首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L Levine 《Prostaglandins》1990,40(3):259-269
Staurosporine and K-252a, known inhibitors of several protein kinases, stimulated PGI2 production (measured as 6-keto-PGF1 alpha) in rat liver cells (the C-9 cell line). Preincubation of the rat liver cells with staurosporine or K-252a enhanced the PGI2 production stimulated by 12-O-tetradecanoylphorbol-13-acetate (TPA), platelet activating factor (PAF) and the Ca2(+)-ionophore A-23187, but not the PGI2 synthesis stimulated by exogenous arachidonic acid. These results suggest that phosphorylation of some proteins or certain amino acids on a protein can regulate arachidonic acid metabolism probably in the pathway leading to deesterification of phospholipids.  相似文献   

2.
Isolated single smooth muscle cells from the fundus of a guinea-pig stomach were permeabilized by use of streptolysin-O (0.5 U/ml). Most of the permeabilized cells responded to 0.6 microM Ca2+, but not to 0.2 microM Ca2+, with a resulting maximal cell shortening to approximately 71% of the resting cell length. These cells were relaxed again by washing with the Ca2+-free solution (2.5 nM free Ca2+) for 3-5 min. Addition of 10 microM acetylcholine (ACh) resulted in both a marked decrease in the concentration of Ca2+ required to trigger a threshold response and an increase in the maximal cell shortening, indicating that the cells retained the muscarinic receptor function. When the cell treated with a protein kinase C (PKC) inhibitor, K-252b (1 microM), for 3 min was exposed to 10 microM ACh in the presence of K-252b, the cell shortened within 2 min with a maximal cell shortening. When the cell shortening was induced by 10 microM ACh plus 1 microM Ca2+ in the presence of K-252b (1 microM) or more selective PKC inhibitors, such as calphostin C (1 microM) or PKC pseudosubstrate peptide (100 microM), the extension of the shortened cells, by washing with the Ca2+-free solution, was significantly inhibited. In contrast, K-252b (1 microM) did not inhibit the relaxation of Ca2+-induced shortened cells. These results suggest that the receptor-mediated activation of PKC in the process of ACh-induced cell shortening plays a role in the subsequent relaxation of the shortened cells.  相似文献   

3.
The effects of staurosporine and K-252a, potent inhibitors of protein kinases, and 12-O-tetradecanoylphorbol-13-acetate (TPA) on catecholamine secretion and protein phosphorylation in digitonin-permeabilized bovine adrenal medullary cells were investigated. Staurosporine and K-252a (0.01-10 microM) did not cause large changes in catecholamine secretion evoked by Ca2+ in digitonin-permeabilized cells whereas these compounds strongly prevented TPA-induced enhancement of catecholamine secretion in a concentration-dependent manner. Incubation of digitonin-permeabilized cells with [gamma-32P]ATP resulted in 32Pi incorporation into a large number of proteins, detected as several major bands and darkened background in autoradiograms. Ca2+ and TPA increased phosphorylation of these proteins. Staurosporine and K-252a markedly inhibited Ca(2+)-induced and TPA-induced increases in protein phosphorylation as well as basal (0 Ca2+) protein phosphorylation in digitonin-permeabilized cells. Long term treatment (24 h) of adrenal medullary cells with 1 microM TPA markedly decreased total cellular protein kinase C activity to about 5.3% of control. Pretreatment of the cells with 1 microM TPA strongly inhibited the TPA-induced enhancement of catecholamine secretion whereas it did not cause large changes in total cellular catecholamine amounts, Ca(2+)-induced catecholamine secretion, and cAMP-induced enhancement of catecholamine secretion from digitonin-permeabilized cells. From these results we conclude that protein kinase C plays a modulatory role in catecholamine secretion rather than being essential for initiating catecholamine secretion.  相似文献   

4.
Acid release, Ca2+ influx and stimulation of protein synthesis were investigated with sea urchin eggs submitted to an excess of KCl, to NH4Cl, and to a combination of both. KCl, though unable to promote any acid release, triggers a large 45Ca uptake by eggs and slightly stimulates protein synthesis, provided that external Ca2+ is present. NH4Cl, which induces an intracellular pH increase, triggers a late and small 45Ca uptake but highly stimulates protein synthesis. The combined use of NH4Cl + KCl allows a large 45Ca uptake to occur but the level of protein synthesis is similar to that obtained with NH4Cl alone and is identical whether external Ca2+ is present or not. In contrast to previous works, our results show that the large stimulation of protein synthesis triggered by an intracellular pH increase, as after NH4Cl activation, cannot be enhanced by a Ca2+ influx. This suggests that the Ca2+ influx occurring after fertilization has only a minimal effect on the overall stimulation of protein synthesis.  相似文献   

5.
6.
The staurosporine analogues, K-252a and RK-286C, were found to cause DNA re-replication in rat diploid fibroblasts (3Y1) without an intervening mitosis, producing tetraploid cells. Analysis of cells synchronized in early S phase in the presence of K-252a revealed that initiation of the second S phase required a lag period of 8 h after completion of the previous S phase. Reinitiation of DNA synthesis was inhibited by cycloheximide, actinomycin D, and serum deprivation, but not by Colcemid, suggesting that a functional G1 phase dependent on de novo synthesis of protein and RNA is essential for entry into the next S phase. In a src-transformed 3Y1 cell line, as well as other cell lines, giant cells containing polyploid nuclei with DNA contents of 16C to 32C were produced by continuous treatment with K-252a, indicating that the agent induced several rounds of the incomplete cell cycle without mitosis. Although the effective concentration of K-252a did not cause significant inhibition of affinity-purified p34cdc2 protein kinase activity in vitro, in vivo the full activation of p34cdc2 kinase during the G2/M was blocked by K-252a. On the other hand, the cyclic fluctuation of partially activated p34cdc2 kinase activity peaking in S phase still continued. These results suggest that a putative protein kinase(s) sensitive to K-252a plays an important role in the mechanism for preventing over-replication after completion of previous DNA synthesis. They also suggest that a periodic activation of p34cdc2 is required for S phases in the cell cycle without mitosis.  相似文献   

7.
Hypoosmotic shock treatment increased cytosolic Ca2+ ion concentration ([Ca2+]cyt) in tobacco (Nicotiana tabacum) suspension-culture cells. [Ca2+]cyt measurements were made by genetically transforming these cells to express apoaequorin and by reconstituting the Ca2+-dependent photoprotein, aequorin, in the cytosol by incubation with chemically synthesized coelenterazine. Measurement of Ca2+-dependent luminescence output thus allowed the direct monitoring of [Ca2+]cyt changes. When cells were added to a hypoosmotic medium, a biphasic increase in [Ca2+]cyt was observed; an immediate small elevation (phase 1) was observed first, followed by a rapid, large elevation (phase 2). Phase 1 [Ca2+]cyt was stimulated by the V-type ATPase inhibitor bafilomycin A1. Phase 2 was inhibited by the protein kinase inhibitor K-252a and required the continued presence of the hypoosmotic stimulus to maintain it. Although Ca2+ in the medium was needed to produce phase 2, it was not needed to render the cells competent to the hypoosmotic stimulus. If cells were subject to hypoosmotic shock in Ca2+- depleted medium, increases in luminescence could be induced up to 20 min after the shock by adding Ca2+ to the medium. These data suggest that hypoosmotic shock-induced [Ca2+]cyt elevation results from the activity of a Ca2+ channel in the plasma membrane or associated hypoosmotic sensing components that require Ca2+- independent phosphorylation and a continued stimulus to maintain full activity.  相似文献   

8.
Abstract: In cultured bovine adrenal chromaffin cells, a nonselective protein kinase inhibitor, staurosporine, inhibits secretory function and induces neurite outgrowth. In the present study, effects of other nonselective protein kinase inhibitors (K-252a, H-7, and H-8) and reportedly selective protein kinase inhibitors (KN-62 and chelerythrine chloride) were examined on bovine adrenal chromaffin cell morphology, secretory function, and 45Ca2+ uptake. Treatment of chromaffin cells with 10 µ M K-252a, 50 µ M H-7, or 50 µ M H-8 induced changes in cell morphology within 3 h; these compounds also induced a time-dependent inhibition of stimulated catecholamine release. Chelerythrine chloride, a selective inhibitor of Ca2+/phospholipid-dependent protein kinase, did not induce outgrowth or inhibit secretory function under our treatment conditions. KN-62, a selective inhibitor of Ca2+/calmodulin-dependent protein kinase II (CaMK II), significantly inhibited stimulated catecholamine release (IC50 value of 0.32 µ M ), but had no effect on cell morphology. The reduction of secretory function induced by 1 µ M KN-62 was significant within 5 min and rapidly reversible. Unlike H-7, H-8, and staurosporine, KN-62 significantly inhibited stimulated 45Ca2+ uptake. KN-04, a structural analogue of KN-62 that does not inhibit CaMK II, inhibited stimulated 45Ca2+ uptake and catecholamine release like KN-62. These studies indicate that KN-62 inhibits secretory function via the direct blockade of activated Ca2+ influx. The nonselective inhibitors, K-252a, H-7, H-8, and staurosporine, inhibit secretory function by another mechanism, perhaps one involving alterations in the cytoskeleton.  相似文献   

9.
Staurosporine and K-252a, known inhibitors of several protein kinases, stimulated PGI2 production (measured as 6-keto-PGF in rat liver cells (the C-9 cell line). Preincubation of the rat liver cells with staurosporine or K-252a enhanced the PGI2 production stimulated by 12-O-tetradecanoylphorbol-13-acetate (TPA), platelet activating factor (PAF) and the Ca2+-ionophore a-23187, but not the PGI2 synthesis stimulated by exogeneous arachidonic acid. These results suggest that phosphorylation of some proteins or certain amino acids on a protein can regulate arachidonic acid metabolism probably in the pathway leading to deesterification of phospholipids.  相似文献   

10.
The Ca2+-binding protein (HCaBP) of the human placenta was studied with respect to its biochemical properties, tissue and cellular distribution, and possible involvement in placental Ca2+ transport. Optimal Ca2+ binding by the HCaBP occurs at pH 7-8 and in 100 mM-Na+ and 3 mM-Ca2+. The HCaBP possesses at least 10 Ca2+-binding sites with a Kd of 5 X 10(-6) M ([Ca2+]). Highly specific rabbit-derived anti-HCaBP antibodies were used for HCaBP immunoquantification and immunohistochemistry, which revealed that the HCaBP is localized in the chorionic villi and is primarily associated with the trophoblastic cells of the placenta. In addition, an 'in vitro' cell-free assay system for Ca2+ uptake was constructed with microsomal membranes isolated from term placental tissues. Ca2+ uptake by the placental microsomal fraction exhibited characteristics indicative of active Ca2+ transport such as temperature-dependence, saturability and energetic requirement. In this system, preincubation of microsomal membranes with anti-HCaBP antibodies inhibited Ca2+ uptake, suggesting that the HCaBP is functionally involved in placental membrane Ca2+ uptake.  相似文献   

11.
This study was done to examine the effects of corticosterone, a glucocorticoid, on Ca2+ uptake, proteolysis, and Ca2+ channels in primary cultures of chick muscle cells, to clarify the mechanism of glucocorticoid action on muscle proteolysis. Chick muscle cells were incubated for 24 h in a medium containing corticosterone (30 ng/ml) when the cells were confluent (6 days). To examine the contribution of Ca2+ channels, nifedipine, a Ca2+ channels antagonist, was used. Ca2+ uptake measured with 45CaCl2 was increased three-fold by corticosterone, with a peak at 12 h after the treatment started. The growth of the cells estimated from the protein content and creatine kinase activity was not affected by corticosterone. Proteolysis, evaluated with [3H]tyrosine as a label of the protein and Ntau-methylhistidine release, was unchanged by corticosterone. However, the amount of easily releasable myofilament as a measure of myofibrillar disassembly in the muscle cells was increased by corticosterone, and prevented by nifedipine. These results show that corticosterone increases Ca2+ uptake and starts myofibrillar protein breakdown.  相似文献   

12.
The protein kinase inhibitor K-252a induces a rapid, transient decrease of extracellular pH and [K+], and a concomitant increase in extracellular [Ca2+] in suspensions of cultured parsley cells. These effects are subsequently reversed. As with K-252a, fusicoccin also induces similar changes in pH and extracellular [Ca2+], but reversion does not occur. Acidification by HCI also leads to an increase in external [Ca2+], suggesting that the changes in extracellular [Ca2+] are mainly due to a pH-dependent displacement of Ca2+ ionically bound to the cell wall. The artificial acidification by HCI is rapidly followed by cell-mediated alkalinization, a process associated with K2 release and rebinding of Ca2+. Any change in external pH or [K+] induced by K-252a, fusicoccin, or HCI is followed by an uptake of 45Ca2+ into cellular pools. The results show that K-252a may be a valuable tool for studying the complex regulation of ion transport which may involve changes in the phosphorylation of unknown proteins.  相似文献   

13.
Previously we reported that treating human fibroblasts in cell culture with high-voltage, pulsed galvanic stimulation (HVPGS) can significantly increase cellular protein and DNA synthesis (Bourguignon and Bourguignon: FASEB J., 1:398-402, 1987). In this study we have identified two of the early cellular events which occur following exposure to HVPGS: 1) an increase in Ca2+ uptake from the external medium and 2) an increase in the number of insulin receptors on the fibroblast cell surface. The increase in Ca2+ uptake begins within the first minute of electric stimulation while increased insulin binding is not detected until the second minute of stimulation. The HVPGS-induced increase in insulin binding can be inhibited by bepridil, a specific Ca2+ channel blocker, suggesting that the Ca2+ influx is required for the exposure of additional insulin receptors on the cell surface. Furthermore, we have determined that the addition of insulin to electrically stimulated cultures results in 1) an immediate, second increase in Ca2+ uptake and 2) significant increases in both protein and DNA synthesis compared to cells which were not stimulated. All three of these insulin-dependent effects are also inhibited by bepridil. Based on these results, we propose that HVPGS initially triggers the opening of voltage-sensitive calcium channels in the fibroblast plasma membrane. The increased level of intracellular Ca2+ then induces the exposure of additional insulin receptors, the fibroblasts will significantly increase both protein and DNA synthesis.  相似文献   

14.
An initial rapid phase and a subsequent slow phase of 45Ca2+ uptake were observed following the addition of 45Ca2+ to Ca2+-deprived hepatocytes. The magnitude of the rapid phase increased 15-fold over the range 0.1-11 mM extracellular Ca2+ (Ca2+o) and was a linear function of [Ca2+]o. The increases in the rate of 45Ca2+ uptake were accompanied by only small increases in the intracellular free Ca2+ concentration. In cells made permeable to Ca2+ by treatment with saponin, the rate of 45Ca2+ uptake (measured at free Ca2+ concentrations equal to those in the cytoplasm of intact cells) increased as the concentration of saponin increased from 1.4 to 2.5 micrograms per mg wet weight cells. Rates of 45Ca2+ uptake by cells permeabilized with an optimal concentration of saponin were comparable with those of intact cells incubated at physiological [Ca2+o], but were substantially lower than those for intact cells incubated at high [Ca2+o]. It is concluded that Ca2+ which enters the hepatocyte across the plasma membrane is rapidly removed by binding and transport to intracellular sites and by the plasma membrane (Ca2+ + Mg2+)-ATPase and the plasma membrane Ca2+ inflow transporter is not readily saturated with Ca2+o.  相似文献   

15.
An attempt was made to estimate the number of Escherichia coli K-12 cells rendered permeable to antibiotics under Ca2+ treatment. The effect of cold factor and Ca2+ alone as well as the cell age on the induction of permeability and the energy dependence of the latter were also investigated. About 70-75% and more exponentially growing cells as a result of Ca2+ treatment became sensitive to actinomycin, rubomycin and olivomycin. This number was somewhat lower (40-50%) in sationary phase culture. A fraction (20-30%) of stationary phase cells appeared to be sensitive to antibiotics even without Ca2+ pretreatment. Preincubation of the cells in cold in the absence of Ca2+ cations did not induce the cell permeability. The transport of antibiotics inside the cell was not prevented by an uncoupler of oxidative phosphorylation --carbonylcyanid-m-chlorophenylhydrazone (CCCP). It is suggested that the cells which are rendered permeable to tested antibiotics represent the "compentent" cells capable to uptake molecules of exogenous DNA as well.  相似文献   

16.
Stimulation of postconfluent Swiss 3T3 cells in serum-free medium with 4.3 mM Ca2+ results in marked increases in both released and cell-associated plasminogen activator (PA). Increased release of PA commenced approximately 10 to 12 hours post-stimulation and continued to increase steadily until 48 hours at which time the stimulates cells (4.3 mM Ca2+) released approximately 14 times more PA than control cells (1.8 mM Ca2+). Sr2+, like Ca2+, also stimulates PA synthesis/release either in the presence or in the absence of 1.8 mM Ca2+ whereas an excess of Mg2+ inhibits Ca2+ stimulation. Supranormal [Pi] in the medium stimulates PA synthesis/release in the presence of 1.8 mM mM Ca2+. Further, optimal stimulation by 4.3 mM Ca2+ requires a normal level of Pi (1.0 mM). Elevation of medium [Ca2+] or [Pi] results in an enhanced uptake of Ca2+. The facts that cycloheximide treatment completely abolishes the Ca2+ stimulatory effect and that an increase in cell associated PA precedes release indicate that PA release is coupled to synthesis of new PA. Ca2+ stimulation of PA synthesis/release also requires continuous energy production and RNA as well as protein synthesis. A hypothesis is proposed to explain the relationship between stimulation of PA production and its enhanced release from cells stimulated by elevated [Ca2+] or [Pi] in the media. The possibility that PA release may be an example of the phenomenon of membrane shedding as opposed to secretion is discussed.  相似文献   

17.
Reactive oxygen species (ROS) produced by NADPH oxidases play critical roles in signalling and development. Given the high toxicity of ROS, their production is tightly regulated. In Arabidopsis, respiratory burst oxidase homologue F (AtrbohF) encodes NADPH oxidase. Here we characterised the activation of AtRbohF using a heterologous expression system. AtRbohF exhibited ROS-producing activity that was synergistically activated by protein phosphorylation and Ca2+. The two EF-hand motifs of AtRbohF in the N-terminal cytosolic region were crucial for its Ca2+-dependent activation. AtrbohD and AtrbohF are involved in stress responses. Although the activation mechanisms for AtRbohD and AtRbohF were similar, AtRbohD had significantly greater ROS-producing activity than AtRbohF, which may reflect their functional diversity, at least in part. We further characterised the interrelationship between Ca2+ and phosphorylation regarding activation and found that protein phosphorylation-induced activation was independent of Ca2+. In contrast, K-252a, a protein kinase inhibitor, inhibited the Ca2+-dependent ROS-producing activity of AtRbohD and AtRbohF in a dose-dependent manner, suggesting that protein phosphorylation is a prerequisite for the Ca2+-dependent activation of Rboh. Positive feedback regulation of Ca2+ and ROS through AtRbohC has been proposed to play a critical role in root hair tip growth. Our findings suggest that Rboh phosphorylation is the initial trigger for the plant Ca2+-ROS signalling network.  相似文献   

18.
Recent work has indicated that nitric oxide (NO) and its synthesis are important elements of signal cascades in plant-pathogen defence, and are a prerequisite for drought and abscisic acid (ABA) responses in Arabidopsis thaliana and Vicia faba guard cells. NO regulates inward-rectifying K+ channels and Cl- channels of Vicia guard cells via intracellular Ca2+ release. However, its integration with related signals, including the actions of serine-threonine protein kinases, is less well defined. We report here that the elevation of cytosolic-free [Ca2+] ([Ca2+]i) mediated by NO in guard cells is reversibly inhibited by the broad-range protein kinase antagonists staurosporine and K252A, but not by the tyrosine kinase antagonist genistein. The effects of kinase antagonism translate directly to a loss of NO-sensitivity of the inward-rectifying K+ channels and background (Cl- channel) current, and to a parallel loss in sensitivity of the K+ channels to ABA. These results demonstrate that NO-dependent signals can be modulated through protein phosphorylation upstream of intracellular Ca2+ release, and they implicate a target for protein kinase control in ABA signalling that feeds into NO-dependent Ca2+ release.  相似文献   

19.
This study tested the hypothesis that 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) and its previously described cardiac receptors play roles in regulating intracellular calcium homeostasis in cardiac muscle cells. This question was addressed by assessing whether 1,25-(OH)2D3 influences 45Ca2+ uptake by homogeneous cultures of adult rat ventricular cardiac muscle cells. Twenty-four h prior to the measurement of 45Ca2+ uptake, the cells were transferred to serum-free medium ([Ca2+], 1.0 mM) containing 1.0 nM 1,25(OH)2D3 or vehicle. The cells were then incubated with 45Ca2+ for periods up to 60 min at room temperature, followed by removal of excess external 45Ca2+ by washing repeatedly with La3+. Pretreating the cells with 1,25-(OH)2D3 caused 3-fold stimulation (p less than 0.005) of 45Ca2+ uptake. Stimulation of 45Ca2+ uptake required a prolonged (8-12 h) exposure to 1,25-(OH)2D3, suggesting a receptor-mediated phenomenon. Concentrations of 0.01-10 nM 1,25-(OH)2D3 yielded a dose-response curve which peaked at 1.0 nM and decreased at higher concentrations. Steroid specificity was established by the failure of 1.0 nM levels of 25-hydroxyvitamin D3, estradiol-17 beta, and progesterone to change 45Ca2+ uptake. Sucrose gradient analysis confirmed the presence of a specific 3-4 S 3H-1,25-(OH)2D3 binding component both in freshly isolated and in cultured ventricular cardiac muscle cells. The stimulatory effect of 1,25-(OH)2D3 on 45Ca2+ uptake was abolished by the concomitant incubation of the cells with cycloheximide or actinomycin D, demonstrating a requirement for protein and nucleic acid synthesis. In conclusion, these data demonstrate that 1,25-(OH)2D3 stimulates 45Ca2+ uptake in adult ventricular cardiac muscle cells by a mechanism resembling a receptor-mediated phenomenon.  相似文献   

20.
Activation of surface folate receptors or cyclic AMP (cAMP) receptor (cAR) 1 in Dictyostelium triggers within 5-10 s an influx of extracellular Ca2+ that continues for 20 s. To further characterize the receptor-mediated Ca2+ entry, we analyzed 45Ca2+ uptake in amoebas overexpressing cAR2 or cAR3, cARs present during multicellular development. Both receptors induced a cAMP-dependent Ca2+ uptake that had comparable kinetics, ion selectivity, and inhibitor profiles as folate- and cAR1-mediated Ca2+ uptake. Analysis of mutants indicated that receptor-induced Ca2+ entry does not require G protein alpha subunits G alpha 1, G alpha 2, G alpha 3, G alpha 4, G alpha 7, or G alpha 8. Overexpression of cAR1 or cAR3 in g alpha 2- cells did not restore certain G alpha 2-dependent events, such as aggregation, or cAMP-mediated activation of adenylate and guanylate cyclases, but these strains displayed a cAMP-mediated Ca2+ influx with kinetics comparable to wild-type aggregation-competent cells. These results suggest that a plasma membrane-associated Ca(2+)-influx system may be activated by at least four distinct chemoreceptors during Dictyostelium development and that the response may be independent of G proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号