首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
"Nothing in biology makes sense except in the light of evolution", wrote Theodosius Dobzhansky, one of the founders of the Modern Synthesis that led to the unification of evolutionary theory and genetics in the midst of the 20th century. Programmed cell death is a genetically regulated process of cell suicide that is central to the development, homeostasis and integrity of multicellular organisms. Conversely, the dysregulation of mechanisms controlling cell suicide plays a role in the pathogenesis of a wide range of diseases. While great progress has been achieved in the unveiling of the molecular mechanisms of programmed cell death, a new, and somehow puzzling level of complexity has recently begun to emerge, suggesting i) that several different self destruction pathways may exist and operate in parallel in our cells, and ii) that molecular effectors of cell suicide might also perform other functions unrelated to cell death induction and crucial to cell survival, such as cell differentiation, metabolism, and the regulation of the cell cycle. These new findings, with important physiopathological and therapeutic implications, seem at odds with the paradigm of programmed cell death derived from the studies of Caenorhabditis elegans, which led to the concept of the existence of selective, bona fide death genes that emerged and became selected for their sole capacity to execute or repress cell death. In this review, I will argue that this new level of complexity might only make sense and be understood when considered in a broader evolutionary context than that of our phylogenetic divergence from C. elegans. A new view of the regulated cell death pathways emerges when one attempts to ask the question of when and how they may have become selected during a timeline of 4 billion years, at the level of ancestral single-celled organisms, including the bacteria. I will argue that there may be no such thing as a bona fide genetic cell death program. Rather, in the framework of a model that I have termed the "original sin" hypothesis, I have proposed the existence of an initial pleiotropy of the molecular tools involved in the control and execution of self-destruction--an ancestral involvement in both pro-life and pro-death activities. I will discuss how this hypothesis may be reconciled with the C. elegans paradigm of programmed cell death. Finally I will discuss how an ancestral level of pleiotropic functions of the molecular tools involved in the control of cell death, aging and genetic diversification might have favored their initial selection, their constant availability for de novo selection, and their progressive propagation in most--if not all--species during the course of evolution.  相似文献   

2.
Molecular steps of death receptor and mitochondrial pathways of apoptosis.   总被引:17,自引:0,他引:17  
S Gupta 《Life sciences》2001,69(25-26):2957-2964
In almost all multicellular organisms, cell suicide or apoptosis appears to play an important role in the maintenance of cellular homeostasis. Apoptosis is tightly regulated by a set of genes that either promote apoptosis or promote cell survival. Although a number of stimuli appear to trigger the process of apoptosis, there are two major signaling pathways of apoptosis; the death receptor pathway and the death receptor-independent or mitochondrial pathway. There is evidence to suggest that, under certain conditions and in some cell types; these two pathways may cross talk. During the past 5 years, rapid progress has been made in understanding the molecular basis of apoptosis. In this brief review, I will summarize the various molecular steps of apoptosis.  相似文献   

3.
Initial observations that the budding yeast Saccharomyces cerevisiae can be induced to undergo a form of cell death exhibiting typical markers of apoptosis has led to the emergence of a thriving new field of research. Since this discovery, a number of conserved pro- and antiapoptotic proteins have been identified in yeast. Indeed, early experiments have successfully validated yeasts as a powerful genetic tool with which to investigate mechanisms of apoptosis. However, we still have little understanding as to why programmes of cell suicide exist in unicellular organisms and how they may be benefit such organisms. Recent research has begun to elucidate pathways that regulate yeast apoptosis in response to environmental stimuli. These reports strengthen the idea that physiologically relevant mechanisms of programmed cell death are present, and that these function as important regulators of yeast cell populations.  相似文献   

4.
5.
Programmed cell death (apoptosis) is well-established in many multicellular organisms. Apoptosis purifies a tissue from cells that became useless or even harmful for the organism. Similar phenomena are already described also at subcellular level (suicide of mitochondria, i.e., mitoptosis) as well as at supracellular level (degradation of some organs temporarily appearing in the course of ontogenesis and then disappearing by means of apoptosis of the organ-composing cells). Following the same logic, one may put a question about programmed death of an organism as a mechanism of purification of a kin, community of organisms, or population from individuals who became unwanted for this kin, etc. A putative mechanism of such kind is proposed to be coined "phenoptosis" by analogy with apoptosis and mitoptosis. In a unicellular organism (the bacterium Escherichia coli), three different biochemical mechanisms of programmed death are identified. All of them are actuated by the appearance of phages inside the bacterial cell. This may be regarded as a precedent of phenoptosis which prevents expansion of the phage infection among E. coli cells. Purification of a population from infected individuals looks like an evolutionary invention useful for a species. Such an invention has high chances to be also employed by multicellular organisms. Most probably, septic shock in animals and humans serves as an analog of the phage-induced bacterial phenoptosis. It is hypothesized that the stress-induced ischemic diseases of brain and heart as well as carcinogenesis if they are induced by repeated stresses also represent phenoptoses that, in contrast to sepsis, are age-dependent. There are interrelations of programmed death phenomena at various levels of complexity of the living systems. Thus, extensive mitoptosis in a cell leads to apoptotic death of this cell and extensive apoptosis in an organ of vital importance results in phenoptotic death of an individual. In line with this logic, some cases are already described when inhibition of apoptosis strongly improves the postischemic state of the organism.  相似文献   

6.
7.
Homeostasis implies a balance between cell growth and cell death. This balance is essential for the development and maintenance of multicellular organisms. Homeostasis is controlled by several mechanisms including apoptosis, a process by which cells condemned to death are completely eliminated. However, in some cases, total destruction and removal of dead cells is not desirable, as when they fulfil a specific function such as formation of the skin barrier provided by corneocytes, also known as terminally differentiated keratinocytes. In this case, programmed cell death results in accumulation of functional cell corpses. Previously, this process has been associated with apoptotic cell death. In this overview, we discuss differences and similarities in the molecular regulation of epidermal programmed cell death and apoptosis. We conclude that despite earlier confusion, apoptosis and cornification occur through distinct molecular pathways, and that possibly antiapoptotic mechanisms are implicated in the terminal differentiation of keratinocytes.  相似文献   

8.
Genetic analysis of the mammalian cell death machinery   总被引:10,自引:0,他引:10  
Programmed cell death is used by multicellular organisms to eliminate excess, damaged or harmful cells. This process of cell suicide, defined in morphological terms as apoptosis, is crucial for developmental morphogenesis, tissue homeostasis and defense against pathogens. Over the past decade, our understanding of the genetic basis of the cell death machinery has grown exponentially using genetically modified organisms. In particular, inactivation of genes involved in cell death using homologous recombination in mice has provided an invaluable tool to understand the mechanisms, as well as the structural and functional consequences, of programmed cell death in mammals. This review discusses recent insights into the cellular death program as revealed by these mutant animals.  相似文献   

9.
One of the hallmarks of multicellularity is that the individual cellular fate is sacrificed for the benefit of a higher order of life-the organism. The accidental death of cells in a multicellular organism results in swelling and membrane-rupture and inevitably spills cell contents into the surrounding tissue with deleterious effects for the organism. To avoid this form of necrotic death the cells of metazoans have developed complex self-destruction mechanisms, collectively called programmed cell death, which see to an orderly removal of superfluous cells. Since evolution never invents new genes but plays variations on old themes by DNA mutations, it is not surprising, that some of the genes involved in metazoan death pathways apparently have evolved from homologues in unicellular organisms, where they originally had different functions. Interestingly some unicellular protozoans have developed a primitive form of non-necrotic cell death themselves, which could mean that the idea of an altruistic death for the benefit of genetically identical cells predated the invention of multicellularity. The cell death pathways of protozoans, however, show no homology to those in metazoans, where several death pathways seem to have evolved in parallel. Mitochondria stands at the beginning of several death pathways and also determines, whether a cell has sufficient energy to complete a death program. However, the endosymbiotic bacterial ancestors of mitochondria are unlikely to have contributed to the recent mitochondrial death machinery and therefore, these components may derive from mutated eukaryotic precursors and might have invaded the respective mitochondrial compartments. Although there is no direct evidence, it seems that the prokaryotic-eukaryotic symbiosis created the space necessary for sophisticated death mechanisms on command, which in their distinct forms are major factors for the evolution of multicellular organisms.  相似文献   

10.
Multiple cell death mechanisms operate in both uni- and multicellular organisms. Hence, research during the past forty years has revealed that apoptosis is not the only cell death program involved in the regulation of tissue homeostasis and the removal of unwanted cells in biological organisms. While the molecular pathways of apoptosis and necrosis are now relatively well established, the precise mechanisms of other cell death modalities, and their cross-talk, require additional study. This is particularly important, since many human disorders can be attributed, directly or indirectly, to defective cell death mechanisms. In this review we shall discuss the characteristics and cross-talk between various modes of cell death and their role in cell death-related disorders, notably, neurodegenerative disease and cancer.  相似文献   

11.
12.
All organisms end with their death, and many parts of cells die through intrinsic suicide machineries in response to diverse stimuli. These intrinsic cell death pathways are often termed as programmed cell deaths (PCDs), and are critical for organism development, tissue homeostasis and various diseases. Recent evidence has revealed that most of PCDs involve a tumor suppressor p53 and components of the intra-mitochondria. Furthermore, the movement and positioning of p53 in cells affect the induction of each PCD pathway. Here we provide a comprehensive review on p53-related PCD mechanisms via the mitochondria, namely classical apoptosis, non-classical apoptosis, autophagic cell death, ferroptosis, necroptosis. In addition, we discuss the roles of p53 in each PCD pathway by focusing its altered intracellular localization in response to diverse cellular stresses.  相似文献   

13.
Apoptosis: Programmed cell death in health and disease   总被引:3,自引:0,他引:3  
Apoptosis is a normal physiological cell death process of eliminating unwanted cells from living organisms during embryonic and adult development. Apoptotic cells are characterised by fragmentation of nuclear DNA and formation of apoptotic bodies. Genetic analysis revealed the involvement of many death and survival genes in apoptosis which are regulated by extracellular factors. There are multiple inducers and inhibitors of apoptosis which interact with target cell specific surface receptors and transduce the signal by second messengers to programme cell death. The regulation of apoptosis is elusive, but defective regulation leads to aetiology of various ailments. Understanding the molecular mechanism of apoptosis including death genes, death signals, surface receptors and signal pathways will provide new insights in developing strategies to regulate the cell survival/death. The current knowledge on the molecular events of apoptotic cell death and their significance in health and disease is reviewed.  相似文献   

14.
Multicellular organisms eliminate unwanted or damaged cells by cell death, a process essential to the maintenance of tissue homeostasis. Cell death is a tightly regulated event, whose alteration by excess or defect is involved in the pathogenesis of many diseases such as cancer, autoimmune syndromes, and neurodegenerative processes. Studies in model organisms, especially in the nematode Caenorhabditis elegans, have been crucial in identifying the key molecules implicated in the regulation and execution of programmed cell death. In contrast, the study of cell death in Drosophila melanogaster, often an excellent model organism, has identified regulators and mechanisms not obviously conserved in other metazoans. Recent molecular and cellular analyses suggest, however, that the mechanisms of action of the main programmed cell death regulators in Drosophila include a canonical mitochondrial pathway.  相似文献   

15.
贺新强  吴鸿 《植物学报》2013,48(4):357-370
细胞程序死亡是多细胞生物体在内源发育信号或外源环境信号作用下在特定时间和空间发生的细胞死亡过程, 在植物的生长发育过程中起着重要作用。该文介绍了植物细胞程序死亡类型的几种划分方法、植物发育性细胞程序死亡研究常用的实验体系, 并着重概述有关植物发育性细胞程序死亡发生机制的研究进展。  相似文献   

16.
Cell death is an essential process in all living organisms and occurs through different mechanisms. The three main types of programmed cell death are apoptosis, pyroptosis, and necroptosis, and each of these pathways employs complex molecular and cellular mechanisms. Although there are mechanisms and outcomes specific to each pathway, they share common components and features. In this review, we discuss recent discoveries in these three best understood modes of cell death, highlighting their singularities, and examining the intriguing notion that common players shape different individual pathways in this highly interconnected and coordinated cell death system. Understanding the similarities and differences of these cell death processes is crucial to enable targeted strategies to manipulate these pathways for therapeutic benefit.  相似文献   

17.
Programmed cell death is the most common fate of female germ cells in Drosophila and many animals. In Drosophila, oocytes form in individual egg chambers that are supported by germline nurse cells and surrounded by somatic follicle cells. As oogenesis proceeds, 15 nurse cells die for every oocyte that is produced. In addition to this developmentally regulated cell death, groups of germ cells or entire egg chambers may be induced to undergo apoptosis in response to starvation or other insults. Recent findings suggest that these different types of cell death involve distinct genetic pathways. This review focuses on progress towards elucidating the molecular mechanisms acting during programmed cell death in Drosophila oogenesis.  相似文献   

18.
Cells suffer necrotic death when exposed to extreme environmental conditions, adverse and excessive stimuli, or when deleterious mutations are encoded in their genetic material. Unlike apoptosis, which involves a highly regulated and elaborate network of biochemical events and cascades, necrosis has been considered generally to be a chaotic decadence process that effects the inexorable demise of cells otherwise not destined to die. This grim prospect is now slowly being overturned, mostly by exciting new findings in two simple model organisms, Caenorhabditis elegans and Drosophila melanogaster. Despite the wide spectrum of necrosis-initiating conditions, evidence is accumulating that execution of necrotic or neurodegenerative cell death may be carried out by a finite common set of mechanisms.  相似文献   

19.
Mitochondria: regulating the inevitable   总被引:7,自引:0,他引:7  
Parone PA  James D  Martinou JC 《Biochimie》2002,84(2-3):105-111
Apoptosis is a form of programmed cell death important in the development and tissue homeostasis of multicellular organisms. Abnormalities in cell death control can lead to a variety of diseases, including cancer and degenerative disorders. Hence, the process of apoptosis is tightly regulated through multiple independent signalling pathways that are initiated either from triggering events within the cell or at the cell surface. In recent years, mitochondria have emerged as the central components of such apoptotic signalling pathways and are now known to control apoptosis through the release of apoptogenic proteins. In this review we aim to give an overview of the role of the mitochondria during apoptosis and the molecular mechanisms involved.  相似文献   

20.
Programmed cell death, or apoptosis, is a genetically controlled process of cell suicide that is a common fate during an animal's life. In metazoans, apoptotic cells are rapidly removed from the body through the process of phagocytosis. Genetic analyses probing the mechanisms controlling the engulfment of apoptotic cells were pioneered in the nematode Caenorhabditis elegans. So far, at least seven genes have been identified that are required for the recognition and engulfment of apoptotic cells and have been shown to function in two partially redundant signaling pathways. Molecular characterization of their gene products has lead to the finding that similar genes act to control the same processes in other organisms, including mammals. In this paper, we review these exciting findings in C. elegans and discuss their implications in understanding the clearance of apoptotic cells in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号