首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolism of radiolabeled progesterone and androstenedione was evaluated in endothelial cells from human umbilical cord vein and arteries maintained in culture. The predominant metabolite of progesterone was 5 alpha-pregnane-3,20-dione and that of androstenedione was 5 alpha-androstane-3,17-dione. Thus, the major pathway of progesterone and androstenedione metabolism within these cells is via steroid 5 alpha-reductase. The rate of formation of 5 alpha-pregnane-3,20-dione from progesterone by venous endothelial cells was linear with incubation time up to 4 h and with cell number up to 1.6 X 10(6) cells/ml. The apparent Km of 5 alpha-reductase for progesterone was 0.4 microM; and, the Vmax was 55 pmol 5 alpha-pregnane-3,20-dione formed/mg protein X h. The rate of 5 alpha-androstane-3,17-dione formation from androstenedione also was linear with incubation time up to 4 h. In addition to 5 alpha-androstane-3,17-dione, the metabolism of androstenedione by either venous or arterial cells resulted in the formation of various minor metabolites, including testosterone and 5 alpha-reduced steroids, viz. 5 alpha-dihydrotestosterone, androsterone, isoandrosterone, 5 alpha-androstane-3 alpha, 17 beta-diol, and 5 alpha-androstane-3 beta, 17 beta-diol. Estrogens (i.e. estradiol-17 beta and estrone) were not detected as products of androstenedione metabolism. The formation of these metabolites are indicative that the steroid-metabolizing enzymes present in endothelial cells are: 5 alpha-reductase, 17 beta-hydroxysteroid oxidoreductase, 3 alpha-hydroxysteroid oxidoreductase, and 3 beta-hydroxysteroid oxidoreductase.  相似文献   

2.
J C Coffey  T E Harvey  W L Carr 《Steroids》1979,33(2):223-232
Tritiated 4-androstene-3,17-dione and testosterone were incubated with submaxillary gland homogenates of male and female rats. The metabolism was predominately reductive. In 15 and 180 min incubations submaxillary tissue converted 4-androstene-3,17-dione chiefly to androsterone. Less testosterone, 17 beta-hydroxy-5 alpha-androstan-3-one, 5 alpha-androstane-3,17-dione, 5 alpha-androstane-3 alpha, 17 beta-diol, and 4-androstene-3 alpha, 17 beta-diol were also identified. Testosterone was converted to the same products plus 4-androstene-3,17-dione. 5 alpha-Androstane-3 alpha, 17 beta-diol was the major testosterone metabolite. Qualitatively the metabolism by male and female submaxillary gland was similar.  相似文献   

3.
4-Hydroxyandrost-4-ene-3,17-dione is a second generation, irreversible aromatase inhibitor and commonly used as anti breast cancer medication for postmenopausal women. 4-Hydroxytestosterone is advertised as anabolic steroid and does not have any therapeutic indication. Both substances are prohibited in sports by the World Anti-Doping Agency, and, due to a considerable increase of structurally related steroids with anabolic effects offered via the internet, the metabolism of two representative candidates was investigated. Excretion studies were conducted with oral applications of 100mg of 4-hydroxyandrostenedione or 200mg of 4-hydroxytestosterone to healthy male volunteers. Urine samples were analyzed for metabolic products using conventional gas chromatography-mass spectrometry approaches, and the identification of urinary metabolites was based on reference substances, which were synthesized and structurally characterized by nuclear magnetic resonance spectroscopy and high resolution/high accuracy mass spectrometry. Identified phase-I as well as phase-II metabolites were identical for both substances. Regarding phase-I metabolism 4-hydroxyandrostenedione (1) and its reduction products 3beta-hydroxy-5alpha-androstane-4,17-dione (2) and 3alpha-hydroxy-5beta-androstane-4,17-dione (3) were detected. Further reductive conversion led to all possible isomers of 3xi,4xi-dihydroxy-5xi-androstan-17-one (4, 6-11) except 3alpha,4alpha-dihydroxy-5beta-androstan-17-one (5). Out of the 17beta-hydroxylated analogs 4-hydroxytestosterone (18), 3beta,17beta-dihydroxy-5alpha-androstan-4-one (19), 3alpha,17beta-dihydroxy-5beta-androstan-4-one (20), 5alpha-androstane-3beta,4beta,17beta-triol (21), 5alpha-androstane-3alpha,4beta,17beta-triol (26) and 5alpha-androstane-3alpha,4alpha,17beta-triol (28) were identified in the post administration urine specimens. Furthermore 4-hydroxyandrosta-4,6-diene-3,17-dione (29) and 4-hydroxyandrosta-1,4-diene-3,17-dione (30) were determined as oxidation products. Conjugation was diverse and included glucuronidation and sulfatation.  相似文献   

4.
The retro steroids 17beta-hydroxy-5beta,9beta,10alpha-androstan-3-one and 5beta,9beta,10alpha-androstane-3,17-dione were good substrates for cortisone reductase in the presence of NADH, and the products corresponded to the respective 3beta-hydroxy compounds, in which the 3beta-hydroxyl group is axial and the absolute configuration is 3S. The analogous natural steroids 17beta-hydroxy-5beta,9alpha,10beta-androstan-3-one and 5beta,9alpha,10beta-androstane-3,17-dione were very poor substrates, and gave the corresponding 3alpha(equatorial,3R)-hydroxy compounds, and, in the latter case, also an appreciable amount of 3beta(axial, 3S)-hydroxy-5beta,9alpha,10beta-androstan-17-one. The natural steroids 17beta-hydroxy-5alpha,9alpha,10beta-androstan-3-one and 5alpha,9alpha,10beta-androstane-3,17-dione were better substrates than the retro steroid 17beta-hydroxy-5alpha,9beta,10alpha-androstan-3-one, but were not such good substrates as the retro steroids 17beta-hydroxy-5beta,9beta,10alpha-androstan-3-one and 5beta,9beta,10alpha-androstane-3,17-dione. Unlike these retro steroid 5beta,9beta,10alpha-androstan-3-ones, the natural steroids 17beta-hydroxy-5alpha,9alpha,10beta-androstan-3-one and 5alpha,9alpha,10beta-androstane-3,17-dione gave the corresponding 3alpha(axial,3R)-hydroxy compounds. The retro steroid 17beta-hydroxy-5alpha,9beta,10alpha-androstan-3-one was not a good substrate, and the product of reaction corresponded to the 3alpha(axial,3R)-hydroxy compound. The nature of substrate recognition by this enzyme is discussed in the light of these structure-activity relationships.  相似文献   

5.
Homogenates of estrogen-responsive mouse Leydig cell tumors (T 124958-R and T 22137) or 28- and 120-day-old mouse testes were incubated with [3H]progesterone or [14C]4-androstene-3,17-dione in the presence of NADPH, and progesterone metabolism and enzyme activities were estimated. The growth of T 124958-R tumor transplanted in BALB/c mice was markedly stimulated by estrogenization of host mice, but the growth of T 22137 tumor was evidently suppressed by the estrogenization. The major C21-17-OH-steroids and C19-steroids formed from progesterone by both tumors and the testes of immature mice were 5 alpha-steroids, such as 3 alpha,17-dihydroxy-5 alpha-pregnan-20-one, 5 alpha-androstane-3,17-dione, androsterone, 3 beta-hydroxy-5 alpha-androstan-17-one and 5 alpha-androstane-3 alpha,17 beta-diol. In contrast, the major steroids formed by the testes of adult mice were testosterone and 4-androstene-3,17-dione, and no or little 5 alpha-steroids were produced. 5 alpha-Reductase activities in both tumor cells (40-50 nmol/l X 10(8) cells per h) were also found to be approx. 5-6 times higher than that in Leydig cells of adult mouse testes (8 nmol/l X 10(8) Leydig cells per h), though 17-hydroxylase activity was much higher in the Leydig cells of adult testes (730 nmol/l X 10(8) Leydig cells per h) than in both tumor cells (1-7 nmol/l X 10(8) cells per h). Furthermore, the presence of significant amounts of endogenous androsterone and/or 5 alpha-androstane-3 alpha,17 beta-diol was demonstrated in both tumors by radioimmunoassay. The present results demonstrate for the first time that C19-5 alpha-steroids are major C19-steroid products (immature type of testicular androgen production) in Leydig cell tumor lines.  相似文献   

6.
Chalbot S  Trap C  Monin JP  Morfin R 《Steroids》2002,67(13-14):1121-1127
The 7 alpha- and 7 beta-hydroxylated derivatives of [4-14C]-dehydroepiandrosterone were prepared with use of the yeast-expressed human cytochrome p4507B1. Epiandrosterone (EPIA), 5 alpha-androstane-3beta,17 beta-diol, and 5 alpha-androstane-3,17-dione were obtained after incubation of [4-14C]-5 alpha-dihydrotestosterone with Escherichia coli-expressed (3beta,17 beta)-hydroxysteroid dehydrogenase from Pseudomonas testosteroni. The 7 alpha- and 7 beta-hydroxylated derivatives of [4-14C]-EPIA produced were prepared after incubation with mycelium of Rhizopus nigricans. Each labeled steroid was purified by chromatography and identified by crystallization to constant specific activity after isotopic dilution with each authentic steroid carrier. Production yields and radio-purity measurements allowed the use of such procedures for the preparation of the described radio-steroids for studies of metabolism and mode of action.  相似文献   

7.
Hydroxysteroid dehydrogenases (HSDs) are essential for the biosynthesis and mechanism of action of all steroid hormones. We report the complete kinetic mechanism of a mammalian HSD using rat 3alpha-HSD of the aldo-keto reductase superfamily (AKR1C9) with the substrate pairs androstane-3,17-dione and NADPH (reduction) and androsterone and NADP(+) (oxidation). Steady-state, transient state kinetics, and kinetic isotope effects reconciled the ordered bi-bi mechanism, which contained 9 enzyme forms and permitted the estimation of 16 kinetic constants. In both reactions, loose association of the NADP(H) was followed by two conformational changes, which increased cofactor affinity by >86-fold. For androstane-3,17-dione reduction, the release of NADP(+) controlled k(cat), whereas the chemical event also contributed to this term. k(cat) was insensitive to [(2)H]NADPH, whereas (D)k(cat)/K(m) and the (D)k(lim) (ratio of the maximum rates of single turnover) were 1.06 and 2.06, respectively. Under multiple turnover conditions partial burst kinetics were observed. For androsterone oxidation, the rate of NADPH release dominated k(cat), whereas the rates of the chemical event and the release of androstane-3,17-dione were 50-fold greater. Under multiple turnover conditions full burst kinetics were observed. Although the internal equilibrium constant favored oxidation, the overall K(eq) favored reduction. The kinetic Haldane and free energy diagram confirmed that K(eq) was governed by ligand binding terms that favored the reduction reactants. Thus, HSDs in the aldo-keto reductase superfamily thermodynamically favor ketosteroid reduction.  相似文献   

8.
The A-549 cell line was initiated from an explant of human lung carcinoma tissue. The biochemical characteristics of these cells are similar to those of normal alveolar type II epithelial cells. To gain some insight into the steroid-metabolizing capabilities of A-549 cells, the metabolism of tritium-labeled dehydroisoandrosterone and androstenedione by these cells was studied. The metabolism of dehydroisoandrosterone led to the exclusive formation of 5-androstene-3 beta,17 beta-diol. The major product of androstenedione metabolism was testosterone; and, 5 alpha-reduced steroids also were formed, viz. 5 alpha-androstane-3,17-dione, androsterone, isoandrosterone, 5 alpha-dihydrotestosterone, 5 alpha-androstane-3 alpha,17 beta-diol and 5 alpha-androstane-3 beta,17 beta-diol. Estrogens, viz., estrone and estradiol-17 beta, were not products of androstenedione metabolism by A-549 cells. The rates of metabolite formation from either dehydroisoandrosterone or androstenedione were linear as a function of incubation time up to 3 h, and with cell number up to 1 X 10(6) cells/ml. The apparent Km of 17 beta-hydroxysteroid oxidoreductase for dehydroisoandrosterone was 11 microM, and that for androstenedione was 13 microM. The predominant formation of 5-androstene-3 beta,17 beta-diol from dehydroisoandrosterone, and testosterone from androstenedione is a likely indication that the principal C19-steroid-metabolizing enzyme in A-549 cells is 17 beta-hydroxysteroid oxidoreductase; the other steroid-metabolizing enzymes expressed in these cells are 5 alpha-reductase, 3 beta-hydroxysteroid oxidoreductase and 3 alpha-hydroxysteroid oxidoreductase. The findings of this study demonstrate that A-549 cells express steroid-metabolizing enzymatic activities that are qualitatively similar to those found in other human pneumonocytes and human lung tissue, except for 3 beta-hydroxysteroid oxidoreductase-5----4-isomerase activity, which is not expressed in these cells with dehydroisoandrosterone as the substrate.  相似文献   

9.
In view of the uterine action of androgens we have investigated in vitro the metabolism of [4-14C]-testosterone in uterine tissue of ovariectomized rats. After purification of the extracts on Amberlite XAD-2 the metabolites have been isolated by gel. Five metabolites were isolated and identified during these incubation studies: 4-androstene 3,17-dione, 17beta-hydroxy-5alpha-androstan-3-one, 5 alpha-androstane-3alpha17beta-diol, 4-androstene-3 beta, 17beta-diol and 4-androstene-3alpha, 17beta-diol. Furthermore, two polar C19O3-metabolites and one isopolar to 5 alpha-androstane-3, 17-dione have also been detected. The metabolites were characterized by radioactive gas chromatogrphy, and determination of the relative specific activity in the eluates of Sephadex column chromatography. The identification of allylic alcohols was complemented by their oxidation to 4-androstene-3,17-dione. The present data show that activity of 17beta,3alpha- and 3beta-hydroxysteroid-oxidoreductase and 5alpha-ring-reductase are involved in the metabolism of testosterone in vitro in the rat uterus. The very low 5 alpha-reductase activity under the experimental conditions used in this work explains the formation of allylalcohols as the principal metabolites of testosterone in the rat uterus.  相似文献   

10.
An antibody to androstanedione obtained in a rabbit by immunization with androstenedione-7 alpha-carboxymethyl-thioether conjugated to bovine serum albumin was found to cross-react 100% with 5 alpha-androstane-3,17-dione, a property that was used to develop a radioimmunoassay for this steroid. Plasma 5 alpha-androstane-3,17-dione concentrations were determined in young men, and in women throughout an ovulatory cycle. In the men (n = 6), plasma 5 alpha-androstane-3,17-dione concentrations were in the range of 84 to 273 pg/ml with a mean (+/- SD) value of 164 +/- 57 pg/ml. The plasma levels in the women (n = 5) were in the ranges of 35 +/- 14 to 145 +/- 75 pg/ml during the follicular phase, and 109 +/- 50 to 151 +/- 44 pg/ml during the luteal phase. The tissue sites of origin of 5 alpha-androstane-3,17-dione have not been defined, however, some extraglandular tissues are known to contain enzymes that convert C19-steroids to 5 alpha-androstane-3,17-dione. It is possible that 5 alpha-androstane-3,17-dione in circulation serves as a substrate for peripheral synthesis of 5 alpha-dihydrotestosterone.  相似文献   

11.
Follicular fluid was aspirated from preovulatory follicles of women under ovarian stimulation for in vitro fertilization and analyzed by a highly specific technique based on gas chromatography-mass spectrometry associated with stable isotope dilution. 19-Nortestosterone and 19-norandrostenedione were identified and quantified for the first time in human follicular fluid. There was a strong positive correlation between 19-nortestosterone and estradiol-17 beta and between 19-norandrostenedione and estrone concentrations, thus indicating a common cellular origin. The accumulation of 19-norsteroids in follicular fluid confirms that they are weakly active intermediates in the multistep enzymatic conversion of androgen to estrogen. Testosterone concentrations were significantly lower than those obtained by radioimmunoassay; cross-reaction with substantially higher levels of 19-nortestosterone seems to be at the origin of this discrepancy. Androstenedione concentrations were similar to those reported in the literature and it was therefore confirmed that an estradiol/androstenedione concentration ratio above 20 is favourable for oocyte cleavage. Other and some newly estimated androgens are: testosterone sulfate, 5-androstene-3 beta, 17 beta-diol 3-sulfate and disulfate, dihydrotestosterone sulfate, epitestosterone, 19-hydroxyandrostenedione, 5 alpha-androstane-3 alpha, 17 beta-diol, 5 alpha-androstane-3 beta, 17 beta-diol, 5 alpha-androstane-3,17-dione and androsterone. Dehydroepiandrosterone sulfate was by far the most abundant androgen in this type of follicles.  相似文献   

12.
Homogenates prepared from fetal rhesus monkey testes were incubated with progesterone, 4-androstene-3,17-dione, testosterone and 17 beta-hydroxy-5 alpha-androstan-3-one. The major progesterone metabolite was 17-hydroxy-4-pregnene-3,20-dione. Testosterone also accumulated in the progesterone incubations. 4-Androstene-3,17-dione was converted chiefly to testosterone. Testosterone was not actively metabolized by the fetal monkey testis. 17 beta-Hydroxy-5 alpha-androstan-3-one was actively converted primarily to 5 alpha-androstane-3 beta,17 beta-diol.  相似文献   

13.
The pH-rate profiles for kcatobsd and (kcat/KM)obsd at 25.0 degrees C have been measured for 3-oxo-delta 5-steroid isomerase by using 5-androstene-3,17-dione (2), 5-pregnene-3,20-dione (3), and 5(10)-estrene-3,17-dione (4) as substrates. Results from the nonsticky substrate 4 suggest values for the pK of a catalytically important group on the free enzyme (pKE) of 4.57 and the pK of the same group in the enzyme-substrate complex of 4.74. For the sticky substrates 2 and 3, pKES is ca. 4.75 and 5.5, respectively. Analysis of the (kcat/KM)obsd vs. pH profile for 2 reveals that the intermediate E X S complex decomposes to products at a rate similar to its reversion to E + S. The pH-rate profile for inhibition of the isomerase by (3S)-spiro-[5 alpha-androstane-3,2'-oxiran]-17-one (7 beta) shows values for pKE of 4.75 and pKEI of 4.90. The similarity of the pH-rate profiles for isomerization of 4 and inhibition by 7 beta suggests that both reactions may be governed by the ionization state of the same carboxyl group of the enzyme.  相似文献   

14.
A series of androsterone (ADT) derivatives substituted at position 16 were efficiently synthesized in short reaction sequences; the ether analogues were also synthesized in the case of the methyl and allyl derivatives. The aim of this study was to develop inhibitors of the steroidogenic enzyme type 3 17beta-hydroxysteroid dehydrogenase and then evaluate their ability to inhibit this activity in transfected HEK-293 cells. For each compound we measured the percentage of inhibition of the transformation of 4-androstene-3,17-dione, the natural substrate of this steroidogenic enzyme, into the active androgen testosterone. The synthesized compounds proved to be weak inhibitors of this enzyme, but interestingly, these ADT derivatives do not bind to androgen, estrogen, glucocorticoid, and progestin receptors, suggesting no unsuitable receptor-mediated effects. One exception, 16alpha-(3'-bromopropyl)-5alpha-androstane-3alpha,17beta-diol, the only compound bearing a hydroxy group at position 17beta instead of a ketone, showed a strong binding affinity for the androgen receptor (70% at 1 microM) and also exhibited an antiproliferative activity on Shionogi (AR+) cells (86% at 1 microM), which was comparable to that of hydroxyflutamide, a pure antiandrogen (100% at 1 microM).  相似文献   

15.
The bioconversion of 7-oxygenated sterols by Mycobacterium aurum was studied in a preliminary investigation of the microbial conversion of wool wax. 7-Oxocholesterol was found to be transformed mainly into 3,17-dioxygenated androstane derivatives. 7 xi-Hydroxylated sterols were formed in an initial reduction step, and the C-7 hydroxyl group was then eliminated in a dehydration reaction. This was thought to take place during the isomerisation of cholest-4-en-3-one to cholest-5-en-3-one. Deuterium labelling experiments showed that this elimination proceeded faster for the C-7 alpha isomer, although it was not stereospecific. The C-7 alpha and C-7 beta-hydroxy isomers were weakly interconverted via the 7-oxo derivatives. Cholest-4-en-3-one, cholest-1,4-dien-3-one and cholest-4,6-dien-3-one all lost their side chains following a hydrogenation/dehydrogenation reaction. The resulting 3,17-dioxoandrostene or 3,17-androstadiene derivatives were mainly hydrogenated into 5 alpha-androstane-3,17-dione and 5 alpha-androstane-3 beta-ol-17-one. Elimination of the 3 beta-hydroxyl groups giving cholesta-3,5-dien-7-one, and subsequent microbial degradation of the side chain was not observed to any significant extent. The convergence of the bioconversion pathways of cholesterol and the 7-oxygenated cholesterols enabled crude, partially auto-oxidised cholesterol to be used as a substrate for the production of 3,17-dioxygenated androstane derivatives by M. aurum.  相似文献   

16.
Microbial transformation of androst-4-en-3,17-dione (AD; I) using Neurospora crassa afforded six metabolites; 6beta,14alpha-dihydroxyandrost-4-en-3,17-dione (II), 6beta,9alpha-dihydroxyandrost-4-en-3,17-dione (III), 7alpha-hydroxyandrost-4-en-3,17-dione (IV), 9alpha-hydroxyandrost-4-en-3,17-dione (V), 14alpha-hydroxyandrost-4-en-3,17-dione (VI), and androst-4,6-dien-3,17-dione (VII). The steroid products were assigned by interpretation of their spectral data such as (1)H NMR, (13)C NMR, FTIR, and mass spectroscopy. The characteristic transformations observed were C-6beta, C-7alpha, C-9alpha, C-14alpha hydroxylations, and C6-C7 dehydrogenation. The best fermentation condition was found to be 6-day incubation at 25 degrees C and pH value of 5.0-6.5 according to TLC profiles. Time course study showed the accumulation of V and VI from the third day and IV from the fourth day of the fermentation. Optimum concentration of the substrate, which gave maximum bioconversion efficiency, was 3.5mM in one batch. Biotransformation was completely inhibited in a concentration above 7.0mM.  相似文献   

17.
The present experiments were performed in order to analyze whether the administration of estrogens (single injection of 500 micrograms of estradiol benzoate s.c.) to neonatal male rats might modify the weight of the ventral prostate and the epididymis as well as the metabolism of testosterone in these two organs. The metabolism of testosterone was evaluated in vitro using 14C-radiolabelled testosterone as the substrate. The metabolites dihydrotestosterone (DHT), 5 alpha-androstane-3 alpha, 17 beta-diol (3 alpha-diol), 5 alpha-androstane-3 beta,17 beta-diol (3 beta-diol), androstenedione, 5 alpha-androstane-3,17-dione (5-A-dione) and 3 alpha-hydroxy-5 alpha-androstane-17-one (androsterone) were quantified. After neonatal estrogen administration animals were killed on days 22 and 90 of age. The following changes were observed: (1) the body weight, the weight of the testes and of the ventral prostate were lower than in controls on both day 22 and 90; (2) the weight of the epididymides was higher than in controls on day 22 and lower on day 90; (3) in the ventral prostate the in vitro formation of DHT was lower and that of the diols was higher than in control tissue on day 22 of age; (4) the in vitro formation of alpha-reduced metabolites of the 17-keto series (5 alpha-A-dione + androsterone) was higher in ventral prostate of treated animals than in that of controls on day 22; (5) in treated animals, no formation of DHT in the caput epididymis was observed at day 22. On the contrary, at the same age the formation of androstenedione was higher than in controls; on day 90 of age the formation of DHT, androstenedione and the 5 alpha-reduced metabolites of the 17-keto series was identical in caput epididymis of the treated animals and of the controls, while the formation of the diols was higher in the treated than in the controls. The data indicate that neonatal estrogenization may induce important changes in testosterone metabolism in the prostates and in the epididymides of the rat.  相似文献   

18.
James C. Coffey 《Steroids》1973,22(2):247-257
Tritiated 4-androstene-3,17-dione and testosterone were incubated with submaxillary gland homogenates of 6 month old male mice. In 15 and 180 minute incubations fortified with NADPH, submaxillary tissue converted 4-androstene-3,17-dione predominantly to androsterone and, to a lesser extent, testosterone, 17β-hydroxy-5α-androstan-3-one and 5α-androstane-3α, 17β-diol. Testosterone was converted primarily to 5α-androstane-3α, 17β-diol when exogenous NADPH was available; trace amounts of 4-androstene-3,17-dione, 17β-hydroxy-5α-androstan-3-one and androsterone were also formed. When a NADPH-generating system was omitted from the incubation medium both 4-androstene-3,17-dione and testosterone were poorly metabolized by submaxillary tissue; the amounts of reduced metabolites accumulating were markedly reduced.  相似文献   

19.
Microsomal preparations from livers of Sprague-Dawley rats catalyze the glucuronidation of 3 alpha-hydroxy-5 beta-H (3 alpha, 5 beta) short-chain bile acids (C20-C23), predominantly at the hydroxyl group, while the glucuronidation of 3 beta, 5 beta short-chain bile acids occurs exclusively at the carboxyl group. A similar pattern of conjugation was also observed in Wistar rats having normal levels of 3-hydroxysteroid UDP-glucuronosyltransferase. Significant reductions of formation rates for hydroxyl-linked, but not carboxyl-linked, short-chain bile acid glucuronides were observed in hepatic microsomes from Wistar rats with low 3-hydroxysteroid UDP-glucuronosyltransferase activity. 3-Hydroxysteroid UDP-glucuronosyltransferase, purified to homogeneity from Sprague-Dawley liver microsomes, catalyzed the 3-O-glucuronidation of 3 alpha, 5 beta C20-23 bile acids, as well as of lithocholic and isolithocholic acids (C24). The apparent Michaelis constants (KM) for short-chain bile acids were similar to the value obtained for androsterone. 3 alpha, 5 beta-C20 and 3 beta, 5 beta-C20 competitively inhibited glucuronidation of androsterone by the purified 3-hydroxysteroid UDP-glucuronosyltransferase. Purified 17 beta-hydroxysteroid and p-nitrophenol UDP-glucuronosyltransferases did not catalyze the glucuronidation of bile acids. In addition, none of the purified transferases catalyzed the formation of carboxyl-linked bile acid glucuronides. The results show that 3-hydroxysteroid UDP-glucuronosyltransferase, an enzyme specific for 3-hydroxyl groups of androgenic steroids and some conventional bile acids, also catalyzes the glucuronidation of 3 alpha-hydroxyl (but not carboxyl) groups of 3 alpha, 5 beta short-chain bile acids.  相似文献   

20.
The epididymis of adult rats metabolizes 3H 5alpha-androstane-3alpah,17beta-diol (3alpha-diol) by experiments in vitro. After incubation of tissue slices at 37 degrees C for 2 hours, 2% of the radioactivity was found in the water-soluble fraction whereas 98% was found to be ether soluble (free steroids). Further investigation of the free steroids showed the following to be present: 3alpha-diol 39.9%, DHT (17beta-hydroxy-5alpha-androstan-3-one) 33.7%, androsterone (3alpha-hydroxy-5alpha-androstan-17-one) 9.2%, 3beta-diol (5alpha-androstane-3beta,17beta-diol) 2.6%, 5alpha-A-dione (5alpha-androstan-3,17-dione) 1.1%, delta 16-3alpha-ol (5alpha-androst-16-en-3alpha-ol) 1.0%, delta16-3beta-ol (5alpha-androst-16-en-3beta-ol) 2.6%, delta 16-3-one (5alpha-androst-16-en-3-one) 2.9%, and polar compounds 3.3%. When segments of the epididymis (caput and cauda) were incubated in the same way, qualitatively similar metabolites were formed but a greater amount of 3alpha-diol was metabolized by the cauda epididymis. This increase was mainly accounted for by an increased formation of delta 16 compounds (14.3% in cauda, 4.3% in caput). This is most probably due to the presence of larger numbers of mature spermatozoa, which, as we have previously shown, form delta16 steroids from 3alpha-diol and DHT (5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号