首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
This study investigated the role of 3 alpha-hydroxy-5 alpha-pregnan-20-one (3 alpha,5 alpha-THP) in the modulation of gonadotropin secretion using the immature ovariectomized (OVX) rat primed with a low dose of estradiol. A treatment regimen of either 0.2 or 0.4 mg/kg of 3 alpha,5 alpha-THP given in conjunction with estradiol for 4 days significantly increased levels of serum luteinizing hormone (LH) but had no effect on serum follicle-stimulating hormone (FSH). Estrogen-primed rats receiving a single injection of 3 alpha,5 alpha-THP at 0930 h showed an increase in serum and pituitary LH levels at 1200 h and 1500 h. At 1800 h, only pituitary levels of LH remained significantly higher than controls. An injection of 3 alpha,5 alpha-THP at 1230 h in estrogen-primed rats resulted in enhanced levels of pituitary LH at 1500 h and elevated levels of both serum and pituitary LH at 1800 h. When 3 alpha,5 alpha-THP was given at 0930 h and 1230 h, elevated serum levels of LH were maintained for over 6 h. The administration of pentobarbital (Pb) 30 min after an injection of 3 alpha,5 alpha-THP at 0930 h or 1230 h prevented the increases in serum LH at 1200 h, 1500 h or 1800 h. This suggests that LH-releasing hormone (LHRH) is involved in mediating the LH response by 3 alpha,5 alpha-THP. There was no change in the sensitivity of the pituitary to LHRH following 3 alpha,5 alpha-THP treatment, indicating the absence of a pituitary effect of this steroid.  相似文献   

2.
K A Elias  C A Blake 《Life sciences》1980,26(10):749-755
Experiments were undertaken to investigate if changes occur at the level of the anterior pituitary gland to result in selective follicle-stimulating hormone (FSH) release during late proestrus in the cyclic rat. At 1200 h proestrus, prior to the preovulatory luteinizing hormone (LH) surge in serum and the accompanying first phase of FSH release, serum LH and FSH concentrations were low. At 2400 h proestrus, after the LH surge and shortly after the onset of the second or selective phase of FSH release, serum LH was low, serum FSH was elevated about 4-fold, pituitary LH concentration was decreased about one-half and pituitary FSH concentration was not significantly decreased. During a two hour invitro incubation, pituitaries collected at 2400 h released nearly two-thirds less LH and 2.5 times more FSH than did pituitaries collected at 1200 h. Addition of luteinizing hormone releasing hormone (LHRH) to the incubations caused increased pituitary LH and FSH release. However, the LH and FSH increments due to LHRH in the 2400 h pituitaries were not different from those in the 1200 h pituitaries. The results indicate that a change occurs in the rat anterior pituitary gland during the period of the LH surge and first phase of FSH release which results in a selective increase in the basal FSH secretory rate. It is suggested that this change is primarily responsible for the selective increase in serum FSH which occurs during the second phase of FSH release.  相似文献   

3.
The effects of 5 alpha-dihydroprogesterone (5 alpha-DHP) and 3 alpha, 5 alpha-tetrahydroprogesterone (3 alpha, 5 alpha-THP) on follicle-stimulating hormone (FSH) and luteinizing hormone (LH) release were examined in the pregnant mare's serum gonadotropin (PMSG)-primed immature female rat (8 IU PMSG at 28 days of age) maintained in constant light. Control rats kept in 14L:10D conditions exhibited proestrous-like surges of LH and FSH release with peak levels attained at 1800 h on the second day after PMSG treatment. In rats exposed to constant light, the PMSG-induced surges of LH and FSH were not only delayed until 1000 h on the third day after PMSG, resulting in a delay in ovulation, but were also significantly attenuated when compared to the gonadotropin surges that occurred on Day 2 in rats kept under normal light-dark conditions. The administration of 5 alpha-DHP significantly enhanced the release of FSH at 1000 h on Day 3 when compared to constant light-exposed controls, but had no effect on LH. Treatment with 3 alpha, 5 alpha-THP selectively potentiated the release of LH at 1000 h on Day 3 and had an attenuating effect on FSH release on Days 2 and 3. These observations confirm earlier findings in the immature ovariectomized estrogen-primed rat and suggest that 5 alpha-DHP and 3 alpha, 5 alpha-THP may have significant roles in the regulation of FSH and LH secretion.  相似文献   

4.
The in vitro conversion of 20alpha-hydroxy-4-pregnen-3-one (20alpha-DHP) by medial basal hypothalamus and anterior pituitary was investigated throughout the day of proestrus in the 4-day cyclic rat. Reverse isotopic dilution analysis was utilized to quantitate the substrate remaining and three metabolic products: 20alpha-hydroxy-5alpha-pregnan-3-one, 5alpha-pregnane-3alpha,20alpha-diol and progesterone. Serum levels of 20alpha-DHP, progesterone, LH and FSH were measured by radioimmunoassay. Conversion of 20alpha-DHP to its 5alpha-reduced metabolites (20alpha-hydroxy-5alpha-pregnan-3-one and 5alpha-pregnane-3alpha,20alpha-diol) by the pituitary was constant throughout proestrus except for a significant decrease at 1600 h, near the end of the critical period. Although 5alpha-reduction of 20alpha-DHP by the hypothalamus fluctuated, it was relatively high at 1600 h and was lowest at 1400 h. Small amounts of progesterone (less than2%) were formed but there was not variation with time. The decrease in pituitary enzymic activity coincided with the time when serum levels of LH, FSH and progesterone were increasing but not with later times when the elevated serum levels were maintained. Thus, there may be endogenous regulation of 5alpha-reductase and 3alpha-hydroxysteroid dehydrogenase activity in rat pituitary and perhaps hypothalamus on the afternoon of proestrus. The regulation and subsequent effects of quantitative changes in 5alpha-reduction of 20alpha-DHP by pituitary and hypothalamus remain to be elucidated.  相似文献   

5.
In ovariectomized estrogen-primed rats, progesterone as well as 5 alpha-dihydroprogesterone (5 alpha-DHP) are capable of inducing the release of gonadotropins. This study examined the need of 5 alpha-reduction as a prerequisite for the action of progesterone. The 5 alpha-reductase inhibitor, N,N-diethyl-4-methyl-3-oxo-4-aza-5 alpha-androstane-17 beta-carboxamide was injected at a 1 or 2 mg dose/rat 2 h prior to an injection of 0.4 or 0.8 mg progesterone/kg body weight at 0900 h to immature ovariectomized, estrogen-primed rats and serum was analyzed for LH and FSH at 1500 h. Pituitary and hypothalamic 5 alpha-reductase activity was measured at the time of progesterone administration and at the time of the surge by incubating tissue homogenates with [3H]progesterone. Substrate, ([3H]progesterone) and product ([3H]5 alpha-DHP), were separated by reverse phase HPLC. The pituitary 5 alpha-reductase activity was not blocked at 1500 h. However, both pituitary and hypothalamic 5 alpha-reductase was blocked at the time of progesterone administration. No effect was seen by acute administration of the 5 alpha-reductase inhibitor upon either the 0.4 or 0.8 mg progesterone/kg-induced release of LH and FSH. There was, however, a specific, significant inhibition of progesterone-induced FSH but not LH release when the 5 alpha-reductase inhibition was sustained throughout the afternoon of the gonadotropin surge. These results indicate a biologically significant role for the irreversible 5 alpha-reduction of progesterone in the modulation of the release of FSH.  相似文献   

6.
7.
To more completely assess the means by which alcohol impairs the female reproductive cycle in rats, we have measured hypothalamic luteinizing hormone-releasing hormone (LHRH), pituitary LHRH receptor content, and the serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), prolactin (Prl), and progesterone (P). After two successive cycles, the animals began receiving either an alcohol or a isocaloric control liquid diet regimen beginning on the first day of diestrus, with continued monitoring of the estrous cycle throughout the experiment. An additional set of controls consisted of animals maintained on lab chow and water provided ad libitum. Our results indicate that those animals receiving the control diets showed uninterrupted estrous patterns, whereas those animals receiving the alcohol diet remained in diestrus. Additionally, the alcohol-treated animals showed an increase (p less than 0.05) in LHRH content, with a concomitant decrease (p less than 0.01) in serum LH, and an increase (p less than 0.01) in serum Prl. No significant differences were detected in serum FSH levels or pituitary LHRH receptor content. No differences were detected in serum P levels. These results indicate that short-term alcohol administration disrupts the female reproductive cycle, causing persistent diestrus, and support our hypothesis that the alcohol-induced depression in serum LH levels is due to a diminished release rate of hypothalamic LHRH.  相似文献   

8.
P M Wise 《Life sciences》1982,31(2):165-173
The purpose of the following study was to assess the changes in the proestrous hormone profile in middle-aged cycling rats to better understand the inter-relationship and possible interaction of these hormones during the transition to estrous acyclicity. Median eminence LHRH concentrations and serum LH, FSH, estradiol and progesterone concentrations were measured in young (3-4 months old) and middle-aged (8-10 months old) proestrous rats at 0900, 1200, 1500 and 1800h. The data demonstrate that (1) baseline hormone concentrations prior to the surge at 0900h are the same in middle-aged and young rats; (2) the proestrous gonadotropin surge is temporally delayed in middle-aged rats; (3) this delay is preceded by lower median eminence LHRH concentrations and serum estradiol concentrations at 1200h; (4) serum progesterone concentrations are lower in middle-aged rats during the preovulatory gonadotropin surge (at 1500 and 1800h) probably as a consequence of the delayed LH surge.  相似文献   

9.
Recent reports indicate that luteinizing hormone-releasing hormone (LHRH) releases prolactin (PRL) under some circumstances. We examined the chronic effects of LHRH, growth hormone-releasing hormone (GHRH), and corticotrophin-releasing hormone (CRH) on the release of PRL, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) by pituitary allografts in hypophysectomized, orchidectomized hamsters. Entire pituitary glands removed from 7-week-old-male Golden Syrian hamsters were placed under the renal capsule of hypophysectomized, orchidectomized 12-week-old hamsters. Beginning 6 days postgrafting, hamsters were injected subcutaneously twice daily with 1 microgram LHRH, 4 micrograms GHRH, or 4 micrograms CRH in 100 microliter of vehicle for 16 days. Six hosts from each of the four groups were decapitated on Day 17, 16 hr after the last injection. Prolactin, LH, and FSH were measured in serum collected from the trunk blood. Treatment with LHRH significantly elevated serum PRL levels above those measured in the other three groups, which were all similar to one another. Serum LH levels in hosts treated with vehicle were elevated above those measured in the other three groups. Serum FSH levels in hosts treated with LHRH were greater than FSH levels in any of the other three groups. These results indicate that chronic treatment with LHRH can stimulate PRL and FSH release by ectopic pituitary cells in the hamster.  相似文献   

10.
In an attempt to elucidate the mechanism of suppressive action of glucocorticoids on the hypothalamo-pituitary-ovarian axis, we studied the effects of short-term high dose dexamethasone administration of the LH and FSH responses to LHRH and to clomiphene in healthy women with normal menstrual cycles. Seven women, 21--35 years of age, received 100 micrograms of LHRH i.v. on day 6 of two consecutive menstrual cycles, once with and once without pre-treatment with dexamethasone 2 mg orally every 6 hrs. on days 2 through 5 of the menstrual cycle. Seven other women (ages 21--35 years) received clomiphene citrate 100 mg on days 2 through 5 of their menstrual cycle, once with and once without simultaneous administration of dexamethasone 2 mg orally every 6 h. The administration of dexamethasone suppressed baseline serum levels of LH and FSH and blunted LH and FSH response to both LHRH and clomiphene. The results indicate that short-term administration of pharmacological doses of glucocorticoids suppress the secretion of LH and FSH by a direct effect on the anterior pituitary and possibly by an effect at the hypothalamic level with inhibition of the release of LHRH.  相似文献   

11.
Studies were conducted to evaluate the effects of acute (24 h) thermal stress on anterior pituitary function in hens. Circulating levels of luteinizing hormone (LH) were measured and the ability of the pituitary to respond to luteinizing hormone-releasing hormone (LHRH) challenge was determined. Moreover, bioassayable hypothalamic LHRH content was assessed by using dispersed anterior pituitary cells. In two separate experiments, circulating levels of LH were reduced in hens exposed to acute thermal stress (35 degrees C). Injection of LHRH did not result in significant differences in release of LH between normothermic and hyperthermic hens. However, the hypothalamic content of bioassayable hypothalamic releasing activity from hyperthermic hens were significantly reduced compared with normothermic hens. Taken together, these data suggest that the reproductive decline in the acutely heat-stressed hen is mediated by reduced LH releasing ability of the hypothalamus.  相似文献   

12.
To study the role of androgens in the control of gonadotropin and prolactin secretion in ther ewe, we have characterized androgen receptors in pituitary cytosol, and investigated the effect of androgens on pituitary hormone release in vivo and in vitro. High affinity, low capacity receptors, with an affinity for methyltrienolone (R1881) greater than 5 alpha-dihydrotestosterone (5 alpha-DHT) greater than testosterone (T) much greater than androstenedione (A4), estradiol-17 beta (E2) and progesterone (P), were identified in pituitary cytosol. Addition of 1 nM 5 alpha-DHT, but not A4, inhibited luteinizing hormone (LH) release from pituitary cells in vitro, induced by 10(10) to 10(-7) M luteinizing hormone releasing hormone (LHRH). The release of follicle-stimulating hormone (FSH) with 10(-9) M LHRH was inhibited when cells were incubated with 1 nM 5 alpha-DHT. 5 alpha-DHT had no effect when higher or lower doses of LHRH were used. In ovariectomized ewes, neither an i.v. injection of 1 mg, nor intracarotid injections of up to 1 mg, 5 alpha-DHT affected plasma LH, FSH or prolactin levels, despite dose-related increases in plasma 5 alpha-DHT levels. Daily or twice daily i.m. injections of 5 mg 5 alpha-DHT in oil did not affect LH or FSH levels, but daily injections of 20 mg significantly reduced plasma LH levels within 4 days and plasma FSH levels within 6 days. Thus, despite the presence of androgen receptors in the ewe pituitary, we conclude that androgens per se are of minimal importance in the regulation of pituitary LH, FSH and prolactin secretion in the ewe. The low binding affinity of A4 and the lack of its effect on hormone secretion in vitro suggests that A4 may act as an estrogen precursor rather than an androgenic hormone. The function of the pituitary androgen receptor remains to be established.  相似文献   

13.
We have shown that 4 ng luteinizing hormone releasing hormone (LHRH) pulses induced significantly greater luteinizing hormone (LH) release from proestrous rat superfused anterior pituitary cells with no cycle related differences in follicle stimulating hormone (FSH). Current studies gave 8 ng LHRH in various pulse regimens to study amplitude, duration and frequency effects on LH and FSH secretion from estrous 0800, proestrous 1500 and proestrous 1900 cells. Regimen 1 gave 8 ng LHRH as a single bolus once/h; regimen 2 divided the 8 ng into 3 equal 'minipulses' given at 4 min intervals to extend duration; regimen 3 gave the 3 'minipulses' at 10 min intervals, thereby further extending duration: regimen 4 was the same as regimen 2, except that the 3 'minipulses' were given at a pulse frequency of 2 h rather than 1 h. In experiment 1, all four regimens were employed at proestrus 1900. FSH was significantly elevated by all 8 ng regimens as compared to 4 ng pulses; further, 8 ng divided into 3 equal 'minipulses' separated by 4 min at 1 and 3 h frequencies (regimens 2 and 4) resulted in FSH secretion that was significantly greater than with either a single 8 ng bolus (regimen 1) or when the 'minipulses' were separated by 10 min (regimen 3). In experiment 2, at proestrus 1500, FSH response to the second pulse of regimen 4 was significantly greater than in regimen 2; LH release was significantly suppressed at pulse 2 compared to regimen 2 accentuating divergent FSH secretion. At estrus 0800, FSH response to the second pulse of regimen 4 was significantly stimulated FSH at proestrus 1900, 1500 and estrus 0800, FSH divergence was most marked at proestrus 1500. These data indicate a potential role for hypothalamic LHRH secretory pattern in inducing divergent gonadotropin secretion in the rat.  相似文献   

14.
The feedback effects of dihydrotestosterone (DHT) on gonadotropin secretion in rams were investigated using DHT-implanted castrate rams (wethers) infused with intermittent pulsatile luteinizing hormone-releasing hormone (LHRH) for 14 days. Castration, as anticipated, reduced both serum testosterone and DHT but elevated serum LH and follicle-stimulating hormone (FSH). Dihydrotestosterone implants raised serum DHT in wethers to intact ram levels and blocked the LH and FSH response to castration. The secretory profile of these individuals failed to show an endogenous LH pulse during any of the scheduled blood sampling periods, but a small LH pulse was observed following a 5-ng/kg LHRH challenge injection. Dihydrotestosterone-implanted wethers given repeated LHRH injections beginning at the time of castration increased serum FSH and yielded LH pulses that were temporally coupled to exogenous LHRH administration. While the frequency of these secretory episodes was comparable to that observed for castrates, amplitudes of the induced LH pulses were blunted relative to those observed for similarly infused, testosterone-implanted castrates. Dihydrotestosterone was also shown to inhibit LH and FSH secretion and serum testosterone concentrations in intact rams. In summary, it appears that DHT may normally participate in feedback regulation of LH and FSH secretion in rams. These data suggest androgen feedback is regulated by deceleration of the hypothalamic LHRH pulse generator and direct actions at the level of the adenohypophysis.  相似文献   

15.
The adult male golden hamster will undergo testicular regression when exposed to a short photoperiod, blinding, or late afternoon injections of melatonin. The present study was conducted to compare the effects of all three treatments on serum gonadotropin levels and testicular weights, and to evaluate the effects of these treatments on hypothalamic content of both immunoreactive and bioactive luteinizing hormone-releasing hormone (LHRH) levels. Hamsters were blinded (BL), exposed to a short photoperiod (SP), or received daily injections of melatonin (MEL) for 15 wk. Each treatment (BL, SP, MEL) induced a temporally similar decline in serum luteinizing hormone (LH), serum follicle-stimulating hormone (FSH), and testicular weight. Spontaneous recrudescence occurred earliest in the MEL group, with serum gonadotropins and testicular weight returning to normal by 15 wk. The SP group exhibited recovery of serum gonadotropins but not testicular weight by 15 wk. The BL group demonstrated partial recovery of serum FSH levels by 15 wk, with no recovery in either serum LH or testicular weight. Each treatment group demonstrated increased hypothalamic content of immunoreactive LHRH which was temporally correlated with the decreases of serum gonadotropins. Additionally, the MEL and SP groups demonstrated decreased immunoreactive LHRH levels during spontaneous recrudescence. Extracts of hypothalami from all treatment groups were bioactive on control hamster pituitary cells. These results indicate that there are temporal differences among the three common treatments and that these differences are manifested in serum gonadotropins, testicular weight and hypothalamic LHRH. Hypothalamic LHRH levels determined by radioimmunoassay and bioassay show periods of increase and decrease which coincide with periods of altered serum gonadotropin levels in all groups.  相似文献   

16.
Stress induced changes in testis function   总被引:2,自引:0,他引:2  
The mechanism through which chronic stress inhibits the hypothalamic-pituitary-testicular axis has been investigated. Chronic restraint stress decreases testosterone secretion, an effect that is associated with a decrease in plasma gonadotropin levels. In chronically stressed rats there was a decrease in hypothalamic luteinizing hormone-releasing hormone (LHRH) content and the response on plasma gonadotropins to LHRH administration was enhanced. Thus the inhibitory effect of chronic stress on plasma LH and FSH levels seems not to be due to a reduction in pituitary responsiveness to LHRH, but rather to a modification in LHRH secretion. It has been suggested that beta-endorphin might interfere with hypothalamic LHRH secretion during stress. Chronic immobilization did not modify hypothalamic beta-endorphin, while an increase in pituitary beta-endorphin secretion was observed. Since we cannot exclude that changes in beta-endorphin secreted by the pituitary or other opioids may play some role in the stress-induced decrease in LHRH secretion, the effect of naltrexone administration on plasma gonadotropin was studied in chronically stressed rats. Naltrexone treatment did not modify the decrease in plasma concentrations of LH or FSH. These findings suggest that the inhibitory effect of restraint on the testicular axis is exerted at hypothalamic level by some mechanism other than opioids.  相似文献   

17.
K Kato  M R Sairam 《Life sciences》1983,32(3):263-270
The effect of luteinizing hormone releasing hormone (LHRH) and its analogs on the release of FSH and LH by 20 day old whole mouse pituitary incubated in vitro for 3-4 hrs was investigated. Three agonistic analogs (AY 25650, 25205 and Buserelin) all of which are reported to be superactive in vivo showed approximately the same potency in this in vitro test system. Preincubation of the pituitaries for 1 h with the antagonistic analogs [Ac Dp Cl Phe1,2, D Trp3, D Phe6, D Ala10] LHRH and [Ac Dp Cl Phe1,2, D Trp3, D Arg6, D Ala10] LHRH inhibited the secretion of LH and FSH induced by 2.5 x 10(-9)M LHRH. The inhibitory response was dose dependent. The continued presence of the antagonists was not required for effective suppression of the LHRH effect. Experiments designed to find out the minimum time required for eliciting suppression of LHRH revealed that preincubation of the pituitary with the second antagonist for 5 mins followed by removal was adequate to produce effective inhibition of gonadotropin release. At lower doses of the antagonist, LH release was more effectively inhibited than FSH release. The results suggest that antagonistic analogs can effectively bind to LHRH receptors in the whole pituitary incubation preventing the subsequent action of LHRH. With the present incubation system assessment of bioactive LH and FSH release is possible within 24 hrs.  相似文献   

18.
Pituitary glands, hypothalami, and trunk blood were obtained from male rats at 5, 15, 18, 21, and 29 days of age, on the day of balanopreputial separation (Days 42-45), and during adulthood. The forms of follicle-stimulating hormone (FSH) present within each pituitary were separated by polyacrylamide gel isoelectric focusing. Serum and pituitary gonadotropins, hypothalamic luteinizing hormone-releasing hormone (LHRH), and the profile of FSH forms across the isoelectric focusing gel were determined by radioimmunoassay. No change in the relative proportions of FSH forms were observed between 5 and 21 days of age. Likewise, only slight changes in serum and pituitary gonadotropin levels and hypothalamic LHRH content were observed at these times. After 21 days of age, dramatic increases in serum and pituitary gonadotropin levels were observed. Similarly, a shift in FSH forms within the pituitary to more basic and bioactive forms was observed at this time. These results demonstrate that, during the transition through puberty in the male rat, not only the absolute amount, but also the isoelectric focusing profile, of FSH change.  相似文献   

19.
In order to define both level and severity of defect in patients with idiopathic multiple pituitary hormone deficiencies (MPHD) and to find out which patient might benefit from pulsatile LHRH substitution therapy, the effect of short-term pulsatile LHRH infusion in 6 affected male adolescents was studied. Controls were 9 boys with constitutional delay of puberty (CD). During a spontaneous nocturnal plasma profile LH and FSH levels were prepubertal with little evidence of pulsatile secretory LH activity in all MPHD patients. During short-term pulsatile LHRH stimulation (36 h), however, all showed a significant rise in mean LH and FSH levels (p less than 0.0001). Linear regression analysis revealed significant continuous increases of FSH (p less than 0.001) in all patients and of LH (p less than 0.01) in all but one patient. These changes were not accompanied by an increase of testosterone, androstenedione and DHAS levels. Since all MPHD patients showed steadily increasing gonadotropin levels if stimulated in a pulsatile manner, we conclude that the defect might only in part be located at the pituitary level. Long-term pulsatile substitution therapy with LHRH is likely to be successful in these patients as has been demonstrated in patients with known hypothalamic defect.  相似文献   

20.
Plasma estradiol (E2), serum LH and FSH, and the gonadotropin response to two consecutive LHRH administrations (10 and 100 micrograms with an interval of 2 h) were determined in 19 patients with anorexia nervosa (AN) at the emaciation phase, before and after estradiol benzoate (E2B) injections (3 micrograms/kg/day for 7 days). The same investigations were repeated after weight restoration in 9 AN patients who remained amenorrheic. Both at the emaciation phase and after weight restoration, E2B enhanced the second LH response to LHRH and decreased serum FSH, suggesting that the functional capacities of the pituitary gonadotrophs are normal in AN. Unlike E2B injections, weight restoration increased all the hormone values, suggesting that the weight restoration effects on the abnormal gonadotropin secretory pattern of AN depend on another mechanism than the E2 lowering. That mechanism is probably a disorder of the hypothalamic LHRH secretion, the consequences of which could be reinforced by the low E2 levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号