首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Degradation of proteins by the ubiquitin system involves two discrete steps. Initially, ubiquitin is covalently linked in an ATP-dependent mode to the protein substrate. The protein moiety of the conjugate is subsequently degraded by a specific protease into peptides and free amino acids with the release of free and reutilizable ubiquitin. The degradation process also requires energy. In this review we shall discuss the mechanisms involved in ubiquitin activation, selection of substrates for conjugation, and subsequent degradation of ubiquitin-conjugated proteins. In addition, we shall briefly summarize what is currently known of the role of the ubiquitin system in protein degradation in vitro and in vivo.  相似文献   

2.
3.
Calmodulin purified from Dictyostelium discoideum is selectively degraded by rabbit reticulocyte extracts in the presence of ubiquitin and ATP. This protein forms a 1:1 covalent conjugate with ubiquitin. Analyses of the cyanogen bromide fragments of the protein conjugate indicate that lysine 115 on calmodulin is the ubiquitin conjugation site. Bovine brain calmodulin which contains a trimethyllysine residue at this position is not a substrate for conjugation with ubiquitin, and its degradation rate is not affected by ATP and ubiquitin. These results suggest that the trimethyllysine residue in mammalian calmodulin may function in protecting the protein from degradation by the ATP, ubiquitin-dependent pathway. Since there are eight lysine residues in Dictyostelium calmodulin, the specific conjugation of ubiquitin to lysine 115 may provide a good model system to delineate the structural features required for the conjugation and to follow the degradative steps in the pathway.  相似文献   

4.
Conjugation of ubiquitin to certain proteins can trigger their degradation. A major question concerns the structural features of a protein which make it susceptible to ubiquitin ligation. Recent studies have shown that the selection of proteins for degradation occurs most probably on a binding site of the ubiquitin-protein ligase (E3). It was shown that a free alpha-NH2 group is one important feature of the protein structure recognized by the ubiquitin-ligating enzyme. Proteins with basic or bulky hydrophobic residues in the NH2-terminal position are recognized by the ligase, marked by ubiquitin, and degraded. This is not true, however, for proteins with an acidic residue in this position. We have previously shown that a tRNA-dependent post-translational conjugation of arginine to acidic NH2 termini of proteins is essential for their degradation via the ubiquitin pathway, and we speculated that this modification is required for their recognition by the ligase. In the present study we have partially purified from rabbit reticulocytes the modifying enzyme, arginyl-tRNA-protein transferase, and characterized it. We have separated the enzyme from other known components of the ubiquitin system and shown that it is specifically required for degradation of proteins with either an aspartate or glutamate residue in their NH2-terminal position. We have shown that the action of the transferase is required for conjugation of ubiquitin to the substrate and most probably for its recognition by the ligase. The enzyme in its native form has a molecular mass of about 360 kDa. It appears to be a complex between several molecules of arginyl-tRNA synthetase and arginyl-tRNA-protein transferase.  相似文献   

5.
Generation of the p50 subunit of NF-kappaB is a rare case in which the ubiquitin system processes a longer precursor, p105, into a shorter active subunit: in the vast majority of cases, the target protein is completely degraded. The mechanisms involved in this process have remained elusive. It appears that a Gly rich region (GRR) in the middle of the molecule serves as a "processing stop signal", though under certain conditions, such as after stimulation, p105 can be completely degraded. Since NF-kappaB plays critical roles in a broad array of basic cellular processes, it is important to dissect the mechanisms that regulate its proteolysis-both destruction and processing. We have previously shown that signal-induced degradation of p105 requires ubiquitination on multiple lysines. Here we describe a novel region, a Processing Inhibitory Domain-PID, that upon its removal, the molecule is processed in high efficiency, which requires ubiquitination on a single, though non-specific, lysine.  相似文献   

6.
Extracellular signal-regulated kinase 3 (ERK3) is an unstable mitogen-activated protein kinase homologue that is constitutively degraded by the ubiquitin-proteasome pathway in proliferating cells. Here we show that a lysineless mutant of ERK3 is still ubiquitinated in vivo and requires a functional ubiquitin conjugation pathway for its degradation. Addition of N-terminal sequence tags of increasing size stabilizes ERK3 by preventing its ubiquitination. Importantly, we identified a fusion peptide between the N-terminal methionine of ERK3 and the C-terminal glycine of ubiquitin in vivo by tandem mass spectrometry analysis. These findings demonstrate that ERK3 is conjugated to ubiquitin via its free NH(2) terminus. We found that large N-terminal tags also stabilize the expression of the cell cycle inhibitor p21 but not that of substrates ubiquitinated on internal lysine residues. Consistent with this observation, lysineless p21 is ubiquitinated and degraded in a ubiquitin-dependent manner in intact cells. Our results suggests that N-terminal ubiquitination is a more prevalent modification than originally recognized.  相似文献   

7.
《Autophagy》2013,9(1):126-137
Ubiquitin-proteasome system and autophagy are the two major mechanisms for protein degradation in eukaryotic cells. LC3, a ubiquitin-like protein, plays an essential role in autophagy through its ability to be conjugated to phosphatidylethanolamine. In this study, we discovered a novel LC3-processing activity, and biochemically purified the 20S proteasome as the responsible enzyme. Processing of LC3 by the 20S proteasome is ATP- and ubiquitin-independent, and requires both the N-terminal helices and the ubiquitin fold of LC3; and addition of the N-terminal helices of LC3 to the N terminus of ubiquitin renders ubiquitin susceptible to 20S proteasomal activity. Further, the 20S proteasome processes LC3 in a stepwise manner, it first cleaves LC3 within its ubiquitin fold and thus disrupt the conjugation function of LC3; subsequently and especially at high concentrations of the proteasome, LC3 is completely degraded. Intriguingly, proteolysis of LC3 by the 20S proteasome can be inhibited by p62, an LC3-binding protein that mediates autophagic degradation of polyubiquitin aggregates in cells. Therefore, our study implicates a potential mechanism underlying interplay between the proteasomal and autophagic pathways. This study also provides biochemical evidence suggesting relevance of the controversial ubiquitin-independent proteolytic activity of the 20S proteasome.  相似文献   

8.
9.
The NEDD8 pathway plays an essential role in various physiological processes, such as cell cycle progression and signal transduction. The conjugation of NEDD8 to target proteins is initiated by the NEDD8-activating enzyme composed of APP-BP1 and Uba3. In the present study, we show that APP-BP1 is degraded by ubiquitin-dependent proteolysis. To study biological functions of TRIP12, a HECT domain-containing E3 ubiquitin ligase, we used the yeast two-hybrid system and identified APP-BP1 as its binding partner. Immunoprecipitation analysis showed that TRIP12 specifically interacts with the APP-BP1 monomer but not with the APP-BP1/Uba3 heterodimer. Overexpression of TRIP12 enhanced the degradation of APP-BP1, whereas knockdown of TRIP12 stabilized it. In vitro ubiquitination assays revealed that TRIP12 functions as an E3 enzyme of APP-BP1 and additionally requires an E4 activity for polyubiquitination of APP-BP1. Moreover, neddylation of endogenous CUL1 was increased in TRIP12 knockdown cells, while complementation of the knockdown cells with TRIP12 lowered neddylated CUL1. Our data suggest that that TRIP12 promotes degradation of APP-BP1 by catalyzing its ubiquitination, which in turn modulates the neddylation pathway.  相似文献   

10.
Degradation of proteins by the ubiquitin-mediated proteolytic pathway   总被引:3,自引:0,他引:3  
Degradation of a protein by the ubiquitin system involves two distinct processes. In the first step, ubiquitin is covalently linked in an ATP-dependent mode to the protein substrate. The protein moiety of the conjugate is then degraded by a specific protease into free amino acids, resulting in the release of free and reutilizable ubiquitin. This process also requires energy. In this review we will briefly summarize our current knowledge of the role of the ubiquitin system in protein turnover and discuss in detail the mechanism involved in selection of substrates for conjugation and in degradation of ubiquitin-conjugated proteins.  相似文献   

11.
12.
In addition to its role in selective protein degradation, the conjugation of ubiquitin to proteins has also been implicated in the internalization of plasma membrane proteins, including the alpha-factor receptor Ste2p, uracil permease Fur4p, epithelial sodium channel ENaC and the growth hormone receptor (GHR). Binding of GH to its receptor induces receptor dimerization, resulting in the activation of signal transduction pathways and an increase of GHR ubiquitination. Previously, we have shown that the ubiquitin conjugation system mediates GH-induced GHR internalization. Here, we present evidence that a specific domain of the GHR regulates receptor endocytosis via the ubiquitin conjugation system. This ubiquitin-dependent endocytosis (UbE) motif consists of the amino acid sequence DSWVEFIELD and is homologous to sequences in other proteins, several of which are known to be ubiquitinated. In addition, we show that GH internalization by a truncated GHR is independent of the presence of lysine residues in the cytosolic domain of this receptor, while internalization still depends on an intact ubiquitin conjugation system. Thus, GHR internalization requires the recruitment of the ubiquitin conjugation system to the GHR UbE motif rather than the conjugation of ubiquitin to the GHR itself.  相似文献   

13.
Cleavage of the two carboxyl-terminal glycine residues from native ubiquitin yields the proteolysis-incompetent derivative des-Gly-Gly-ubiquitin. We report here that this derivative inhibits the ATP-dependent degradation of casein and is multi-ubiquitinated but not degraded by reticulocyte lysates. Inhibition of proteolysis diminished with increasing concentration of native ubiquitin, but was not reduced by increased casein concentration. Cleavage of the last four residues from ubiquitin yielded a derivative that was a weaker inhibitor of proteolysis and a poorer substrate for ubiquitination. These results suggest that the conjugation of ubiquitin to ubiquitin during polyubiquitin synthesis involves a specific conjugation system that recognizes ubiquitin and some of its derivatives, but not general proteolysis substrates, as ubiquitin acceptors.  相似文献   

14.
Degradation of intracellular proteins via the ubiquitin pathway involves several steps. In the initial event, ubiquitin becomes covalently linked to the protein substrate in an ATP-requiring reaction. Following ubiquitin conjugation, the protein moiety of the adduct is selectively degraded with the release of free and reusable ubiquitin. Ubiquitin modification of a variety of protein targets in the cell plays a role in basic cellular functions. Modification of core nucleosomal histones is probably involved in regulation of gene expression at the level of chromatin structure. Ubiquitin attachment to cell surface proteins may play roles in processes of cell-cell interaction and adhesion, and conjugation of ubiquitin to other yet to be identified protein(s) could be involved in the progression of cells through the cell cycle. Despite the considerable progress that has been made in the elucidation of the mode of action and cellular roles of the ubiquitin pathway, many major problems remain unsolved. A problem f central importance is the specificity in the ubiquitin ligation system. Why are certain proteins conjugated and committed for degradation, whereas other proteins are not? A free α-NH2 group is an important feature of the protein structure recognized by the ubiquitin conjugation system, and tRNA is required for the conjugation of ubiquitin to selective proteo-lytic substrates and for their subsequent degradation. These findings can shed light on some of the features of a substrate that render it susceptile to ubiquitin-mediated degradation.  相似文献   

15.
Intrinsic antiviral resistance represents the first line of intracellular defence against virus infection. During herpes simplex virus type-1 (HSV-1) infection this response can lead to the repression of viral gene expression but is counteracted by the viral ubiquitin ligase ICP0. Here we address the mechanisms by which ICP0 overcomes this antiviral response. We report that ICP0 induces the widespread proteasome-dependent degradation of SUMO-conjugated proteins during infection and has properties related to those of cellular SUMO-targeted ubiquitin ligases (STUbLs). Mutation of putative SUMO interaction motifs within ICP0 not only affects its ability to degrade SUMO conjugates, but also its capacity to stimulate HSV-1 lytic infection and reactivation from quiescence. We demonstrate that in the absence of this viral countermeasure the SUMO conjugation pathway plays an important role in mediating intrinsic antiviral resistance and the repression of HSV-1 infection. Using PML as a model substrate, we found that whilst ICP0 preferentially targets SUMO-modified isoforms of PML for degradation, it also induces the degradation of PML isoform I in a SUMO modification-independent manner. PML was degraded by ICP0 more rapidly than the bulk of SUMO-modified proteins in general, implying that the identity of a SUMO-modified protein, as well as the presence of SUMO modification, is involved in ICP0 targeting. We conclude that ICP0 has dual targeting mechanisms involving both SUMO- and substrate-dependent targeting specificities in order to counteract intrinsic antiviral resistance to HSV-1 infection.  相似文献   

16.
The ubiquitin proteolytic pathway is a major system for selective protein degradation in eukaryotic cells. One of the first steps in the degradation of a protein via this pathway involves selective modification of epsilon-NH2 groups of internal lysine residues by ubiquitination. To date, this amino group has been the only known target for ubiquitination. Here we report that the N-terminal residue of MyoD is sufficient and necessary for promotion of conjugation and subsequent degradation of the protein. Substitution of all lysine residues in the protein did not affect significantly its conjugation and degradation either in vivo or in vitro. In cells, degradation of the lysine-less protein is inhibited by the proteasome inhibitors MG132 and lactacystin. Inhibition is accompanied by accumulation of high molecular mass ubiquitinated forms of the modified MyoD. In striking contrast, wild-type MyoD, in which all the internal Lys residues have been retained but the N-terminus has been extended by fusion of a short peptide, is stable both in vivo and in vitro. In a cell-free system, ATP and multiple ubiquitination are essential for degradation of the lysine-less protein. Specific chemical modifications have yielded similar results. Selective blocking of the alpha-NH2 group of wild-type protein renders it stable, while modification of the internal Lys residues with preservation of the free N-terminal group left the protein susceptible to degradation. Our data suggest that conjugation of MyoD occurs via a novel modification involving attachment of ubiquitin to the N-terminal residue. The polyubiquitin chain is then synthesized on an internal Lys residue of the linearly attached first ubiquitin moiety.  相似文献   

17.
Degradation of intracellular proteins via the ubiquitin- and ATP-dependent proteolytic pathway involves several steps. In the initial event, ubiquitin, an abundant 76-residue polypeptide is covalently linked to the protein substrate in an ATP-requiring reaction. Proteins marked by ubiquitin are selectively proteolyzed in a reaction that also requires ATP. Ubiquitin conjugation to proteins appears also to be involved in regulation of cell cycle and cell division, and probably in the regulation of gene expression at the level of chromatin structure. We have previously shown (Ciechanover, A., Wolin, S. L., Steitz, J. A., and Lodish, H. F. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 1341-1345) that transfer RNA is an essential component of the ubiquitin pathway. Ribonucleases strongly and specifically inhibited the degradation of 125I-labeled bovine serum albumin, while tRNA purified from reticulocyte extract could restore the proteolytic activity. Specifically, pure tRNAHis isolated by immunoprecipitation with human autoimmune serum could restore the proteolytic activity. Here we demonstrate that tRNA is required for conjugation of ubiquitin to some but not all proteolytic substrates of the ubiquitin mediated pathway. Conjugation of 125I-labeled ubiquitin to reduced carboxymethylated bovine serum albumin, alpha-lactalbumin, and soybean trypsin inhibitor was strongly and specifically inhibited by ribonucleases. Consequently, the ATP-dependent degradation of these substrates in the cell-free ubiquitin-dependent reticulocyte system was inhibited as well. Addition of tRNA to the ribonuclease inhibited system (following inhibition of the ribonuclease) restored both the conjugation activity and the ubiquitin- and ATP-dependent degradation of these substrates. Conjugation of ubiquitin to some endogenous reticulocyte proteins was also inhibited by ribonucleases and could be restored by the addition of tRNA. In striking contrast, the conjugation of radiolabeled ubiquitin to lysozyme, oxidized RNase A, alpha-casein, and beta-lactoglobulin was not affected by the ribonuclease treatment, and the degradation of these substrates was significantly accelerated by the ribonucleases. These findings indicate that there are at least two distinct ubiquitin conjugation systems. One requires tRNA, and the other is tRNA independent. These pathways, however, must share some common component(s) of the system, since the inhibition of one system accelerates the other. The possible function of tRNA in the selective conjugation reaction and the possible role of the two distinct ubiquitin marking mechanisms are discussed.  相似文献   

18.
Cbl proteins function as ubiquitin protein ligases for the activated epidermal growth factor receptor and, thus, negatively regulate its activity. Here we show that Cbl-b is ubiquitinated and degraded upon activation of the receptor. Epidermal growth factor (EGF)-induced Cbl-b degradation requires intact RING finger and tyrosine kinase binding domains and requires binding of the Cbl-b protein to the activated EGF receptor (EGFR). Degradation of both the EGFR and the Cbl-b protein is blocked by lysosomal and proteasomal inhibitors. Other components of the EGFR-signaling complex (i.e. Grb2 and Shc) are also degraded in an EGF-induced Cbl-b-dependent fashion. Our results suggest that the ubiquitin protein ligase function of Cbl-b is regulated by coordinated degradation of the Cbl-b protein along with its substrate. Furthermore, the data demonstrate that Cbl-b mediates degradation of multiple proteins in the EGFR-signaling complex.  相似文献   

19.
New therapeutic intervention strategies for the treatment of human malignancies are always desired. Approval of bortezomib as a front-line treatment for multiple myeloma highlighted the significance of ubiquitin–proteasome system (UPS) as a promising therapeutic target. However, due to the broad impact of proteasome inhibition, deleterious side effects have been reported with bortezomib treatment. Cullin RING ligases (CRLs)-mediated ubiquitin conjugation process is responsible for the ubiquitin conjugation of 20 % cellular proteins that are designated for degradation through the UPS, most of them are critical proteins involved in cell cycle progression, signaling transduction and apoptosis. Studies have depicted the upstream NEDDylation pathway that controls the CRL activity by regulating the conjugation of an ubiquitin-like-protein NEDD8 to the cullin protein in the complex. A specific pharmaceutical inhibitor of NEDD8 activating enzyme (NAE; E1) MLN4924 was recently developed and has been promoted to Phase I clinical trials for the treatment of several human malignancies. This article summarizes the most recent understanding about the process of NEDD8 conjugation, its relevance for cancer therapy and molecular mechanisms responsible for the potent anti-tumor activity of MLN4924.  相似文献   

20.
Oxidatively modified proteins that accumulate in aging and many diseases can form large aggregates because of covalent cross-linking or increased surface hydrophobicity. Unless repaired or removed from cells, these oxidized proteins are often toxic, and threaten cell viability. Most oxidatively damaged proteins appear to undergo selective proteolysis, primarily by the proteasome. Previous work from our laboratory has shown that purified 20 S proteasome degrades oxidized proteins without ATP or ubiquitin in vitro, but there have been no studies to test this mechanism in vivo. The aim of this study was to determine whether ubiquitin conjugation is necessary for the degradation of oxidized proteins in intact cells. We now show that cells with compromised ubiquitin-conjugating activity still preferentially degrade oxidized intracellular proteins, at near normal rates, and this degradation is still inhibited by proteasome inhibitors. We also show that progressive oxidation of proteins such as lysozyme and ferritin does not increase their ubiquitinylation, yet the oxidized forms of both proteins are preferentially degraded by proteasome. Furthermore, rates of oxidized protein degradation by cell lysates are not significantly altered by addition of ATP, excluding the possibility of an energy requirement for this pathway. Contrary to earlier popular belief that most proteasomal degradation is conducted by the 26 S proteasome with ubiquitinylated substrates, our work suggests that oxidized proteins are degraded without ubiquitin conjugation (or ATP hydrolysis) possibly by the 20 S proteasome, or the immunoproteasome, or both.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号