首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The rate of inorganic carbon uptake and its steadystate accumulation ratio (intracellular/extracellular concentration) was determined in the cyanobacteriumAnabaena variabilis as a function of extracellular pH. The free energy of protons ( ) across the plasmalemma was calculated from determinations of membrane potential, and intracellular pH, as a function of the extracellular pH. While inward proton motive force decreased with increasing extracellular pH from 6.5 to 9.5, rate of HCO 3 influx and its accumulation ration increased. The latter is several times larger than would be expected should HCO 3 influx be driven by . It is concluded that HCO 3 transport in cyanobacteria is not driven by the proton motive force.  相似文献   

2.
Summary Active HCO 3 t- secretion in the anterior rectal salt gland of the mosquito larva,Aedes dorsalis, is mediated by a 11 Cl/HCO 3 exchanger. The cellular mechanisms of HCO 3 and Cl transport are examined using ion- and voltage-sensitive microelectrodes in conjunction with a microperfused preparation which allowed rapid saline changes. Addition of DIDS or acetazolamide to, or removal of CO2 and HCO 3 from, the serosal bath caused large (20 to 50 mV) hyperpolarizations of apical membrane potential (V a) and had little effect on basolateral potential (V bl). Changes in luminal Cl concentration alteredV a in a repid, linear manner with a slope of 42.2 mV/decaloga Cl l –. Intracellular Cl activity was 23.5mm and was approximately 10mm lower than that predicted for a passive distribution across the apical membrane. Changes in serosal Cl concentration had no effect onV bl, indicating an electrically silent basolateral Cl exit step. Intracellular pH in anterior rectal cells was 7.67 and the calculated was 14.4mm. These results show that under control conditions HCO3 enters the anterior rectal cell by an active mechanism against an electrochemical gradient of 77.1 mV and exits the cell at the apical membrane down a favorable electrochemical gradient of 27.6 mV. A tentative cellular model is proposed in which Cl enters the apical membrane of the anterior rectal cells by passive, electrodiffusive movement through a Cl-selective channel, and HCO 3 exits the cell by an active or passive electrogenic transport mechanism. The electrically silent nature of basolateral Cl exit and HCO3 entry, and the effects of serosal addition of the Cl/HCO3 exchange inhibitor, DIDS, on and transepithelial potential (V ic) suggest strongly that the basolateral membrane is the site of a direct coupling between Cl and HCO 3 movements.  相似文献   

3.
Summary Bicarbonate presence in the bathing media doubles Na+ and fluid transepithelial transport and in parallel significantly increases Na+ and Cl intracellular concentrations and contents, decreases K+ cell concentration without changing its amount, and causes a large cell swelling. Na+ and Cl lumen-to-cell influxes are significantly enhanced, Na+ more so than Cl. The stimulation does not raise any immediate change in luminal membrane potential and cannot be due to a HCO 3 -ATPase in the brush border. The stimulation goes together with a large increase in a Na+-dependent H+ secretion into the lumen. All of these data suggests that HCO 3 both activates Na+–Cl cotransport and H+–Na+ countertransport at the luminal barrier.Thiocyanate inhibits Na+ and fluid transepithelial transport without affecting H+ secretion and HCO 3 -dependent Na+ influx. It reduces Na+ and Cl concentrations and contents, increases the same parameters for K+, causes a cell shrinking, and abolishes the lumen-to-cell Cl influx. It enters the cell and is accumulated in the cytoplasm with a process which is Na+-dependent and HCO 3 -activated. Thus, SCN is likely to compete for the Cl site on the cotransport carrier and to be slowly transferred by the cotransport system itself.  相似文献   

4.
Secretion of bicarbonate has been described for distal nephron epithelium and attributed to apical Cl/HCO 3 exchange in beta-intercalated cells. We investigated the presence of this mechanism in cortical distal tubules by perfusing these segments with acid (pH 6) 10 mm phosphate Ringer. The kinetics of luminal alkalinization was studied in stationary microperfusion experiments by double-barreled pH (ion-exchange resin)/1 m KCl reference microelectrodes. Luminal alkalinization may be due to influx (into the lumen) of HCO 3 or OH, or efflux of H+. The magnitude of the Cl/ HCO 3 exchange component was measured by perfusing the lumen with solutions with or without chloride, which was substituted by gluconate. This component was not different from zero in control and alkalotic (chronic plus acute) Wistar rats. Homozygous Brattleboro rats (BRB), genetically devoid of antidiuretic hormone, were used since this hormone has been shown to stimulate H+ secretion, which could mask bicarbonate secretion. In these rats, no evidence for Cl/HCO 3 exchange was found in control BRB and in early distal segments of alkalotic animals, but in late distal tubule a significant component of 0.14±0.033 nmol/cm2 · sec was observed, which, however, is small when compared to the reabsorptive flow found in control Wistar rats, of 0.95±0.10 nmol/cm2 · sec. In addition, 5×10–4 m SITS had no effect on distal bicarbonate reabsorption in controls as well as on secretion in alkalotic Wistar and Brattleboro rats, which is compatible with the absence of effect of this drug on the apical Cl/HCO 3 exchange in other tissues. It is concluded that most distal alkalinization is not Cl dependent, and that Cl/HCO 3 exchange may be found in cortical distal tubule, but its magnitude is, even in alkalosis, markedly smaller than the reabsorptive flux, which predominates in the rats studied in this paper, keeping luminal pH lower than that of blood.  相似文献   

5.
Ruppia cirrhosa, a temperate seagrass growing in brackish water, featured a high capacity for HCO3 utilisation, which could operate over a wide pH range (from 7.5 up to 9.5) with maintained efficiency. Tris buffer inhibited this means of HCO3 utilisation in a competitive manner, while addition of acetazolamide, an inhibitor of extracellular carbonic anhydrase activity, caused a 40–50% inhibition. A mechanism involving periplasmic carbonic anhydrase-catalysed HCO3 dehydration in acid zones, followed by a (probably diffusive) transport of the formed CO2 across the plasma membrane was thus, at least partly, responsible for the HCO3 utilisation. This mechanism, which comprises a CO2-concentrating mechanism (CCM) associated with the plasma membrane, is thus shown for the first time in an aquatic angiosperm. Additional mechanisms involved in the Tris-sensitive HCO3 utilisation could be direct HCO3 uptake (e.g., in an H+/HCO3 symport) or (more likely) non-catalysed HCO3 dehydration in the acid zones. Based on these results, and on earlier investigations on Zostera marina, a general model for analysis of HCO3 utilisation mechanisms of seagrasses is suggested. In this model, three `systems' for HCO3 utilisation are defined which are characterised (and can to some extent be quantified) by their capability to operate at high pH in combination with their response to acetazolamide and Tris. Some consequences of the fact that HCO3 utilisation and osmoregulation probably depend on the same energy source (ATP via H+-ATPase in the plasma membrane) are discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
7.
Summary A stopped-flow rapid reaction apparatus was used for measuring changes in extracellular pH (pH o ) of red cell suspensions under conditions wheredpH o /dt was determined by the rate of HCO 3 /X exchange across the membrane (X =Cl, Br, F, I, NO 3 or SCN). The rate of the exchange at 37°C decreased forX in the order: Cl>Br>F>I>NO 3 >SCN, with rate constants in the ratios 10.860.770.550.520.31. When HCO 3 is exchanged for Cl, Br, F, NO 3 or SCN, a change in the rate-limiting step of the process takes place at a transition temperature (T T ) between 16 and 26°C. In I medium, however, no transition temperature is detected between 3 and 42°C. AlthoughT T varies withX , the activation energies both above and belowT T are similar for Cl, Br, NO 3 and F. The values of activation energy are considerably higher whenX =I or SCN. The apparent turnover numbers calculated for HCO 3 /X exchange (except forX =I) at the correspondingT T ranged from 140 to 460 ions/site ·sec for our experimental conditions. These findings suggest that: (i) HCO 3 /X exchange for allX studied takes place via the rapid anion exchange pathway; (ii) the rate of HCO 3 /X exchange is influenced by the specific anions involved in the 11 obligatory exchange; and (iii) the different transition temperatures in the Arrhenius diagrams of the HCO 3 /X exchange do not seem to be directly related to a critical turnover number, but may be dependent upon the influence ofX on protein-lipid interactions in the red blood cell membrane.  相似文献   

8.
The disease, cystic fibrosis, is caused by the malfunction of the cystic fibrosis transmembrane conductance regulator. Expression of functional CFTR may normally regulate extracellular pH via control of bicarbonate efflux. Reports also suggest that the CFTR may be a Cl-/HCO3- exchanger. If true, this could be very important for treatment of CF given the airway host defense system is quite sensitive to pH, and acidic pH been found to increase mucus viscosity. We compared evidentiary support of four possible models of CFTR's role in the transport of bicarbonate: 1) CFTR as a Cl-channel that permits bicarbonate conductance, 2) CFTR as an anion Cl-/HCO3- exchanger (AE), 3.) CFTR as both a Cl-channel and an AE, and 4.) CFTR as a Cl-channel that allows for transport of bicarbonate and regulates an independent AE. The effect of stimulators and inhibitors of CFTR and AEs were evaluated via iodide efflux and studies of extracellular pH. This data, as well as that published by others, suggest that while CFTR may support and regulate bicarbonate flux it is unlikely it directly performs Cl-/HCO3- anion exchange.  相似文献   

9.
The effect of changing the nutrient-side HCO3 concentration on potential difference (PD) and resistance in bullfrog antrum bathing in Cl media was determined. Changes in HCO3 concentration were from 25 mM to several lower concentrations and back to 25mM. A plot of 6ΔPD6 versus log [HCO3] gave a linear relation for changes of HCO3 concentration from 25 down to 3.1 mM and back to 25 mM but deviated to some extent for changes to 1.6 mM. In these experiments, changes from higher to lower HCO3 concentrations gave a less rapid initial PD response than those in the reverse direction. This result eliminated H+ conductance pathways as being predominant. Experiments were done in which in the first part changes were made in nutrient solution from 5% CO2 and 25 mM HCO3 to 0.6% CO2 and 3 mM HCO3 and in the second part the same changes with a simultaneous change of secretory solution from 5% to 10% CO2. The magnitude of PD decrease was greater by 4.5 mV in the second part. This result indicated that HCO3 conductance pathways rather than OH conductance pathways predominated. There was no evidence of HCO3, OH and H+ conductance pathways in secretory membrane.  相似文献   

10.
Summary The activity of the main base-extruding mechanism in Vero cells, the Na+-independent Cl/HCO 3 antiport, increases 5- to 10-fold when the cytosolic pH (pH i ) is increased over a narrow range close to neutrality. We have studied the effect on this regulation of stimulation and inhibition of protein kinase C by short-term and long-term treatment with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA). After short-term treatment with TPA to stimulate the kinase, the threshold value for activation of the antiport is shifted to a more acidic pH. After prolonged treatment with TPA to downregulate protein kinase C the sensitivity of the antiport to variation in proton concentration was lowered, possibly by reducing the number of essential protonbinding sites. Concomitantly, the steady state pH i of the cells was increased. The data indicate that protein kinase C is involved in the regulation of the Na+-independent Cl/HCO 3 antiport.  相似文献   

11.
The availability of a complete genome database for the cyanobacterium Synechocystissp. PCC6803 (glucose-tolerant strain) has raised expectations that this organism would become a reference strain for work aimed at understanding the CO2-concentrating mechanism (CCM) in cyanobacteria. However, the amount of physiological data available has been relatively limited. In this report we provide data on the relative contributions of net HCO3 uptake and CO2 uptake under steady state photosynthetic conditions. Cells were compared after growth at high CO2 (2% v/v in air) or limiting CO2 conditions (20 ppm CO2). Synechocystishas a very high dependence on net HCO3 uptake at low to medium concentrations of inorganic carbon (Ci). At high Ci concentrations net CO2 uptake became more important but did not contribute more than 40% to the rate of photosynthetic O2 evolution. The data also confirm that high Ci cells of Synechocystissp. PCC6803 possess a strong capacity for net HCO3 uptake under steady state photosynthetic conditions. Time course experiments show that induction of maximal Ci uptake capacity on a shift from high CO2 to low CO2 conditions was near completion by four hours. By contrast, relaxation of the induced state on return of cells to high CO2, takes in excess of 230 h. Experiments were conducted to determine if Synechocystissp. PCC6803 is able to exhibit a `fast induction' response under severe Ci limitation and whether glucose was capable of causing a rapid inactivation in Ci uptake capacity. Clear evidence for either response was not found. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
We have used computer modeling to investigate how pancreatic duct cells can secrete a fluid containing near isotonic (∼140 mm) NaHCO3. Experimental data suggest that NaHCO3 secretion occurs in three steps: (i) accumulation of HCO 3 across the basolateral membrane of the duct cell by Na(HCO3) n cotransporters, Na+/H+ exchangers and proton pumps; (ii) secretion of HCO 3 across the luminal membrane on Cl/HCO 3 antiporters operating in parallel with Cl channels; and (iii) diffusion of Na+ through the paracellular pathway. Programming the currently available experimental data into our computer model shows that this mechanism for HCO 3 secretion is deficient in one important respect. While it can produce a relatively large volume of a HCO 3-rich fluid, it can only raise the luminal HCO 3 concentration up to about 70 mm. To achieve secretion of 140 mm NaHCO3 by the model it is necessary to: (i) reduce the conductive Cl permeability and increase the conductive HCO 3 permeability of the luminal membrane of the duct cell, and (ii) reduce the activity of the luminal Cl/HCO 3 antiporters. Under these conditions most of the HCO 3 is secreted via a conductive pathway. Based on our data, we propose that HCO 3 secretion occurs mainly by the antiporter in duct segments near the acini (luminal HCO 3 concentration up to ∼70 mm), but mainly via channels further down the ductal tree (raising luminal HCO 3 to ∼140 mm). Received: 15 November 1999/Revised: 29 March 2000  相似文献   

13.
A gene of Porphyra yezoensis, coding for the translation elongation factor 1 (EF-1), was isolated from a P. yezoensis genomic library. The coding of 1347 nucleotides encodes a polypeptide of 449 amino acids which exhibits sequence similarity as the known EF-1. An intron is located in the 5 untranslated region. Comparison of the deduced amino acid sequence showed higher similarity to the Porphyra purpurea EF-1tef-c (97%) than to the P. purpurea EF-1tef-s (61%). The mRNA was detected both in the leafy gametophyte and filamentous sporophyte by RT-PCR. The nucleotide sequence data reported in this paper will appear in the DDBJ/EMBL/GenBank databases under accession number AB098024.  相似文献   

14.
This study was undertaken in order to understand thebehaviour of airborne pollen grains, namely therelationship between their concentrations andconcomitant meteorological parameters, at differentaltitudes (ground level, 200, 400 and 600 m) of thelower atmosphere and its daily variations over onesite (the experimental farm of the University ofLeón). The experimental design involved a tetheredballoon (2.25 m3), an ADAS remote meteorologicalstation and an original radio controlled three headedpollen and spore sampler (called GABIS) using theRotorod design. Each head sampled a differentaltitude, while two control samples were taken atground level. Twenty-one takeoffs could be realized inthe 5 weeks period between end of May and end of June1997. Sampling was done early in the morning and sampling time at each altitudewas of 15 minutes. Results show that 45 differenttypes of pollen grains could be collected at this timeof the year and that significant variations could beobserved in the behaviour of the pollen cloud on a dayto day basis, probably because of differentmeteorological situations. Contrary to what isgenerally believed, pollen was in most cases moreabundant at higher altitude – on average by 30% ascompared to ground level – making evident anaerobiological layer of transport at about 500 m aboveground. This was especially the case for trees (Quercus and Castanea). The atmosphere MixingRatio was the most explicative factor at 200 m, whiletemperature dominated significance analysis at both400 and 600 m.  相似文献   

15.
The effect on potential difference (PD) and resistance in Cl media bathing the resting fundus of Rana pipiens was determined for nutrient HCO3 changes from 25 mM to several lower concentrations and back to 25 mM. The graph of |vbΔPD|vb versus log[HCO3] was linear for changes from 25 down to 3.1 mM and also back to 25 mM, but deviated considerably for changes to 1.6 mM. The fact that changes from higher to lower HCO3 gave a less rapid initial PD response than the reverse direction eliminated H+ conductance pathways as being predominant. Experiments were done in which in the first part changes were made in the nutrient solution from 5% CO2 and 25 mM HCO3 to 0.6% CO2 and 3 mM HCO3 and in the second part, the same changes with the simultaneous change of secretory solution from 5% to 10% CO2. The magnitude of the PD decrease was greater by 4.0 mV in the second part. This result indicated that HCO3 rather than OH conductance pathways predominated. On the secretory side, the change from 25 to 3.1 mM HCO3 gave a small but significant change in PD. The latter effect was too small to determine whether HCO3 pathways existed in the secretory membrane.  相似文献   

16.
Segments of guinea pig or cat duodenum distal to the Brunner gland containing area and devoid of bile or pancreatic secretions were cannulated in situ. The unbuffered luminal solution was gassed with 100% O2 or N2 and HCO3 transport titrated at pH 7.40 or 8.00 with solutions containing HCl. Cat duodenum transported HCO3 at a greater rate (∼17μeq, cm−1, h−1) than did jejunum in the same animals (∼5μeq, cm−1, h−1) and also developed a greater transmucosal electrical potential difference. Luminal application of PGE2 (1 – 12 μM) in cat duodenum increased HCO3 transport and the potential difference. HCO3 transport by guinea pig duodenum (∼27 μeq, cm−1, h−1) was increased by luminal PGE2 only in animals where transport had been inhibited by pretreatment with aspirin (30 mg/kg intravenously). Exposure of the cat duodenal lumen to HCl (1 – 25 mM, 5 min) stimulated HCO3 transport and continuous exposure of duodenum in the guinea pig to acid discharged from the stomach may increase endogenous prostaglandin concentrations, resulting in an apparent lack of effect of exogenous prostaglandins. The present results and previous similar findings in amphibians in vitro suggest that surface epithelial transport of HCO3 protects duodenal mucosa against acid.  相似文献   

17.
1. Studies on the incorporation of [3-14C]pyruvate and d-3-hydroxy[3-14C]butyrate into the brain lipid fraction by brain homogenates of the suckling (7-day-old) rat have been carried out. 2. Whereas approximately twice as much CO2 was evolved from pyruvate compared with 3-hydroxybutyrate metabolism, similar amounts of the radioactivity of these two precursors were incorporated into the lipid fraction. Furthermore, in both cases the incorporation into lipid was almost tripled when glucose (10mm) or NADPH (2.5mm) was added to the incubation media. 3. If 5mm-(—)-hydroxycitrate, an ATP–citrate lyase inhibitor, was added to the incubation the incorporation of carbon from pyruvate was inhibited to 39% of the control and from 3-hydroxybutyrate to 73% of the control, whereas CO2 production from both precursors was not affected. 4. The incorporation from pyruvate or 3-hydroxybutyrate into lipids was not affected by the presence of 10mm-glutamate in the medium (to encourage N-acetylaspartate production). However, incorporation from pyruvate was inhibited by 21% in the presence of 5mm-amino-oxyacetate (a transaminase inhibitor) and by 83% in the presence of both hydroxycitrate (5mm) and amino-oxyacetate. 5. Incorporation from 3-hydroxybutyrate into brain lipids was inhibited by 20% by amino-oxyacetate alone, but by 55% in the presence of both hydroxycitrate and amino-oxyacetate. 6. It is concluded that the mechanism of carbon transfer from pyruvate into lipids across the mitochondrial membrane in the suckling rat brain is mainly via citrate and N-acetylaspartate. 3-Hydroxybutyrate, in addition to using these routes, may also be incorporated via acetoacetate formation and transport to the cytosol.  相似文献   

18.
A new role for protein self-association in the cell is discussed. An argument is advanced that when cellular protein is in its associated state the excluded volume component of the solution is minimized. Conversely, when cellular protein is in its dissociated state the excluded volume component of the solution is maximized. For proteins that make up a substantial fraction of the intracellular protein concentration, control of the self-association event thus presents itself as a means of regulating cellular processes that are influenced by different levels of volume exclusion. In this communication we examine how the control of protein association/dissociation might influence one such important process, namely the folding of a protein to a compact state.  相似文献   

19.
We studied the regulation of intracellular pH (pHi) in single cultured astrocytes passaged once from the hippocampus of the rat, using the dye 2′,7′-biscarboxyethyl-5,6-carboxyfluorescein (BCECF) to monitor pHi. Intrinsic buffering power (βI) was 10.5 mM (pH unit)−1 at pHi 7.0, and decreased linearly with pHi; the best-fit line to the data had a slope of −10.0 mM (pH unit)−2. In the absence of HCO3 , pHi recovery from an acid load was mediated predominantly by a Na-H exchanger because the recovery was inhibited 88% by amiloride and 79% by ethylisopropylamiloride (EIPA) at pHi 6.05. The ethylisopropylamiloride-sensitive component of acid extrusion fell linearly with pHi. Acid extrusion was inhibited 68% (pHi 6.23) by substituting Li+ for Na+ in the bath solution. Switching from a CO2/HCO3 -free to a CO2/HCO3 -containing bath solution caused mean steady state pHi to increase from 6.82 to 6.90, due to a Na+-driven HCO3 transporter. The HCO3 -induced pHi increase was unaffected by amiloride, but was inhibited 75% (pHi 6.85) by 400 μM 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS), and 65% (pHi 6.55–6.75) by pretreating astrocytes for up to ∼6.3 h with 400 μM 4-acetamide-4′-isothiocyanatostilbene-2,2′-disulfonic acid (SITS). The CO2/HCO3 -induced pHi increase was blocked when external Na+ was replaced with N-methyl-d-glucammonium (NMDG+). In the presence of HCO3 , the Na+-driven HCO3 transporter contributed to the pHi recovery from an acid load. For example, HCO3 shifted the plot of acid-extrusion rate vs. pHi by 0.15–0.3 pH units in the alkaline direction. Also, with Na-H exchange inhibited by amiloride, HCO3 increased acid extrusion 3.8-fold (pHi 6.20). When astrocytes were acid loaded in amiloride, with Li+ as the major cation, HCO3 failed to elicit a substantial increase in pHi. Thus, Li+ does not appear to substitute well for Na+ on the HCO3 transporter. We conclude that an amiloride-sensitive Na-H exchanger and a Na+-driven HCO3 transporter are the predominant acid extruders in astrocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号