首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
全新结构药物的研发存在周期长、耗资大、风险高的问题.通过各种技术预测已有药物的新适应症,即药物重定位,可以缩短药物研发时间、降低研发成本和风险.由于疾病种类和已知药物的数量繁多,完全通过实验筛选已知药物的新用途仍然具有很高的成本.随着组学和药物信息学数据的积累,药物重定位进入到了理性设计和实验筛选相结合的阶段,药物重定位的计算预测已经成为计算生物学和系统生物学的重要研究方向.本文将目前药物重定位计算分析的策略归纳为药物-靶标关系分析、药物-药物关系分析和药物-疾病关系分析,对已报道的技术方法及其成功应用实例进行了综述.  相似文献   

2.

Background

Recently, the metabolite-likeness of the drug space has emerged and has opened a new possibility for exploring human metabolite-like candidates in drug discovery. However, the applicability of metabolite-likeness in drug discovery has been largely unexplored. Moreover, there are no reports on its applications for the repositioning of drugs to possible enzyme modulators, although enzyme-drug relations could be directly inferred from the similarity relationships between enzyme’s metabolites and drugs.

Methods

We constructed a drug-metabolite structural similarity matrix, which contains 1,861 FDA-approved drugs and 1,110 human intermediary metabolites scored with the Tanimoto similarity. To verify the metabolite-likeness measure for drug repositioning, we analyzed 17 known antimetabolite drugs that resemble the innate metabolites of their eleven target enzymes as the gold standard positives. Highly scored drugs were selected as possible modulators of enzymes for their corresponding metabolites. Then, we assessed the performance of metabolite-likeness with a receiver operating characteristic analysis and compared it with other drug-target prediction methods. We set the similarity threshold for drug repositioning candidates of new enzyme modulators based on maximization of the Youden’s index. We also carried out literature surveys for supporting the drug repositioning results based on the metabolite-likeness.

Results

In this paper, we applied metabolite-likeness to repurpose FDA-approved drugs to disease-associated enzyme modulators that resemble human innate metabolites. All antimetabolite drugs were mapped with their known 11 target enzymes with statistically significant similarity values to the corresponding metabolites. The comparison with other drug-target prediction methods showed the higher performance of metabolite-likeness for predicting enzyme modulators. After that, the drugs scored higher than similarity score of 0.654 were selected as possible modulators of enzymes for their corresponding metabolites. In addition, we showed that drug repositioning results of 10 enzymes were concordant with the literature evidence.

Conclusions

This study introduced a method to predict the repositioning of known drugs to possible modulators of disease associated enzymes using human metabolite-likeness. We demonstrated that this approach works correctly with known antimetabolite drugs and showed that the proposed method has better performance compared to other drug target prediction methods in terms of enzyme modulators prediction. This study as a proof-of-concept showed how to apply metabolite-likeness to drug repositioning as well as potential in further expansion as we acquire more disease associated metabolite-target protein relations.
  相似文献   

3.
Drug repositioning (also referred to as drug repurposing), the process of finding new uses of existing drugs, has been gaining popularity in recent years. The availability of several established clinical drug libraries and rapid advances in disease biology, genomics and bioinformatics has accelerated the pace of both activity-based and in silico drug repositioning. Drug repositioning has attracted particular attention from the communities engaged in anticancer drug discovery due to the combination of great demand for new anticancer drugs and the availability of a wide variety of cell- and target-based screening assays. With the successful clinical introduction of a number of non-cancer drugs for cancer treatment, drug repositioning now became a powerful alternative strategy to discover and develop novel anticancer drug candidates from the existing drug space. In this review, recent successful examples of drug repositioning for anticancer drug discovery from non-cancer drugs will be discussed.  相似文献   

4.
Small drug molecules usually bind to multiple protein targets or even unintended off-targets. Such drug promiscuity has often led to unwanted or unexplained drug reactions, resulting in side effects or drug repositioning opportunities. So it is always an important issue in pharmacology to identify potential drug-target interactions (DTI). However, DTI discovery by experiment remains a challenging task, due to high expense of time and resources. Many computational methods are therefore developed to predict DTI with high throughput biological and clinical data. Here, we initiatively demonstrate that the on-target and off-target effects could be characterized by drug-induced in vitro genomic expression changes, e.g. the data in Connectivity Map (CMap). Thus, unknown ligands of a certain target can be found from the compounds showing high gene-expression similarity to the known ligands. Then to clarify the detailed practice of CMap based DTI prediction, we objectively evaluate how well each target is characterized by CMap. The results suggest that (1) some targets are better characterized than others, so the prediction models specific to these well characterized targets would be more accurate and reliable; (2) in some cases, a family of ligands for the same target tend to interact with common off-targets, which may help increase the efficiency of DTI discovery and explain the mechanisms of complicated drug actions. In the present study, CMap expression similarity is proposed as a novel indicator of drug-target interactions. The detailed strategies of improving data quality by decreasing the batch effect and building prediction models are also effectively established. We believe the success in CMap can be further translated into other public and commercial data of genomic expression, thus increasing research productivity towards valid drug repositioning and minimal side effects.  相似文献   

5.
Accurate identification of compound–protein interactions(CPIs) in silico may deepen our understanding of the underlying mechanisms of drug action and thus remarkably facilitate drug discovery and development.Conventional similarity-or docking-based computational methods for predicting CPIs rarely exploit latent features from currently available large-scale unlabeled compound and protein data and often limit their usage to relatively small-scale datasets.In the present study,we propose Deep CPI,a novel general and scalable computational framework that combines effective feature embedding(a technique of representation learning) with powerful deep learning methods to accurately predict CPIs at a large scale.Deep CPI automatically learns the implicit yet expressive low-dimensional features of compounds and proteins from a massive amount of unlabeled data.Evaluations of the measured CPIs in large-scale databases,such as Ch EMBL and Binding DB,as well as of the known drug–target interactions from Drug Bank,demonstrated the superior predictive performance of Deep CPI.Furthermore,several interactions among smallmolecule compounds and three G protein-coupled receptor targets(glucagon-like peptide-1 receptor,glucagon receptor,and vasoactive intestinal peptide receptor) predicted using Deep CPI were experimentally validated.The present study suggests that Deep CPI is a useful and powerful tool for drug discovery and repositioning.The source code of Deep CPI can be downloaded from https://github.com/Fangping Wan/Deep CPI.  相似文献   

6.
Computational inference of novel therapeutic values for existing drugs, i.e., drug repositioning, offers the great prospect for faster and low-risk drug development. Previous researches have indicated that chemical structures, target proteins, and side-effects could provide rich information in drug similarity assessment and further disease similarity. However, each single data source is important in its own way and data integration holds the great promise to reposition drug more accurately. Here, we propose a new method for drug repositioning, PreDR (Predict Drug Repositioning), to integrate molecular structure, molecular activity, and phenotype data. Specifically, we characterize drug by profiling in chemical structure, target protein, and side-effects space, and define a kernel function to correlate drugs with diseases. Then we train a support vector machine (SVM) to computationally predict novel drug-disease interactions. PreDR is validated on a well-established drug-disease network with 1,933 interactions among 593 drugs and 313 diseases. By cross-validation, we find that chemical structure, drug target, and side-effects information are all predictive for drug-disease relationships. More experimentally observed drug-disease interactions can be revealed by integrating these three data sources. Comparison with existing methods demonstrates that PreDR is competitive both in accuracy and coverage. Follow-up database search and pathway analysis indicate that our new predictions are worthy of further experimental validation. Particularly several novel predictions are supported by clinical trials databases and this shows the significant prospects of PreDR in future drug treatment. In conclusion, our new method, PreDR, can serve as a useful tool in drug discovery to efficiently identify novel drug-disease interactions. In addition, our heterogeneous data integration framework can be applied to other problems.  相似文献   

7.
F Cheng  Y Zhou  W Li  G Liu  Y Tang 《PloS one》2012,7(7):e41064
Chemical-protein interaction (CPI) is the central topic of target identification and drug discovery. However, large scale determination of CPI is a big challenge for in vitro or in vivo experiments, while in silico prediction shows great advantages due to low cost and high accuracy. On the basis of our previous drug-target interaction prediction via network-based inference (NBI) method, we further developed node- and edge-weighted NBI methods for CPI prediction here. Two comprehensive CPI bipartite networks extracted from ChEMBL database were used to evaluate the methods, one containing 17,111 CPI pairs between 4,741 compounds and 97 G protein-coupled receptors, the other including 13,648 CPI pairs between 2,827 compounds and 206 kinases. The range of the area under receiver operating characteristic curves was 0.73 to 0.83 for the external validation sets, which confirmed the reliability of the prediction. The weak-interaction hypothesis in CPI network was identified by the edge-weighted NBI method. Moreover, to validate the methods, several candidate targets were predicted for five approved drugs, namely imatinib, dasatinib, sertindole, olanzapine and ziprasidone. The molecular hypotheses and experimental evidence for these predictions were further provided. These results confirmed that our methods have potential values in understanding molecular basis of drug polypharmacology and would be helpful for drug repositioning.  相似文献   

8.
Techniques for predicting interactions between a drug and a target (protein) are useful for strategic drug repositioning. Neighborhood regularized logistic matrix factorization (NRLMF) is one of the state-of-the-art drug–target interaction prediction methods; it is based on a statistical model using the Bernoulli distribution. However, the prediction is not accurate when drug–target interaction pairs have less interaction information (e.g., the sum of the number of ligands for a target and the number of target proteins for a drug). This study aimed to address this issue by proposing NRLMF with beta distribution rescoring (NRLMFβ), which is an algorithm to improve the score of NRLMF. The score of NRLMFβ is equivalent to the value of the original NRLMF score when the concentration of the beta distribution becomes infinity. The beta distribution is known as a conjugative prior distribution of the Bernoulli distribution and can reflect the amount of interaction information to its shape based on Bayesian inference. Therefore, in NRLMFβ, the beta distribution was used for rescoring the NRLMF score. In the evaluation experiment, we measured the average values of area under the receiver operating characteristics and area under precision versus recall and the 95% confidence intervals. The performance of NRLMFβ was found to be better than that of NRLMF in the four types of benchmark datasets. Thus, we concluded that NRLMFβ improved the prediction accuracy of NRLMF. The source code is available at https://github.com/akiyamalab/NRLMFb.  相似文献   

9.
The use of existing drugs for new therapeutic applications, commonly referred to as drug repositioning, is a way for fast and cost-efficient drug discovery. Drug repositioning in oncology is commonly initiated by in vitro experimental evidence that a drug exhibits anticancer cytotoxicity. Any independent verification that the observed effects in vitro may be valid in a clinical setting, and that the drug could potentially affect patient survival in vivo is of paramount importance. Despite considerable recent efforts in computational drug repositioning, none of the studies have considered patient survival information in modelling the potential of existing/new drugs in the management of cancer. Therefore, we have developed DRUGSURV; this is the first computational tool to estimate the potential effects of a drug using patient survival information derived from clinical cancer expression data sets. DRUGSURV provides statistical evidence that a drug can affect survival outcome in particular clinical conditions to justify further investigation of the drug anticancer potential and to guide clinical trial design. DRUGSURV covers both approved drugs (∼1700) as well as experimental drugs (∼5000) and is freely available at http://www.bioprofiling.de/drugsurv.  相似文献   

10.

Background

Drugs can influence the whole biological system by targeting interaction reactions. The existence of interactions between drugs and network reactions suggests a potential way to discover targets. The in silico prediction of potential interactions between drugs and target proteins is of core importance for the identification of new drugs or novel targets for existing drugs. However, only a tiny portion of drug-targets in current datasets are validated interactions. This motivates the need for developing computational methods that predict true interaction pairs with high accuracy. Currently, network pharmacology has used in identifying potential drug targets to predicting the spread of drug activity and greatly contributed toward the analysis of biological systems on a much larger scale than ever before.

Methods

In this article, we present a computational method to predict targets for rhein by exploring drug-reaction interactions. We have implemented a computational platform that integrates pathway, protein-protein interaction, differentially expressed genome and literature mining data to result in comprehensive networks for drug-target interaction. We used Cytoscape software for prediction rhein-target interactions, to facilitate the drug discovery pipeline.

Results

Results showed that 3 differentially expressed genes confirmed by Cytoscape as the central nodes of the complicated interaction network (99 nodes, 153 edges). Of note, we further observed that the identified targets were found to encompass a variety of biological processes related to immunity, cellular apoptosis, transport, signal transduction, cell growth and proliferation and metabolism.

Conclusions

Our findings demonstrate that network pharmacology can not only speed the wide identification of drug targets but also find new applications for the existing drugs. It also implies the significant contribution of network pharmacology to predict drug targets.  相似文献   

11.
Developing new drugs remains prohibitively expensive, time-consuming, and often involves safety issues. Accurate prediction of drug-target interactions (DTIs) can guide the drug discovery process and thus facilitate drug development. Non-Euclidian data such as drug-like molecule structures, key pocket residue structures, and protein interaction networks can be represented effectively using graphs. Therefore, the emerging graph neural network has been rapidly applied to predict DTIs, and proved effective in finding repositioning drugs and accelerating drug discovery. In this review, we provide a brief overview of deep neural networks used in DTI models. Then, we summarize the database required for DTI prediction, followed by a comprehensive introduction of applications of graph neural networks for DTI prediction. We also highlight current challenges and future directions to guide the further development of this field.  相似文献   

12.
Computational methods for predicting drug-target interactions have become important in drug research because they can help to reduce the time, cost, and failure rates for developing new drugs. Recently, with the accumulation of drug-related data sets related to drug side effects and pharmacological data, it has became possible to predict potential drug-target interactions. In this study, we focus on drug-drug interactions (DDI), their adverse effects () and pharmacological information (), and investigate the relationship among chemical structures, side effects, and DDIs from several data sources. In this study, data from the STITCH database, from drugs.com, and drug-target pairs from ChEMBL and SIDER were first collected. Then, by applying two machine learning approaches, a support vector machine (SVM) and a kernel-based L1-norm regularized logistic regression (KL1LR), we showed that DDI is a promising feature in predicting drug-target interactions. Next, the accuracies of predicting drug-target interactions using DDI were compared to those obtained using the chemical structure and side effects based on the SVM and KL1LR approaches, showing that DDI was the data source contributing the most for predicting drug-target interactions.  相似文献   

13.
Over 50% of drugs fail in stage 3 clinical trials, many because of a poor understanding of the drug’s mechanisms of action (MoA). A better comprehension of drug MoA will significantly improve research and development (R&D). Current proposed algorithms, such as ProTINA and DeMAND, can be overly complex. Additionally, they are unable to predict whether the drug-induced gene expression or the topology of the networks used to model gene regulation primarily impacts accurate drug target inference. In this work, we evaluate how network and gene expression data affect ProTINA’s accuracy. We find that network topology predominantly determines the accuracy of ProTINA’s predictions. We further show that the size of an interaction network and/or selecting cell-specific networks has a limited effect on accuracy. We then demonstrate that a specific network topology measure, betweenness, can be used to improve drug target prediction. Based on these results, we create a new algorithm, TREAP, that combines betweenness values and adjusted p-values for target inference. TREAP offers an alternative approach to drug target inference and is advantageous because it is not computationally demanding, provides easy-to-interpret results, and is often more accurate at predicting drug targets than current state-of-the-art approaches.  相似文献   

14.
Inferring potential drug indications, for either novel or approved drugs, is a key step in drug development. Previous computational methods in this domain have focused on either drug repositioning or matching drug and disease gene expression profiles. Here, we present a novel method for the large‐scale prediction of drug indications (PREDICT) that can handle both approved drugs and novel molecules. Our method is based on the observation that similar drugs are indicated for similar diseases, and utilizes multiple drug–drug and disease–disease similarity measures for the prediction task. On cross‐validation, it obtains high specificity and sensitivity (AUC=0.9) in predicting drug indications, surpassing existing methods. We validate our predictions by their overlap with drug indications that are currently under clinical trials, and by their agreement with tissue‐specific expression information on the drug targets. We further show that disease‐specific genetic signatures can be used to accurately predict drug indications for new diseases (AUC=0.92). This lays the computational foundation for future personalized drug treatments, where gene expression signatures from individual patients would replace the disease‐specific signatures.  相似文献   

15.
生物信息技术加速开发旧药新用途   总被引:1,自引:1,他引:0  
传统的技术路线研发新药,不仅周期很长而且耗资巨大,开发已获批准药物新的治疗用途,又称为药物重定位,比传统的新药研发具有明显的优势.基于芯片的基因表达谱分析,已常规地广泛用于各种人类疾病的临床研究,提供了在全基因组水平描述疾病状态的特征信号.同时,基因芯片也广泛地用于对比药物处理前后细胞基因表达模式的变化,这也提供了反映药物效应的高质量信号.最近出版的Science Translational Medicine杂志同时发表了一个研究组的两篇论文,为我们展示了如何利用生物信息学手段重新解析和比较全基因组基因表达谱数据,以高效地预测药物的新用途.这两篇论文使用了公共数据库中的100种疾病基因表达谱数据,以及164种药物处理前后细胞基因表达谱数据,通过比较和配对疾病与药物基因表达谱,得到了一些可以逆转疾病异常表达基因的药物,其中证实了一些已知的药物-疾病组合,也预测了一些新的药物-疾病组合.最后通过实验验证了抗溃疡药可用于治疗肺癌,而抗癫痫药可治疗炎症性肠道疾病,进一步证实了他们所采用研究策略的正确性.于是,肺癌和炎性肠道疾病这两种临床上难治的疾病有了新的候选治疗药物,我们也有了一种挖掘已有数据快速发现药物新用途的思路和方法.  相似文献   

16.
Current FDA-approved kinase inhibitors cause diverse adverse effects, some of which are due to the mechanism-independent effects of these drugs. Identifying these mechanism-independent interactions could improve drug safety and support drug repurposing. Here, we develop iDTPnd (integrated Drug Target Predictor with negative dataset), a computational approach for large-scale discovery of novel targets for known drugs. For a given drug, we construct a positive structural signature as well as a negative structural signature that captures the weakly conserved structural features of drug-binding sites. To facilitate assessment of unintended targets, iDTPnd also provides a docking-based interaction score and its statistical significance. We confirm the interactions of sorafenib, imatinib, dasatinib, sunitinib, and pazopanib with their known targets at a sensitivity of 52% and a specificity of 55%. We also validate 10 predicted novel targets by using in vitro experiments. Our results suggest that proteins other than kinases, such as nuclear receptors, cytochrome P450, and MHC class I molecules, can also be physiologically relevant targets of kinase inhibitors. Our method is general and broadly applicable for the identification of protein–small molecule interactions, when sufficient drug–target 3D data are available. The code for constructing the structural signatures is available at https://sfb.kaust.edu.sa/Documents/iDTP.zip.  相似文献   

17.
18.

Background

Multiple computational methods for predicting drug-target interactions have been developed to facilitate the drug discovery process. These methods use available data on known drug-target interactions to train classifiers with the purpose of predicting new undiscovered interactions. However, a key challenge regarding this data that has not yet been addressed by these methods, namely class imbalance, is potentially degrading the prediction performance. Class imbalance can be divided into two sub-problems. Firstly, the number of known interacting drug-target pairs is much smaller than that of non-interacting drug-target pairs. This imbalance ratio between interacting and non-interacting drug-target pairs is referred to as the between-class imbalance. Between-class imbalance degrades prediction performance due to the bias in prediction results towards the majority class (i.e. the non-interacting pairs), leading to more prediction errors in the minority class (i.e. the interacting pairs). Secondly, there are multiple types of drug-target interactions in the data with some types having relatively fewer members (or are less represented) than others. This variation in representation of the different interaction types leads to another kind of imbalance referred to as the within-class imbalance. In within-class imbalance, prediction results are biased towards the better represented interaction types, leading to more prediction errors in the less represented interaction types.

Results

We propose an ensemble learning method that incorporates techniques to address the issues of between-class imbalance and within-class imbalance. Experiments show that the proposed method improves results over 4 state-of-the-art methods. In addition, we simulated cases for new drugs and targets to see how our method would perform in predicting their interactions. New drugs and targets are those for which no prior interactions are known. Our method displayed satisfactory prediction performance and was able to predict many of the interactions successfully.

Conclusions

Our proposed method has improved the prediction performance over the existing work, thus proving the importance of addressing problems pertaining to class imbalance in the data.
  相似文献   

19.
基于生物信息学方法发现潜在药物靶标   总被引:2,自引:0,他引:2  
药物靶点通常是在代谢或信号通路中与特定疾病或病理状态有关的关键分子.通过绑定到特定活动区域抑制这个关键分子进行药物设计.确定特定疾病有关的靶标分子是现代新药开发的基础.在药物靶标发现的过程中,生物信息学方法发挥了不可替代的重要的作用,尤其适用于大规模多组学数据的分析.目前,已涌现了许多与疾病相关的数据库资源,基于生物网络特征、多基因芯片、蛋白质组、代谢组数据等建立了多种生物信息学方法发现潜在的药物靶标,并预测靶标可药性和药物副作用.  相似文献   

20.
About 7000 rare, or orphan, diseases affect more than 350 million people worldwide. Although these conditions collectively pose significant health care problems, drug companies seldom develop drugs for orphan diseases due to extremely limited individual markets. Consequently, developing new treatments for often life-threatening orphan diseases is primarily contingent on financial incentives from governments, special research grants, and private philanthropy. Computer-aided drug repositioning is a cheaper and faster alternative to traditional drug discovery offering a promising venue for orphan drug research. Here, we present eRepo-ORP, a comprehensive resource constructed by a large-scale repositioning of existing drugs to orphan diseases with a collection of structural bioinformatics tools, including eThread, eFindSite, and eMatchSite. Specifically, a systematic exploration of 320,856 possible links between known drugs in DrugBank and orphan proteins obtained from Orphanet reveals as many as 18,145 candidates for repurposing. In order to illustrate how potential therapeutics for rare diseases can be identified with eRepo-ORP, we discuss the repositioning of a kinase inhibitor for Ras-associated autoimmune leukoproliferative disease. The eRepo-ORP data set is available through the Open Science Framework at https://osf.io/qdjup/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号