we showed that the effect of dipole modifiers (flavonoids and styrylpyridinium dyes) on the conductance of single amphotericin B (AmB) channels in sterol-containing lipid bilayers primarily resulted from changes in the membrane dipole potential. The present study examines the effect of dipole modifiers on the AmB multi-channel activity. The addition of phloretin to cholesterol-containing membranes leads to a significant increase in the steady-state AmB-induced transmembrane current. Quercetin significantly decreases and RH 421 increases the current through ergosterol-containing bilayers. Other tested flavonoids and styrylpyridinium dyes do not affect the channel-forming activity of AmB independently on the sterol composition of the bilayers. The effects obtained in these trials may instead be attributed to the direct interaction of dipole modifiers with AmB/sterol complexes and not to the effect of dipole potential changes. The presence of double bonds in the Δ7 and Δ22 positions of sterol molecules, the number of conjugated double bonds and amino sugar residues in polyene molecules, and the conformation and adsorption plane of dipole modifiers are important factors impacting this interaction.  相似文献   

8.
Changes in dipole potential of lipid bilayers ?d mimicking cell membranes induced by the adsorption of low-molecular-weight amphiphiles, flavonoids (phloretin and quercetin), and styrylpyridinium dyes (RH 421 and RH 237) were measured. A method based on the determination of ionophore-induced transmembrane current was used to evaluate changes in ?d after modifier addition. The characteristic parameters of the Langmuir adsorption isotherm and the greatest changes in ?d at an infinitely large concentration of flavonoid and its desorption constant, which reflects the affinity of the flavonoid to the lipid phase, were determined. The slopes of linear dependences of ?d increasing on the concentration of the styrylpiridinium dyes in membrane-bathing solution were defined. It was found that the dipole-modifying effect of phloretin depends on the charge of the lipids forming the membranes, while the ability of quercetin to reduce ?d is determined by the initial hydration of the bilayer. The results indicate that there are different mechanisms of the decrease in ?d upon the adsorption of the tested flavonoids. It was shown that the changes in ?d at the incorporation of styrylpyridinium dyes into bilayers are determined by the interaction of modifiers with membrane components.  相似文献   

9.
 The interaction of phloretin with single lipid bilayers on a spherical support and with multilamellar vesicles was studied by differential scanning calorimetry (DSC) and nuclear magnetic resonance (NMR). The results indicated that phloretin interacts with the lipid layer and changes its structural parameters. In DSC experiments, phloretin in its neutral form strongly decreased the lipid phase transition temperature and slightly reduced the cooperativity of the phase transition within the lipid layer. In NMR measurements, phloretin led to an increase of the transverse relaxation time constant but had no effect on the spin-lattice relaxation time constant. The overall dipole moment of phloretin was experimentally determined and was found to be roughly 40% lower than has been published previously. This result suggested that the size of the dipole moment of phloretin does not provide such a high contribution to the effect of phloretin on the dipole potential of monolayers and bilayers as has been published previously. To understand the discrepancy between phloretin adsorption and dipole potential change, we performed computational conformational analysis of phloretin in the gas phase. The results showed that a wide distribution of the dipole moments of phloretin conformers exists, which mainly depends on the orientation of the OH moieties. The adsorption of phloretin as determined from its binding to solid supported bilayers differed from the one determined from dipole potential measurements on black lipid membranes. The difference between the phloretin dissociation constants of both types of experiments suggested a change of its dipole moment normal to the membrane surface in a concentration-dependent manner, which was in agreement with the results of the computational conformational analysis. Received: 21 June 1999 / Revised version: 7 January 2000 / Accepted: 31 March 2000  相似文献   

10.
The effect of filamentous (F) actin on the channel-forming activity of syringomycin E (SRE) in negatively charged and uncharged bilayer lipid membranes (BLM) was studied. F-actin did not affect the membrane conductance in the absence of SRE. No changes in SRE-induced membrane conductance were observed when the above agents were added to the same side of BLM. However, the opposite side addition of F-actin and SRE provokes a multiple increase in membrane conductance. The similar voltage dependence of membrane conductance, equal values of single channel conductance and the effective gating charge of the channels upon F-actin action suggests that the actin-dependent increase in BLM conductance may result from an increase in the number of opened SRE-channels. BLM conductance kinetics depends on the sequence of SRE and F-actin addition, suggesting that actin-dependent rise of conductance may be induced by BLM structural changes that follow F-actin adsorption. F-actin exerted similar effect on membrane conductance of both negatively charged and uncharged bilayers, as well as on conductance of BLM with high ionic strength bathing solution, suggesting the major role for hydrophobic interactions in F-actin adsorption on lipid bilayer.  相似文献   

11.
The influence of agents, known to affect the membrane dipole potential, phloretin and RH 421, on the multi channel activity of amphotericin B in lipid bilayers of various compositions, was studied. It was shown that the effects were dependent on the membrane’s phospholipid and sphingolipid type. Phloretin enhanced amphotericin B induced steady-state transmembrane current through bilayers made from binary mixtures of POPC (DOPC) and ergosterol and ternary mixture of DPhPC, ergosterol and stearoylphytosphingosine. RH 421 increased steady-state polyene induced transmembrane current through membranes made from binary mixtures of DPhPC (DPhPS) and ergosterol and ternary mixture of DPhPS, ergosterol and stearoylphytosphingosine. It was proposed that the observed effects reflect the fine balance of the interactions between the various components present: amphotericin B, ergosterol, phospholipid, sphingolipid and dipole modifier. The shape of lipid molecules seems to be an important factor impacting the responses of amphotericin B modified bilayers to dipole modifiers. The influence of different phospholipids and sphingolipids on the physical and structural properties of ordered lipid microdomains, enriched in AmB, was also discussed. It was also shown that RH 421 enhanced the antifungal activity of amphotericin B in vitro.  相似文献   

12.
Voltage-dependent capacitance in lipid bilayers made from monolayers.   总被引:12,自引:6,他引:6       下载免费PDF全文
Electrocompression has been measured in lipid bilayers made by apposition of two monolayers. The capacitance C(V), as a function of membrane potential, V, was found to be well described by C(V) = C(O) [1 + alpha(V + delta psi)2] where C(O) is the capacitance at V = O, alpha is the fractional increase in capacitance per square volt, and delta psi is the surface potential difference. In lipid bilayers made from monolayers alpha has a value of 0.02 V-2, which is ca. 500-fold smaller than the value found in solvent containing membranes. In asymmetric bilayers made of one neutral and one negatively charged monolayer, delta psi values were found to be those expected from independent measurements of surface charge density. If the fractional increase in capacitance found here is a good approximation to that of biological membranes, nonlinear capacitative charge displacement derived from electrostriction is expected to be less than 1% of the total gating charge displacement found in squid axons.  相似文献   

13.
The effects of dipole modifiers and their structural analogs on the single channel activity of amphotericin B in sterol-containing planar phosphocholine membranes are studied. It is shown that the addition of phloretin in solutions bathing membranes containing cholesterol or ergosterol decreases the conductance of single amphotericin B channels. Quercetin decreases the channel conductance in cholesterol-containing bilayers while it does not affect the channel conductance in ergosterol-containing membranes. It is demonstrated that the insertion of styryl dyes, such as RH 421, RH 237 or RH 160, in bilayers with either cholesterol or ergosterol leads to the increase of the current amplitude of amphotericin B pores. Introduction of 5α-androstan-3β-ol into a membrane-forming solution increases the amphotericin B channel conductance in a concentration-dependent manner. All the effects are likely to be attributed to the influence of the membrane dipole potential on the conductance of single amphotericin B channels. However, specific interactions of some dipole modifiers with polyene-sterol complexes might also contribute to the activity of single amphotericin B pores. It has been shown that the channel dwell time increases with increasing sterol concentration, and it is higher for cholesterol-containing membranes than for bilayers including ergosterol, 6-ketocholestanol, 7-ketocholestanol or 5α-androstan-3β-ol. These findings suggest that the processes of association/dissociation of channel forming molecules depend on the membrane fluidity.  相似文献   

14.
The effects of dipole modifiers, thyroid hormones (thyroxine and triiodothyronine) and xanthene dyes (Rose Bengal, phloxineB, erythrosin, eosinY and fluorescein) on the pore-forming activity of the lipopeptide syringomycin E (SRE) produced by Pseudomonas syringae were studied in a model bilayer. Thyroxine does not noticeably influence the steady-state number of open SRE channels (Nop), whereas triiodothyronine decreases it 10-fold at − 50 mV. Rose Bengal, phloxine B and erythrosin significantly increase Nop by 350, 100 and 70 times, respectively. Eosin Y and fluorescein do not practically affect the pore-forming activity of SRE. Recently, we showed that hormones decrease the dipole potential of lipid bilayers by approximately 60 mV at 50 μM, while Rose Bengal, phloxine B and erythrosin at 2.5 μM reduce the membrane dipole potential by 120, 80 and 50 mV, respectively. In the present study using differential scanning microcalorimetry, confocal fluorescence microscopy, the calcein release technique and measurements of membrane curvature elasticity, we show that triiodothyronine strongly affects the fluidity of model membranes: its addition leads to a significant decrease in the temperature and cooperativity of the main phase transition of DPPC, calcein leakage from DOPC vesicles, fluidization of solid domains in DOPC/DPPC liposomes, and promotion of lipid curvature stress. Thyroxine exerts a weaker effect. Xanthene dyes do not influence the phase transition of DPPC. Despite the decrease in the dipole potential, thyroid hormones modulate SRE channels predominantly via the elastic properties of the membrane, whereas the xanthene dyes Rose Bengal, phloxine B and erythrosine affect SRE channels via bilayer electrostatics.  相似文献   

15.
R Cseh  R Benz 《Biophysical journal》1999,77(3):1477-1488
Phloretin is known to adsorb to lipid surfaces and alters the dipole potential of lipid monolayers and bilayers. Its adsorption to biological and artificial membranes results in a change of the membrane permeability for a variety of charged and neutral compounds. In this respect phloretin represents a model substance to study the effect of dipole potentials on membrane permeability. In this investigation we studied the interaction of phloretin with monolayers formed of different lipids in the liquid-expanded and the condensed state. Phloretin integrated into the monolayers as a function of the aqueous concentration of its neutral form, indicated by an increase of the surface pressure in the presence of phloretin. Simultaneous recording of the surface potential of the monolayers allowed us to correlate the degree of phloretin integration and the phloretin-induced dipole potential change. Increasing the surface pressure decreased the phloretin-induced shift of the isotherms, but did not influence the phloretin-induced surface potential change. This means that phloretin adsorption to the lipid surface can occur without affecting the lipid packing. The surface potential effect of phloretin is accompanied by a change of the lipid dipole moment vector dependent on the lipid packing. This means that the relation between the surface potential change and the lipid packing cannot be described by a static model alone. Taking into account the deviations of the surface potential change versus molecular area isotherms of the experimental data to the theoretically predicted course, we propose a model that relates the area change to the dipole moment in a dynamic manner. By using this model the experimental data can be described much better than with a static model.  相似文献   

16.
R Cseh  R Benz 《Biophysical journal》1998,74(3):1399-1408
Phloretin and its analogs adsorb to the surfaces of lipid monolayers and bilayers and decrease the dipole potential. This reduces the conductance for anions and increases that for cations on artificial and biological membranes. The relationship between the change in the dipole potential and the aqueous concentration of phloretin has been explained previously by a Langmuir adsorption isotherm and a weak and therefore negligible contribution of the dipole-dipole interactions in the lipid surface. We demonstrate here that the Langmuir adsorption isotherm alone is not able to properly describe the effects of dipole molecule binding to lipid surfaces--we found significant deviations between experimental data and the fit with the Langmuir adsorption isotherm. We present here an alternative theoretical treatment that takes into account the strong interaction between membrane (monolayer) dipole field and the dipole moment of the adsorbed molecule. This treatment provides a much better fit of the experimental results derived from the measurements of surface potentials of lipid monolayers in the presence of phloretin. Similarly, the theory provides a much better fit of the phloretin-induced changes in the dipole potential of lipid bilayers, as assessed by the transport kinetics of the lipophilic ion dipicrylamine.  相似文献   

17.
The effects of local anesthetics (LAs), including aminoamides and aminoesters, on the characteristics of single gramicidin A (GA) channels in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers were studied. Aminoamides, namely lidocaine (LDC), prilocaine (PLC), mepivacaine (MPV), and bupivacaine (BPV), reduced the conductance of GA channels. Aminoesters influenced the current fluctuations induced by GA differently; procaine (PC) did not affect the fluctuations, whereas tetracaine (TTC) distinctly reduced the conductance of single GA channels. Using electrophysiological technique, we estimated the changes in the membrane boundary potential at the adsorption of LAs; LDC, PLC, MPV, BPV, and TTC substantially increased, while PC did not affect it. To elucidate which component of the membrane boundary potential, the surface or dipole potential, is responsible for the observed effects of LAs, we employed a fluorescence assay. We found that TTC led to a significant increase in the membrane dipole potential, whereas the adsorption of LDC, PLC, MPV, BPV, and PC did not produce any changes in the membrane dipole potential. We concluded that aminoamides affected the surface potential of lipid bilayers. Together, these data suggest that the effects of LAs on the conductance of single GA channels are caused by their influence on membrane electrostatic potentials; the regulation of GA pores by aminoamides is associated with the surface potential of membranes, whereas TTC modulation of channel properties is predominantly due to changes in dipole potential of lipid bilayers. These data might provide some significant implications for voltage-gated ion channels of cell membranes.  相似文献   

18.
The electrostatic potentials associated with cell membranes include the transmembrane potential (delta psi), the surface potential (psi s), and the dipole potential (psi D). psi D, which originates from oriented dipoles at the surface of the membrane, rises steeply just within the membrane to approximately 300 mV. Here we show that the potential-sensitive fluorescent dye 1-(3-sulfonatopropyl)-4-[beta[2-(di-n-octylamino)-6- naphthyl]vinyl]pyridinium betaine (di-8-ANEPPS) can be used to measure changes in the intramembrane dipole potential. Increasing the content of cholesterol and 6-ketocholestanol (KC), which are known to increase psi D in the bilayer, results in an increase in the ratio, R, of the dye fluorescence excited at 440 nm to that excited at 530 nm in a lipid vesicle suspension; increasing the content of phloretin, which lowers psi D, decreases R. Control experiments show that the ratio is insensitive to changes in the membrane's microviscosity. The lack of an isosbestic point in the fluorescence excitation and emission spectra of the dye at various concentrations of KC and phloretin argues against 1:1 chemical complexation between the dye and KC or phloretin. The macromolecular nonionic surfactant Pluronic F127 catalyzes the insertion of KC and phloretin into lipid vesicle and cell membranes, permitting convenient and controlled modulation of dipole potential. The sensitivity of R to psi D is 10-fold larger than to delta psi, whereas it is insensitive to changes in psi S. This can be understood in terms of the location of the dye chromophore with respect to the electric field profile associated with each of these potentials.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The effects of heparin on ion channels formed by Staphylococcus aureus alpha-toxin (ST channel) in lipid bilayers were studied under voltage clamp conditions. Heparin concentrations as small as 100 pM induced a sharp dose-dependent increase in channel voltage sensitivity. This was only observed when heparin was added to the negative-potential side of lipid bilayers in the presence of divalent cations. Divalent cations differ in their efficiency: Zn2+>Ca2+>Mg2+. The apparent positive gating charge increased 2-3-fold with heparin addition as well as with acidification of the bathing solution. 'Free' carboxyl groups and carboxyl groups in ion pairs of the protein moiety are hypothesized to interact with sulfated groups of heparin through divalent cation bridges. The cis mouth of the channel (that protrudes beyond the membrane plane on the side of ST addition and to which voltage was applied) is less sensitive to heparin than the trans-mouth. It is suggested that charged residues which interact with heparin at the cis mouth of ST channels and which contribute to the effective gating charge at negative voltage may be physically different from those at the trans mouth and at positive voltage.  相似文献   

20.
In this work, we report on the interaction of polyacrylic acid with phosphatidylcholine bilayers and monolayers in slightly acidic medium. We found that adsorption of polyacrylic acid on liposomes composed of egg lecithin at pH 4.2 results in the formation of small pores permeable for low molecular weight solutes. However, the pores were impermeable for trypsin indicating that no solubilization of liposomes occurred. The pores were permeable for both positively charged trypsin substrate N-benzoyl-l-arginine ethyl ester and negatively charged pH-indicator pyranine. Two lines of evidence were obtained confirming the involvement of the membrane dipole potential in the insertion of polyacrylic acid into lipid bilayer. (i) Addition of phloretin, a molecule which is known to decrease dipole potential of lipid bilayer, reduced the rate of a polyacrylic acid induced leakage of pyranine from liposomes. (ii) Direct measurements of air/lipid monolayer/water interface surface potential using Kelvin probe showed that adsorption of polyacrylic acid at pH 4.2 induced a decrease in both boundary and dipole potential by 37 and 62mV for ester lipid dioleoylphosphatidylcholine (DOPC). Replacement of DOPC by ether lipid 1,2-di-O-oleyl-sn-glycero-3-phosphocholine (DiOOPC) which is known to form monolayers and bilayers with only minor dipole component of membrane potential showed that addition of PAA produced similar response in the boundary potential (by 50mV) but negligible response in dipole potential of monolayer. These observations agree with our assumption that dipole potential is an important driving force for the insertion of polyacids into biological membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号