首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Erythritol, a well-known natural sweetener, is mainly produced by microbial fermentation. Various metal ions (Al3+, Cu2+, Mn2+, and Ni2+) were added to the culture medium of Trichosporonoides oedocephalis ATCC 16958 at 30?mg/L in shake flask cultures. Compared with controls, Cu2+ increased the erythritol content by 86% and decreased the glycerol by-product by 31%. After 48 hr of shake flask culture, sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that expression levels of erythrose reductase (ER) in the presence of 30?mg/L CuSO4?·?5H2O were higher than those obtained after treatment with other examined metal ions. Furthermore, after 108 hr of batch culture in a 5-L bioreactor, supplementation with 30?mg/L of CuSO4?·?5H2O increased the specific erythritol content by 27%. Further studies demonstrated that ER activity under 30?mg/L CuSO4?·?5H2O supplementation in a fermentor was overtly increased compared with the control after 60 hr, while glycerol-3-phosphate dehydrogenase activity was clearly reduced in most of the fermentation process. Furthermore, the NADPH/NADP ratio was slightly lower in T. oedocephalis cells treated with Cu2+ compared with control cells. These results provide further insights into Cu2+ effects on erythritol biosynthesis in T. oedocephalis and should improve the industrial production of erythritol by biological processes.  相似文献   

2.
Direct conversion of gelatinized sago starch into kojic acid byAspergillus flavus strain having amylolytic enzymes was carried out at two different scales of submerged batch fermentation in a 250-mL shake flask and in a 50-L stirred-tank fermentor. For comparison, fermentations were also carried out using glucose and glucose hydrolyzate from enzymic hydrolysis of sago starch as carbon sources. During kojic acid fermentation of starch, starch was first hydrolyzed to glucose by the action of α-amylase and glucoamylase during active growth phase. The glucose remaining during the production phase (non-growing phase) was then converted to kojic acid. Kojic acid production (23.5g/L) using 100 g/L sago starch in a shake flask was comparable to fermentation of glucose (31.5 g/L) and glucose hydrolyzate (27.9 g/L) but in the 50-L fermentor was greatly reduced due to non-optimal aeration conditions. Kojic acid production using glucose was higher in the 50-L fermentor than in the shake flask.  相似文献   

3.
【目的】通过改造谷氨酸棒杆菌JNR中双功能尿苷酰转移/去除酶GlnD,减弱尿苷酰去除酶的活性,增强NH_4~+的转运和利用,提高L-精氨酸的合成。【方法】本文对来源于谷氨酸棒杆菌的突变菌株JNR中的双功能尿苷酰转移/去除酶GlnD进行整合突变,采用同源重组的方法将H_(414)和D_(415)位点突变为两个丙氨酸AA,在此菌株的基础上过量表达PII蛋白GlnK,并对其进行尿苷酰化研究,离子色谱检测摇瓶发酵过程中NH4+的浓度,并对最终的改造菌株进行连续流加发酵分析。【结果】该双功能尿苷酰转移/去除酶在谷氨酸棒杆菌中成功进行整合突变,有效减弱了尿苷酰去除酶的活性;同时过表达PII蛋白GlnK,其酰基化程度明显增强。摇瓶发酵结果表明菌株L4消耗NH_4~+增加,L-精氨酸产量为36.2±1.2 g/L,比对照菌株L3高出22.7%。5-L发酵罐实验结果显示改造菌株L4的L-精氨酸的产量为52.2 g/L,较野生型菌株L0提高了25.3%。【结论】谷氨酸棒杆菌合成L-精氨酸的过程中氮源是必不可少的。减弱GlnD尿苷酰去除酶的活性后,胞内尿苷酰化的GlnK-UMP增加,GlnK-UMP与氮转录调控因子AmtR结合,转运至胞内的NH_4~+浓度提高,促使L-精氨酸产量显著提高。  相似文献   

4.
High poly(3-hydroxybutyrate) (PHB) content and volumetric productivity were achieved by fed-batch culture of Halomonas boliviensis using a defined medium. Initial shake flask cultivations in a minimal medium revealed that the growth of H. boliviensis was supported only when the medium was supplemented with aspartic acid, glycine, or glutamine. Addition of 0.1% (w/v) glutamine in the medium resulted in the highest cell dry weight (CDW; 3.9 g l−1). Glutamine was replaced by the less expensive monosodium glutamate (MSG) in the medium without any notable change in the final cell density. Effect of initial concentrations of NH4Cl and K2HPO4 on cell growth and PHB accumulation by H. boliviensis was then analyzed using a fed-batch fermentation system. The best conditions for PHB production by H. boliviensis were attained using 0.4% (w/v) NH4Cl and 0.22% (w/v) K2HPO4 and adding MSG intermittently to the fermentor. Poly(3-hydroxybutyrate) content and CDW reached 90 wt.% and 23 g l−1, respectively, after 18 h of cultivation. In order to increase CDW and PHB content, MSG, NH4Cl, and K2HPO4 were initially fed to the fermentor to maintain their concentrations at 2%, 0.4%, and 0.22% (w/v), respectively, and subsequently their feed was suppressed. This resulted in a CDW of 44 g l−1, PHB content of 81 wt.%, and PHB volumetric productivity of 1.1 g l−1 h−1.  相似文献   

5.
Cost effective 13C/15N-isotope labeling of the avirulence protein AVR4 (10 kDa) of the fungal tomato pathogen Cladosporium fulvum was achieved with the methylotrophic yeast Pichia pastoris in a fermentor. The 13C/15N-labeled AVR4 protein accumulated to 30 mg/L within 48 h in an initial fermentation volume of only 300 mL, while prolonged optimized overexpressions yielded 126 mg/L. These protein yields were 24-fold higher in a fermentor than in flask cultures. In order to achieve these protein expression levels, we used the methanol-utilizing strain (Mut+) of Pichia pastoris which has a high growth rate while growing on methanol as the only carbon source. In contrast, the methanol-sensitive strain (MutS) could intrinsically yield comparable protein expression levels, but at the expense of additional carbon sources. Although both strains are generally used for heterologous protein expression, we show that the costs for 13C-isotope labeling can be substantially reduced using the Mut+ strain compared to the MutS strain, as no 13C3-glycerol is required during the methanol-induction phase. Finally, nitrogen limitations were precluded for 15N-labeling by an optimal supply of 10 g/L (15NH4)2SO4 every 24 h.  相似文献   

6.
A small jar fermentor was developed in order to investigate the effect of oxygen supply on hydrocarbon fermentation. Several indices to oxygen transfer were examined with this small jar fermentor. Conditions for suitable oxygen supply were examined in l-glutamic acid fermentation from hydrocarbon by use of shaking flasks and these small jar fermentors. The data indicated that the rate of oxygen transfer ought to be more than 14.3 × 10?7 mole/ml·min in order to obtain satisfactory results. The coefficient of oxygen transfer rate (KLa/H) decreased as the fermentation went on, so the supply of oxygen enriched gas mixture was effective to increase the production of l-glutamic acid.  相似文献   

7.
The dissolved oxygen tension of 20% of air saturation, pH-shift from 4.0 to 5.5 on day 3, and a moderate shear stress (calculated as an impeller tip speed, V\texttip = 0. 9 2 6- 2. 1 6 1  \textm/\texts V_{\text{tip}} = 0. 9 2 6- 2. 1 6 1 \, {\text{m}}/{\text{s}} ) were identified to be the key factors in scaling-up the mated fermentation of Blakeslea trispora NRRL 2895 (+) and 2896 (−) for lycopene production from a shake flask to a stirred-tank fermenter. The maximal lycopene production of 183.3 mg/L was obtained in 7.5-L stirred-tank fermenter, and then the mated fermentation process was successfully step-wise scaled-up from 7.5- to 200-L stirred-tank fermenter. The comparability of the fermentation process was well controlled and the lycopene production was maintained during the process scale-up. Furthermore, with the integrated addition of 150 μmol/L abscisic acid on day 3, 0.5 g/L leucine and 0.1 g/L penicillin on day 4, the highest lycopene production of 270.3 mg/L was achieved in the mated fermentation of B. trispora in stirred-tank fermenter.  相似文献   

8.
The production of acetaldehyde, a flavoring agent in food, by Zymomonas mobilis was carried out in batch culture. The volatilization rate constant (kv) of acetaldehyde and the initial volumetric oxygen transfer coefficient (kLa0) in an Erlenmeyer flask with a cotton-plug (cotton-flask) and an aerated-flask with a forced-air system (aerated-flask) were measured. The culture environment in the aerated-flask was found to be very different from that in the cotton-flask. Cell growth in a cotton-flask was strongly inhibited, making practical acetaldehyde production in cotton-flask very difficult. On the other hand, acetaldehyde production in the aerated-flask increased while the fermentation time decreased with increases in the air flow rate. The kv value of acetaldehyde in a jar fermentor was affected mainly by air flow rate. By considering both the oxygen transfer rate and the ventilation effect on the culture, it was possible to scale-up from the aerated-flask to a jar fermentor. In the jar fermentor, production of acetaldehyde and growth inhibition by acetaldehyde were affected mainly by the kLa0 and kv, values, respectively. The overall production of acetaldehyde in the jar fermentor under the optimum kLa0 and kv conditions was 6.64 g/l (Yp/s: 0.27), which was about 1.5 times higher than the maximum concentration obtained in the aerated-flask.  相似文献   

9.
A 22 m long. 20 liter tubular loop fermentor (TLF) has been tested for oxygen transfer characteristics and as a reactor for mycelial growth. Model calculations show that the flow pressure drop has an important influence on the axial oxygen profiles. A design model that accounts for this influence is presented. Using the model, KL a values are calculated from the results of sulfite oxidation experiments. These are correlated with power consumption and aeration rates. The KL a dependence on aeration rate was found to be less than found with tank reactors. The growth kinetics of three metabolite-producing mycelial organisms in the TLF are presented: a Streptomyces, a Fusarium, and a Acrophialophora. In order to determine the influence of reactor type on the growth and product formation, these cultures have been grown in tanks and shake flasks. The antibiotic, product spectrum of Streptomyces is compared on the basis of inhibition tests and it is shown that the distribution of products is reactor dependent. The Fusarium culture produced a previously unknown metabolite, whose concentration in the loop fermentor was four times higher than in a shake flask. The Acrophialophora culture grew twice as fast in the loop fermentor, but produced essentially none of the specific product. Power Consumptions of up to 8 kW/m3 in the tubular fermentor did not appear to harm the mycelia.  相似文献   

10.
Mechanism of uptake of liquid hydrocarbons by microorganisms   总被引:2,自引:0,他引:2  
Growth rates of Candida tropicalis were studied in two different fermentors. One was the ordinary shaker flask containing both the aqueous culture medium and liquid hydrocarbons. The other was a specially designed rotating disk-type fermentor containing only the aqueous culture medium, into which vapors of n-paraffins from C6 to C18 were supplied continuously without forming the liquid hydrocarbon phase. The specific growth rates of Candida tropicalis in the rotating disk fermentor, under such conditions that supply of hydrocarbon vapor was sufficient, showed good agreement with those in the shaker flask. This seems to indicate that hydrocarbon uptake by Candida tropicals by direct contact with liquid hydrocarbon is negligible.  相似文献   

11.
Semicontinuous fermentation using pellets of Rhizopus oryzae has been recognized as a promising technology for l-lactic acid production. In this work, semicontinuous fermentation of R. oryzae AS 3.819 for l-lactic acid production has been developed with high l-lactic acid yield and volumetric productivity. The effects of factors such as inoculations, CaCO3 addition time, and temperature on l-lactic acid yield and R. oryzae morphology were researched in detail. The results showed that optimal fermentation conditions for the first cycle were: inoculation with 4% spore suspension, CaCO3 added to the culture medium at the beginning of culture, and culture temperature of 32–34°C. In orthogonal experiments, high l-lactic acid yield was achieved when the feeding medium was (g/l): glucose, 100; (NH4)2SO4, 2; KH2PO4, 0.1; ZnSO4·7H2O, 0.33; MgSO4·7H2O, 0.15; CaCO3, 50. Twenty cycles of semicontinuous fermentation were carried out in flask culture. l-lactic acid yield was 78.75% for the first cycle and 80–90% for the repeated cycles; the activities of lactate dehydrogenases (LDH) were 7.2–9.2 U/mg; fermentation was completed in 24 h for each repeated cycle. In a 7-l magnetically stirred fermentor, semicontinuous fermentation lasted for 25 cycles using pellets of R. oryzae AS 3.819 under the optimal conditions determined from flask cultures. The final l-lactic acid concentration (LLAC) reached 103.7 g/l, and the volumetric productivity was 2.16 g/(l·h) for the first cycle; in the following 19 repeated cycles, the final LLAC reached 81–95 g/l, and the volumetric productivities were 3.40–3.85 g/(l·h).  相似文献   

12.
The effects of initial culture pH ranging from 5.0 to 7.5 on biomass content, precursor 3-hydroxy-2-butanone (HB) accumulation, and 2,3,5,6-tetramethylpyrazine (TTMP) formation by Bacillus subtilis CCTCC M 208157 were investigated in shake flask fermentation. Weak acidic conditions were found to favor cell growth and precursor HB accumulation, while TTMP could be synthesized more efficiently in conditions with initial pH towards neutrality. Batch bioprocess of TTMP fermentation by Bacillus subtilis CCTCC M 208157 at various controlled pH values ranging from 5.5 to 7.0 was then examined in 7.5-l fermentor. The results suggested that optimum pH for cell growth and precursor HB accumulation was 5.5 with maximum cell growth rate (Q x) and precursor HB accumulation rate (Q HB) of 0.833 g l−1 h−1 and 1.118 g l−1 h−1, respectively, while optimum pH for TTMP formation was 7.0 with maximum TTMP formation rate (Q TTMP) of 0.095 g l−1 h−1. A pH-shifted strategy was accordingly developed to improve TTMP production in bioreactor fermentation by shifting the culture pH from 5.5 to 7.0 after 48 h of cultivation. By applying the strategy, final TTMP concentration of 7.43 g l−1 was obtained, being 22.2% greater than that of constant-pH fermentation.  相似文献   

13.
Pyrimidine salvage pathways are vital for all bacteria in that they share in the synthesis of RNA with the biosynthetic pathway in pyrimidine prototrophs, while supplying all pyrimidine requirements in pyrimidine auxotrophs. Salvage enzymes that constitute the pyrimidine salvage pathways were studied in 13 members of Pseudomonas and former pseudomonads. Because it has been established that all Pseudomonas lack the enzyme uridine/cytidine kinase (Udk) and all contain uracil phosphoribosyl transferase (Upp), these two enzymes were not included in this experimental work. The enzymes assayed were: cytosine deaminase [Cod: cytosine + H2O → uracil + NH3], cytidine deaminase [Cdd: cytidine + H2O → uridine + NH3], uridine phosphorylase [Udp: uridine + Pi ↔ uracil + ribose – 1 - P], nucleoside hydrolase [Nuh: purine/pyrimidine nucleoside + H2O → purine/pyrimidine base + ribose], uridine hydrolase [Udh: uridine/cytidine + H2O → uracil/cytosine + ribose]. The assay work generated five different Pyrimidine Salvage Groups (PSG) designated PSG1 – PSG5 based on the presence or absence of the five enzymes. These enzymes were assayed using reverse phase high-performance liquid chromatography techniques routinely carried out in our laboratory. Escherichia coli was included as a standard, which contains all seven of the above enzymes.  相似文献   

14.
采用单因素试验、响应面试验法对维氏气单胞菌(Aeromonas veronii)发酵培养基的氮源、碳源、无机盐和磷酸盐成分及用量进行优化组合,确定优化培养基组成:胰蛋白胨10.8 g/L,葡萄糖5.0 g/L,牛肉膏3.0 g/L,磷酸二氢钾2.0 g/L,硫酸镁0.4 g/L,NaCl 5.0 g/L。并与基础培养基的发酵活菌数、制备的灭活疫苗免疫效力进行比较,经过验证试验绘制维氏气单胞菌在优化培养基条件下的7 L发酵罐生长曲线。在优化发酵培养基条件下,维氏气单胞菌活菌数为5.94×109 cfu/mL,比基础培养基增幅43.13%;制备的灭活疫苗相对保护率为77.78%,比基础培养基提高了14.81%。7 L发酵罐发酵培养10 h,活菌数达到最大8.85×109 cfu/mL。通过对发酵培养基的优化,可以获得低成本、优质高效的维氏气单胞菌发酵菌液,为今后维氏气单胞菌灭活疫苗规模化发酵培养提供参考。  相似文献   

15.
Cultural conditions for polyalcohol production by Pichia miso were examined in Waldhof type 20 liter-fermentor scale. The best result was obtained under conditions where the aeration rate was 1 volume per volume of the medium per minute with the stirring rate of 500r.p.m., (Kd=5×l0-6 [g-mol of O2/atm. min. ml.]); in 5 days incubation, Pichia miso completely dissimilated the glucose of a high concentration, 30%, and produced glycerol, D-arabitol and erythritol in a very high yield, 50% of sugar consumed. The greatest advantage compared with the shake flask culture is that the required fermentation time is shortened to half.  相似文献   

16.
Optimum culture conditions for the production of exfoliative toxin by Staphylococcus hyicus (shET) were examined. High shET activity was obtained from the culture filtrate of HI and TY broth inoculated with S. hyicus. The pH in these two media ranged from 7 to 8.5 during bacterial culture, while the lowest pH in TS and BHI broth was less than 6. shET activity in the culture filtrate from TY broth inoculated with 107 CFU of S. hyicus per ml was higher than that in TY broth inoculated with 106 and 108 CFU of bacteria per ml. When shET activity in the culture filtrate was measured under various shaking conditions, the culture filtrate shaken at 75 oscillations per min had the highest shET activity of the five shaking conditions. shET activity of the culture filtrate of TY broth to which protease inhibitor had been added was the same as that of TY broth without inhibitor. shET activity in a shaking culture in an Erlenmeyer flask was also the same as that in sac culture and that in shaking culture using a shaking (Sakaguchi) flask. shET activity in TY broth supplemented with 100 mM glucose was significantly lower than that in TY broth without glucose. Based on the above results, the optimum culture conditions for the production of shET were as follows: inoculation of 3 × 109 CFU of S. hyicus strain P-1 into 300 ml of TY broth in a 2,000-ml Erlenmeyer flask, and incubation at 37 C with shaking at 75 oscillations per min. Then shET activity of the culture filtrate under appropriate culture conditions was measured after various incubation periods. shET activity was detected 6 hr after inoculation, reached the maximum (253 exfoliative unit/0.1 ml) at 16 hr and decreased between 20 and 48 hr. Thus, the optimum incubation period was determined to be 16 hr. Then the optimum concentration of ammonium sulfate for isolation of shET from the culture filtrate under appropriate culture conditions was examined. The greatest shET activity was obtained from the fraction salted out with 90% saturated ammonium sulfate. Thus, the optimum concentration of ammonium sulfate for the isolation of shET was determined to be 90% saturation.  相似文献   

17.
液蜡发酵制取混合二元酸的研究   总被引:1,自引:0,他引:1  
A mutant of Candida tropicalis FYD-2 was obtained from its parental strain SFP-1186 by ultraviolet treatments.On shaking flask,the yield of mixed dicarboxylic acid(DCA) by the mutant was 21.4% higher than that by its ancestor.The amount of mixed DCA reached 156g/L for 120h incubation in a 10 L autoconrolled fermentor where the culture medium contained 25% n-paraffin.The process of induced and screening mutant was introduced and the time course of fermentation in 10 L fermentor was discussed.  相似文献   

18.
Conditions for tryptophan synthesis from pyruvic acid, indole and NH4Cl by Enterobacter aerogenes AHU 1540 having a high tryptophanase activity, were investigated using a reaction mixture containing 1.7% of pyruvic acid. Under optimum conditions, 16.4g/liter of tryptophan was accumulated after 24 hr of incubation.

Agaricus campestris AHU 9382 produced pyruvic acid in amounts of 22 ~ 26.5 g/liter from 5% of glucose after 3-days shaking culture. When E. aerogenes was added to this fermentation broth together with indole and NH4Cl, pyruvic acid produced was rapidly converted to tryptophan and yields of tryptophan as high as 15 g/liter were obtained after 12 hr of incubation. Furthermore, pyruvic acid fermentation by Saccharomyces exiguus AHU 3110 or Corynebacterium sp. 37-3A could also be used as a pyruvic acid source for subsequent tryptophan production.  相似文献   

19.
杀鱼假交替单胞菌(Pseudoalteromonas piscicida)2515是一株具有广谱抗弧菌性能的菌株,为提升菌株2515的培养生物量,通过单因素优化方法,研究碳源、氮源、无机盐等营养成分对菌株2515的发酵产量的影响,确定关键营养因子,利用响应面分析法对影响菌株2515生物量的关键营养因子进行优化。结果显示,菌株2515的最佳发酵培养基配方为麦芽糖2.85 g/L、CaCl2 0.65 g/L、MnCl2 0.10 g/L、酵母膏3.85 g/L、胰蛋白胨10 g/L、NaCl 10 g/L。优化后的培养基使菌株2515在锥形瓶和发酵罐中发酵的OD600值分别为1.416和1.866,生物量分别提高了36.4%和40.4%,其发酵上清液和细胞内容物的抑菌活性分别提高了28.2%和27.2%。表明响应面法优化后的培养基有利于提高菌株2515的发酵生物量及抗菌效果,研究结果为菌株2515的后续开发应用提供了参考。  相似文献   

20.
The probable effect of increasing levels of ammonium nitrogen on the growth, efficiency of nitrogen fixation, and main cellular constituents of Azotobacter vinelandii was studied under shaking and static culture conditions. The presence of NH4+-N up to 50 mgl-1 level has no harmful effect on the multiplication as well as the yield efficiency ratio of the tested organism. A. vinelandii was able to fix dinitrogen in the presence of NH4+-N when both nitrogen sources were available in the culturing medium. The efficiency of nitrogen fixation was affected by the initial presence of NH4+-N in the medium, it was quite low at the highest level. The crude protein efficiency ratio was correlated inversely with the initial NH4+-N concentration, whereas the total carbohydrate efficiency ratio as well as the total lipid efficiency ratio were positively correlated with the NH4+-N concentration. The presence of NH4+-N in the culturing medium has no essential influence on the qualitative composition of the amino acids in the Azotobacter cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号