首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The delivery of biomolecules by extracellular vesicles (EVs) derived from endothelial progenitor cells (EPCs) has been proven to ameliorate sepsis, yet the therapeutic mechanism remains to be elucidated. Taurine upregulated gene 1 (TUG1) is a long noncoding RNA (lncRNA) that is downregulated in sepsis. The current study was designed to explore the role of EPCs derived EVs transmitting TUG1 in macrophage polarization and macrophage-mediated inflammation in a cecal ligation and puncture (CLP)-induced sepsis mouse model. TUG1 was underexpressed in CLP-induced sepsis, and its reexpression induced anti-inflammatory macrophage polarization and suppressed macrophage-medicated inflammatory injury to the pulmonary vascular endothelium. EPCs derived EVs transmitted TUG1 to promote M2 macrophage polarization. Luciferase, RIP, and RNA pull-down assays showed that TUG1 could competitively bind to microRNA-9-5p (miR-9-5p) to upregulate the expression of sirtuin 1 (SIRT1). Furthermore, EPCs derived EVs transmitted TUG1 to promote M2 macrophage polarization through the impairment of miR-9-5p-dependent SIRT1 inhibition. Finally, EPCs derived EVs carrying TUG1 were verified to ameliorate sepsis-induced organ damage in the murine model. In summary, EPCs derived EVs transmit TUG1 to attenuate sepsis via macrophage M2 polarization. This study also highlights the proinflammatory mechanism associated with miR-9-5p-mediated inhibition of SIRT1, which contributes to a more comprehensive understanding of the pathogenesis of sepsis.Subject terms: Cell biology, Diseases  相似文献   

2.
Macrophages dictate both initiation and resolution of inflammation. During acute inflammation classically activated macrophages (M1) predominate, and during the resolution phase alternative macrophages (M2) are dominant. The molecular mechanisms involved in macrophage polarization are understudied. MicroRNAs are differentially expressed in M1 and M2 macrophages that influence macrophage polarization. We identified a role of miR-21 in macrophage polarization, and found that cross-talk between miR-21 and the lipid mediator prostaglandin E2 (PGE2) is a determining factor in macrophage polarization. miR-21 inhibition impairs expression of M2 signature genes but not M1 genes. PGE2 and its downstream effectors PKA and Epac inhibit miR-21 expression and enhance expression of M2 genes, and this effect is more pronounced in miR-21-/- cells. Among potential targets involved in macrophage polarization, we found that STAT3 and SOCS1 were enhanced in miR-21-/- cells and further enhanced by PGE2. We found that STAT3 was a direct target of miR-21 in macrophages. Silencing the STAT3 gene abolished PGE2-mediated expression of M2 genes in miR-21-/- macrophages. These data shed light on the molecular brakes involved in homeostatic macrophage polarization and suggest new therapeutic strategies to prevent inflammatory responses.  相似文献   

3.
4.
5.
6.
Macrophage autophagy plays a major role in the control and elimination of invading Mycobacterium tuberculosis. However, the function and mechanism of circRNA on macrophage autophagy in tuberculosis remain unclear. Therefore, this study aimed to explore the role of circRNA underlying macrophage autophagy in tuberculosis. Quantitative real-time polymerase chain reaction was used to detect the expression of hsa_circ_0045474, miR-582-5p and TNKS2. Autophagy was detected by LC3B immunofluorescence and transmission electron microscopy. Dual-luciferase reporter assays were used to detect the relationship of miR-582-5p and hsa_circ_0045474 or TNKS2. Western blot was used to detect the expression of LC3-І and LC3-ІІ. The results showed that hsa_circ_0045474 was down-regulated in monocytes from patients with tuberculosis and induced autophagy in macrophages. hsa_circ_0045474 sponged miR-582-5p and negatively regulated miR-582-5p expression. Overexpression of miR-582-5p affected by hsa_circ_0045474 induced autophagy in macrophages. TNKS2 served as a target of miR-582-5p and down-regulation of TNKS2 induced autophagy in macrophages regulated by miR-582-5p. In conclusion, our results demonstrated that hsa_circ_0045474 down-regulation induced macrophage autophagy in tuberculosis via miR-582-5p/ TNKS2 axis, implying a novel strategy to treat the occurrence of active pulmonary tuberculosis caused by immune escape of M. tuberculosis.  相似文献   

7.
The multiple isoforms of p73, a member of the p53 family, share the ability to modulate p53 activities but also have unique properties, leading to a complex and poorly understood functional network. In vivo, p73 isoforms have been implicated in tumor suppression (TAp73−/− mice), DNA damage (ΔNp73−/− mice) and development (p73−/− mice). In this study, we investigated whether TAp73 contributes to innate immunity and septic shock. In response to a lethal lipopolysaccharide (LPS) challenge, TAp73−/− mice showed higher blood levels of proinflammatory cytokines and greater mortality than their wild-type littermates. In vitro, TAp73−/− macrophages exhibited elevated production of tumor necrosis factor alpha , interleukin-6 and macrophage inflammatory protein-2 as well as prolonged survival, decreased phagocytosis and increased major histocompatibility complex class II expression. Mice depleted of endogenous macrophages and reconstituted with TAp73−/− macrophages showed increased sensitivity to LPS challenge. These results suggest that macrophage polarization is altered in the absence of TAp73 such that maintenance of the M1 effector phenotype is prolonged at the expense of the M2 phenotype, thus impairing resolution of the inflammatory response. Our data indicate that TAp73 has a role in macrophage polarization and innate immunity, enhancing the action field of this important regulatory molecule.  相似文献   

8.
9.
AimsDysmetabolic iron overload syndrome (DIOS) is common but the clinical relevance of iron overload is not understood. Macrophages are central cells in iron homeostasis and inflammation. We hypothesized that iron overload in DIOS could affect the phenotype of monocytes and impair macrophage gene expression.MethodsThis study compared 20 subjects with DIOS to 20 subjects with metabolic syndrome (MetS) without iron overload, and 20 healthy controls. Monocytes were phenotyped by Fluorescence-Activated Cell Sorting (FACS) and differentiated into anti-inflammatory M2 macrophages in the presence of IL-4. The expression of 38 genes related to inflammation, iron metabolism and M2 phenotype was assessed by real-time PCR.ResultsFACS showed no difference between monocytes across the three groups. The macrophagic response to IL-4-driven differentiation was altered in four of the five genes of M2 phenotype (MRC1, F13A1, ABCA1, TGM2 but not FABP4), in DIOS vs Mets and controls demonstrating an impaired M2 polarization. The expression profile of inflammatory genes was not different in DIOS vs MetS. Several genes of iron metabolism presented a higher expression in DIOS vs MetS: SCL11A2 (a free iron transporter, +76 %, p = 0.04), SOD1 (an antioxidant enzyme, +27 %, p = 0.02), and TFRC (the receptor 1 of transferrin, +59 %, p = 0.003).ConclusionsIn DIOS, macrophage polarization toward the M2 alternative phenotype is impaired but not associated with a pro-inflammatory profile. The up regulation of transferrin receptor 1 (TFRC) in DIOS macrophages suggests an adaptive role that may limit iron toxicity in DIOS.  相似文献   

10.
11.
C1q tumor necrosis factor-related protein 12 (CTRP12), a conserved paralog of adiponectin, is closely associated with cardiovascular disease. However, little is known about its role in atherogenesis. The aim of this study was to examine the influence of CTRP12 on atherosclerosis and explore the underlying mechanisms. Our results showed that lentivirus-mediated CTRP12 overexpression inhibited lipid accumulation and inflammatory response in lipid-laden macrophages. Mechanistically, CTRP12 decreased miR-155-5p levels and then increased its target gene liver X receptor α (LXRα) expression, which increased ATP binding cassette transporter A1 (ABCA1)- and ABCG1-dependent cholesterol efflux and promoted macrophage polarization to the M2 phenotype. Injection of lentiviral vector expressing CTRP12 decreased atherosclerotic lesion area, elevated plasma high-density lipoprotein cholesterol levels, promoted reverse cholesterol transport (RCT), and alleviated inflammatory response in apolipoprotein E-deficient (apoE−/−) mice fed a Western diet. Similar to the findings of in vitro experiments, CTRP12 overexpression diminished miR-155-5p levels but increased LXRα, ABCA1, and ABCG1 expression in the aortas of apoE−/− mice. Taken together, these results suggest that CTRP12 protects against atherosclerosis by enhancing RCT efficiency and mitigating vascular inflammation via the miR-155-5p/LXRα pathway. Stimulating CTRP12 production could be a novel approach for reducing atherosclerosis.Subject terms: Non-coding RNAs, Cardiovascular diseases  相似文献   

12.
《Cytotherapy》2023,25(3):310-322
Background aimsAcute kidney injury (AKI) is often associated with poor patient outcomes. Extracellular vesicles (EVs) have a marked therapeutic effect on renal recovery. This study sought to explore the functional mechanism of EVs from adipose tissue-derived stromal cells (ADSCs) in tubular epithelial cell (TEC) repair in AKI.MethodsADSCs were cultured and EVs were isolated and identified. In vivo and in vitro AKI models were established using lipopolysaccharide (LPS).ResultsEVs increased human kidney 2 (HK-2) cell viability; decreased terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells and levels of kidney injury molecule 1, cleaved caspase-1, apoptosis-associated speck-like protein containing a CARD, gasdermin D-N, IL-18 and IL-1β; and elevated pro-caspase-1. EVs carried miR-21-5p into LPS-induced HK-2 cells. Silencing miR-21-5p partly eliminated the ability of EVs to suppress HK-2 cell pyroptosis and inflammation. miR-21-5p targeted toll-like receptor 4 (TLR4) and inhibited TEC pyroptosis and inflammation after AKI by inhibiting TLR4. TLR4 overexpression blocked the inhibitory effects of EVs on TEC pyroptosis and inflammation. EVs suppressed the nuclear factor-κB/NOD-like receptor family pyrin domain-containing 3 (NF-κB/NLRP3) pathway via miR-21-5p/TLR4. Finally, AKI mouse models were established and in vivo assays verified that ADSC-EVs reduced TEC pyroptosis and inflammatory response and potentiated cell repair by mediating miR-21-5p in AKI mice.ConclusionsADSC-EVs inhibited inflammation and TEC pyroptosis and promoted TEC repair in AKI by mediating miR-21-5p to target TLR4 and inhibiting the NF-κB/NLRP3 pathway.  相似文献   

13.
Macrophage polarization is the driving force of various inflammatory diseases, especially those involved in M1/M2 imbalance. N6-methyladenosine (m6A) is the most prevalent internal mRNA modification in eukaryotes that affects multiple biological processes, including those involved developmental arrest and immune response. However, the role of m6A in macrophage polarization remains unclear. This study found that FTO silencing significantly suppressed both M1 and M2 polarization. FTO depletion decreased the phosphorylation levels of IKKα/β, IκBα and p65 in the NF-κB signaling pathway. The expression of STAT1 was downregulated in M1-polarized macrophages while the expression of STAT6 and PPAR-γ decreased in M2 polarization after FTO knockdown. The actinomycin D experiments showed that FTO knockdown accelerated mRNA decay of STAT1 and PPAR-γ. Furthermore, the stability and expression of STAT1 and PPAR-γ mRNAs increased when the m6A reader YTHDF2 was silenced. In conclusion, our results suggest that FTO knockdown inhibits the NF-κB signaling pathway and reduces the mRNA stability of STAT1 and PPAR-γ via YTHDF2 involvement, thereby impeding macrophage activation. These findings indicated a previously unrecognized link between FTO and macrophage polarization and might open new avenues for research into the molecular mechanisms of macrophage polarization-related diseases.  相似文献   

14.
Cervical cancer is the most common gynaecological malignancy, with a high incidence rate and mortality rate in middle-aged women. Human bone marrow mesenchymal stem cells (hBMSCs) have been implicated in the initiation and subsequent development of cancer, along with the involvement of extracellular vesicles (EVs) mediating intracellular communication by delivering microRNAs (miRNAs or miRs). This study is aimed at investigating the physiological mechanisms by which EVs-encapsulated miR-144-3p derived from hBMSCs might mediate the progression of cervical cancer. The expression profiles of centrosomal protein, 55 Kd (CEP55) and miR-144-3p in cervical cancer cell lines and tissues, were quantified by RT-qPCR and Western blot analysis. The binding affinity between miR-144-3p and CEP55 was identified using in silico analysis and luciferase activity determination. Cervical cancer cells were co-cultured with EVs derived from hBMSCs that were treated with either miR-144-3p mimic or miR-144-3p inhibitor. Cervical cancer cell proliferation, invasion, migration and apoptosis were detected in vitro. The effects of hBMSCs-miR-144-3p on tumour growth were also investigated in vivo. miR-144-3p was down-regulated, whereas CEP55 was up-regulated in cervical cancer cell lines and tissues. CEP55 was targeted by miR-144-3p, which suppressed cervical cancer cell proliferation, invasion and migration and promoted apoptosis via CEP55. Furthermore, similar results were obtained by hBMSCs-derived EVs carrying miR-144-3p. In vivo assays confirmed the tumour-suppressive effects of miR-144-3p in hBMSCs-derived EVs on cervical cancer. Collectively, hBMSCs-derived EVs-loaded miR-144-3p impedes the development and progression of cervical cancer through target inhibition of CEP55, therefore providing us with a potential therapeutic target for treating cervical cancer.  相似文献   

15.
Tumor-derived exosomes play a pivotal role in regulating tumor progression by mediating crosstalk between tumor cells and immune cells such as macrophages within the tumor microenvironment. Macrophages can adopt two distinct polarization statuses and switch between M1 or M2 activation phenotypes in response to the different external stimuli. However, the role of tumor derived exosomes in the macrophage phenotypic switch and tumor development have not been elucidated in renal cell carcinoma (RCC). Here we found that high macrophage infiltration was associated with worse prognosis in RCC patients, therefore we propose our hypothesis that RCC derived exosomes might directly influence macrophage polarization and thus promote tumor progression. Both cell-based in vitro models and orthotopic transplantation in vivo tumor models were constructed and ELISA, flow cytometry, and macrophage functional studies were performed to investigate whether and how RCC-derived exosomes regulate macrophage polarization and tumor growth. The results found that these exosomes promote macrophage polarization, cytokine release, phagocytosis, angiogenesis, and tumor development. Further study revealed high amount of a recently discovered lncRNA called lncARSR in RCC-derived exosomes. Overexpression of lncARSR induced phenotypic and functional changes of macrophages in vitro and promoted tumor growth in vivo, while knockdown of lncARSR by siRNA disrupted the exosomes-mediated macrophage polarization. LncARSR interacts directly with miR-34/miR- 449 to increase STAT3 expression and mediate macrophage polarization in RCC cells. Together, RCC-derived exosomes facilitate the development of tumor through inducing macrophage polarization via transferring lncARSR, suggesting that RCC-derived exosomes, lncARSR and STAT3 are the potential therapeutic targets for treatment of RCC.  相似文献   

16.
Membrane-coated extracellular vesicles (EVs) released by cells can serve as vehicles for delivery of biological materials and signals. Recently, we demonstrated that alcohol-treated hepatocytes cross-talk with immune cells via exosomes containing microRNA (miRNAs). Here, we hypothesized that alcohol-exposed monocytes can communicate with naive monocytes via EVs. We observed increased numbers of EVs, mostly exosomes, secreted by primary human monocytes and THP-1 monocytic cells in the presence of alcohol in a concentration- and time-dependent manner. EVs derived from alcohol-treated monocytes stimulated naive monocytes to polarize into M2 macrophages as indicated by increased surface expression of CD68 (macrophage marker), M2 markers (CD206 (mannose receptor) and CD163 (scavenger receptor)), secretion of IL-10, and TGFβ and increased phagocytic activity. miRNA profiling of the EVs derived from alcohol-treated THP-1 monocytes revealed high expression of the M2-polarizing miRNA, miR-27a. Treatment of naive monocytes with control EVs overexpressing miR-27a reproduced the effect of EVs from alcohol-treated monocytes on naive monocytes and induced M2 polarization, suggesting that the effect of alcohol EVs was mediated by miR-27a. We found that miR-27a modulated the process of phagocytosis by targeting CD206 expression on monocytes. Importantly, analysis of circulating EVs from plasma of alcoholic hepatitis patients revealed increased numbers of EVs that contained high levels of miR-27a as compared with healthy controls. Our results demonstrate the following: first, alcohol increases EV production in monocytes; second, alcohol-exposed monocytes communicate with naive monocytes via EVs; and third, miR-27a cargo in monocyte-derived EVs can program naive monocytes to polarize into M2 macrophages.  相似文献   

17.
Ren  Wei  Xi  Guangxia  Li  Xing  Zhao  Lingxia  Yang  Kun  Fan  Xuemei  Gao  Linlin  Xu  Hongmei  Guo  Jianjin 《Molecular and cellular biochemistry》2021,476(1):471-482

Diabetic peripheral neuropathy (DPN) is one of the most important complications in diabetes mellitus (DM), which has been reported to be modulated by long non-coding RNAs (lncRNAs). The purpose of the current study is to explore the regulatory mechanism of lncRNA HCG18 on DPN in vitro. The expression of lncRNA HCG18, miR-146a, TRAF6, CD11c, and iNOS was detected by qRT-PCR. Through Enzyme-linked immunosorbent assay, the levels of inflammatory factors (TNF-α, IL-1β, and IL-6) were determined. M1 macrophage polarization was measured by flow cytometry analysis. The interactions between miR-146a and HCG18/TRAF6 were predicted by Starbase/Targetscan software and verified by the dual luciferase reporter assay. Western blot assay was performed to determine the protein expression of TRAF6. LncRNA HCG18 was highly expressed in DPN model and HG-induced macrophages. The levels of inflammatory factors (TNF-α, IL-1β, and IL-6) were elevated in DPN model. The expression of M1 markers (CD11c and iNOS) was visibly up-regulated in DPN model and was positively correlated with HCG18 expression. LncRNA HCG18 facilitated M1 macrophage polarization. In addition, miR-146a was identified as a target of lncRNA HCG18. Overexpression of miR-146a reversed the promoting effect of HCG18 on M1 macrophage polarization. Simultaneously, TRAF6 was a target gene of miR-146a TRAF6 expression was positively modulated by HCG18 and was negatively modulated by miR-146a. Down-regulation of TRAF6 reversed the promoting effect of HCG18 on M1 macrophage polarization. LncRNA HCG18 promotes M1 macrophage polarization via regulating the miR-146a/TRAF6 axis, facilitating the progression of DPN. This study provides a possible therapeutic strategy for DPN.

  相似文献   

18.
Exosomes participate in intercellular communication and glioma microenvironment modulation, but the exact mechanisms by which glioma-derived exosomes (GDEs) promote the generation of the immunosuppressive microenvironment are still unclear. Here, we investigated the effects of GDEs on autophagy, the polarization of tumor-associated macrophages (TAMs), and glioma progression. Compared with normoxic glioma-derived exosomes (N-GDEs), hypoxic glioma-derived exosomes (H-GDEs) markedly facilitated autophagy and M2-like macrophage polarization, which subsequently promoted glioma proliferation and migration in vitro and in vivo. Western blot and qRT-PCR analyses indicated that interleukin 6 (IL-6) and miR-155-3p were highly expressed in H-GDEs. Further experiments showed that IL-6 and miR-155-3p induced M2-like macrophage polarization via the IL-6-pSTAT3-miR-155-3p-autophagy-pSTAT3 positive feedback loop, which promotes glioma progression. Our study clarifies a mechanism by which hypoxia and glioma influence autophagy and M2-like macrophage polarization via exosomes, which could advance the formation of the immunosuppressive microenvironment. Our findings suggest that IL-6 and miR-155-3p may be novel biomarkers for diagnosing glioma and that treatments targeting autophagy and the STAT3 pathway may contribute to antitumor immunotherapy.Subject terms: Cancer microenvironment, Autophagy  相似文献   

19.
Recent studies have found that extracellular vesicles (EVs) play an important role in normal and disease processes. In the present study, we isolated and characterized EVs from the brains of rhesus macaques, both with and without simian immunodeficiency virus (SIV) induced central nervous system (CNS) disease. Small RNA sequencing revealed increased miR-21 levels in EVs from SIV encephalitic (SIVE) brains. In situ hybridization revealed increased miR-21 expression in neurons and macrophage/microglial cells/nodules during SIV induced CNS disease. In vitro culture of macrophages revealed that miR-21 is released into EVs and is neurotoxic when compared to EVs derived from miR-21-/- knockout animals. A mutation of the sequence within miR-21, predicted to bind TLR7, eliminates this neurotoxicity. Indeed miR-21 in EV activates TLR7 in a reporter cell line, and the neurotoxicity is dependent upon TLR7, as neurons isolated from TLR7-/- knockout mice are protected from neurotoxicity. Further, we show that EVs isolated from the brains of monkeys with SIV induced CNS disease activates TLR7 and were neurotoxic when compared to EVs from control animals. Finally, we show that EV-miR-21 induced neurotoxicity was unaffected by apoptosis inhibition but could be prevented by a necroptosis inhibitor, necrostatin-1, highlighting the actions of this pathway in a growing number of CNS disorders.  相似文献   

20.
Recent evidence that excessive lipid accumulation can decrease cellular levels of autophagy and that autophagy regulates immune responsiveness suggested that impaired macrophage autophagy may promote the increased innate immune activation that underlies obesity. Primary bone marrow-derived macrophages (BMDM) and peritoneal macrophages from high-fat diet (HFD)-fed mice had decreased levels of autophagic flux indicating a generalized impairment of macrophage autophagy in obese mice. To assess the effects of decreased macrophage autophagy on inflammation, mice with a Lyz2-Cre-mediated knockout of Atg5 in macrophages were fed a HFD and treated with low-dose lipopolysaccharide (LPS). Knockout mice developed systemic and hepatic inflammation with HFD feeding and LPS. This effect was liver specific as knockout mice did not have increased adipose tissue inflammation. The mechanism by which the loss of autophagy promoted inflammation was through the regulation of macrophage polarization. BMDM and Kupffer cells from knockout mice exhibited abnormalities in polarization with both increased proinflammatory M1 and decreased anti-inflammatory M2 polarization as determined by measures of genes and proteins. The heightened hepatic inflammatory response in HFD-fed, LPS-treated knockout mice led to liver injury without affecting steatosis. These findings demonstrate that autophagy has a critical regulatory function in macrophage polarization that downregulates inflammation. Defects in macrophage autophagy may underlie inflammatory disease states such as the decrease in macrophage autophagy with obesity that leads to hepatic inflammation and the progression to liver injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号