共查询到20条相似文献,搜索用时 0 毫秒
1.
A high-affinity Mg2+-independent Ca2+-ATPase (Ca2+-ATPase) has been differentiated from the Mg2+-dependent, Ca2+-stimulated ATPase (Ca2+,Mg2+-ATPase) in rat brain synaptosomal membranes. Using ATP as a substrate, the K0.5 of Ca2+ for Ca2+-ATPase was found to be 1.33 microM with a Km for ATP of 19 microM and a Vmax of 33 nmol/mg/min. Using Ca-ATP as a substrate, the Km for Ca-ATP was found to be 0.22 microM. Unlike Ca2+,Mg2+-ATPase, Ca2+-ATPase was not inhibited by N-ethylmaleimide, trifluoperazine, lanthanum, zinc, or vanadate. La3+ and Zn2+, in contrast, stimulated the enzyme activity. Unlike Ca2+, Mg2+-ATPase activity, ATP-dependent Ca2+ uptake was negligible in the absence of added Mg2+, indicating that the Ca2+ transport into synaptosomal endoplasmic reticulum may not be a function of the Ca2+-ATPase described. Ca2+-ATPase activity was not stimulated by the monovalent cations Na+ or K+. Ca2+, Mg2+-ATPase demonstrated a substrate preference for ATP and ADP, but not GTP, whereas Ca2+-ATPase hydrolyzed ATP and GTP, and to a lesser extent ADP. The results presented here suggest the high-affinity Mg2+-independent Ca2+-ATPase may be a separate form from Ca2+,Mg2+-ATPase. The capacity of Mg2+-independent Ca2+-ATPase to hydrolyze GTP suggests this protein may be involved in GTP-dependent activities within the cell. 相似文献
2.
Many biochemical effects of local anesthetics are expressed in Ca2+-dependent processes [Volpi M., Sha'afi R.I., Epstein P.M., Andrenyak P.M., and Feinstein M.B. (1981) Proc. Natl. Acad. Sci. USA 78, 795-799]. In this communication we report that local anesthetics (dibucaine, tetracaine, lidocaine, and procaine and the analogue quinacrine) inhibit the Ca2+-dependent and the Mg2+-dependent ATPase activity of rat brain synaptosomes and of membrane vesicles derived from them by osmotic shock. This inhibition is induced by concentrations of these drugs close to their pharmacological doses, and a good correlation between K0.5 of inhibition and their relative anesthetic potency is found. The Ca2+-dependent ATPase is more selectively inhibited at lower drug concentrations. The physiological relevance of these findings is discussed briefly. 相似文献
3.
Abstract: Calmodulin was isolated as an electrophoretically homogeneous protein from bovine posterior pituitary glands. The yield indicated that this gland is a particularly rich source. Purified bovine posterior pituitary calmodulin and bovine brain calmodulin had identical electrophoretic mobilities on 10% and 12% polyacrylamide gels. The protein was further identified by molecular weight determination and by amino acid analysis which showed that it contained trimethyllysine, one residue per molecule. Bovine posterior pituitary calmodulin was found to activate a preparation of calmodulin-deficient phosphodiesterase from bovine heart. In addition, pituitary calmodulin stimulated Ca2+ + Mg2+ -ATPase activity associated with a purified nerve ending plasma membrane fraction. This dependence could only be demonstrated after successive washing of the membranes with EGTA buffers, a procedure designed to remove endogenous calmodulin. 相似文献
4.
Mg2+ - or Ca2+ -Activated ATPase in Squid Giant Fiber Axoplasm 总被引:1,自引:0,他引:1
A divalent cation-activated ATPase in axoplasm from the squid giant axon is described. The enzyme requires Mg2+ or Ca2+, has a K+ optimum of 60 mM, and has a pH optimum of 7.5. Several nucleotide triphosphates other than ATP can serve as substrates. The enzyme is inhibited by excess ATP or Mg2+. The enzyme is enriched in a rapidly sedimenting fraction of the axoplasm, and is eluted in the exclusion volume of a Sepharose 4B column, suggesting that it is associated with a highly aggregated structure. Comparison of the properties of enzyme with those of myosin and Na+-K+-ATPase suggests that differs from both of these enzymes. The enzyme has many similarities to vertebrate nerve ATPases previously described. The demonstration of the presence of this ATPase in squid axoplasm proves the neuronal localization of the enzyme. 相似文献
5.
Bert P. Stok Otto Gy. Tànczos Monika Kähr C. E. E. Stuiver ers Kylin Pieter J. C. Kuiper 《Physiologia plantarum》1981,52(1):115-123
Mg2+ - and Ca2+ -uptake was measured in dark-grown oat seedlings ( Avena sativa L. cv. Brighton) cultivated at two levels of mineral nutrition. In addition the stimulation of the ATPase activity of the microsomal fraction of the roots by Mg2+ was measured. Ca2+ -uptake by the roots was mainly passive. Mg2+ -uptake mainly active; the passive component of Mg2+ -uptake was accompanied by Ca2+ -efflux up to 60% of the Ca2+ present in the roots.
In general Mg2+ -uptake of oat roots was biphasic. The affinity of the second phase correspond well with that of the Mg2+ -stimulation of the ATPase activity, in low-salt roots as well as in high-salt roots and in roots of plants switched to the other nutritional condition. Linear relationships were observed when [phase 2] Mg2+ -uptake was plotted against Mg2+ -stimulation of the ATPase activity of the microsomal fraction of the roots. In 5 days old high-salt plants 1 ATP (hydrolysed in the presence of Mg2+ J corresponded with active uptake of a single Mg2+ ion, but in older high-salt roots and in low-salt roots more ATP was hydrolysed per net uptake of a Mg2+ ion. The results are discussed against the background of regulation of the Mg2+ -level of the cytoplasm of root cells by transport of Mg2+ by a Mg2+ -ATPase to the vacuole, to the xylem vessels, and possibly outwards. 相似文献
In general Mg
6.
Joseph D. Robinson 《Journal of neurochemistry》1981,37(1):140-146
Abstract: With a partially purified, membrane-bound (Ca + Mg)-activated ATPase preparation from rat brain, the K0.5 for activation by Ca2+ was 0.8 p μm in the presence of 3 mm -ATP, 6 mm -MgCl2, 100 mM-KCI, and a calcium EGTA buffer system. Optimal ATPase activity under these circumstances was with 6-100 μm -Ca2+, but marked inhibition occurred at higher concentrations. Free Mg2+ increased ATPase activity, with an estimated K0.5, in the presence of 100 μm -CaCl2, of 2.5 mm ; raising the MgCl2 concentration diminished the inhibition due to millimolar concentrations of CaCl2, but antagonized activation by submicromolar concentrations of Ca2+. Dimethylsulfoxide (10%, v/v) had no effect on the K0.5 for activation by Ca2+, but decreased activation by free Mg2+ and increased the inhibition by millimolar CaCl2. The monovalent cations K+, Na+, and TI+ stimulated ATPase activity; for K+ the K0.5 was 8 mm , which was increased to 15 mm in the presence of dimethylsulfoxide. KCI did not affect the apparent affinity for Ca2+ as either activator or inhibitor. The preparation can be phosphorylated at 0°C by [γ-32P]-ATP; on subsequent addition of a large excess of unlabeled ATP the calcium dependent level of phosphorylation declined, with a first-order rate constant of 0.12 s?1. Adding 10 mm -KCI with the unlabeled ATP increased the rate constant to 0.20 s?1, whereas adding 10 mm -NaCl did not affect it measurably. On the other hand, adding dimethyl-sulfoxide slowed the rate of loss, the constant decreasing to 0.06 s?1. Orthovanadate was a potent inhibitor of this enzyme, and inhibition with 1 μm -vanadate was increased by both KCI and dimethylsulfoxide. Properties of the enzyme are thus reminiscent of the plasma membrane (Na + K)-ATPase and the sarcoplasmic reticulum (Ca + Mg)-ATPase, most notably in the K+ stimulation of both dephosphorylation and inhibition by vanadate. 相似文献
7.
Plant cells frequently and rapidly have to respond to environmental changes for survival. Regulation of transport and other energy-requiring processes in the plasmalemma of root cells is therefore one important aspect of the ecological adaptation of plants. Wheat (Triticum aestivum L. cv. Drabant) was grown hydroponically, with or without 50 nM benzyladenine in the medium, and plasma membranes from root cells of 8-day-old plants were prepared by aqueous polymer two-phase partitioning. The influence of Ca2+ and Mg2+ on the plasmalemma ATPase activities was investigated. The presence of benzyladenine during growth increased the ATPase activity, that dependent upon Ca2+ more than that elicited by Mg2+. As a general characteristic, ATP was the preferred substrate, but all nucleotide tri- and diphosphates could be accepted with activities in plasma membranes from control plants of 7-36% (Mg2+) and 40-86% (Ca2+) and in plasma membranes from benzyladenine-treated plants of 12-47% (Mg2+) and 53-102% (Ca2+) as compared with activities obtained with ATP. Nucleotidemonophosphates were not hydrolyzed by the preparations. In preparations from benzyladenine-treated plants one peak of Ca2+-ATPase at pH 5.2–5.6, with a tail from pH 6 and upwards, and one peak of Mg2+-ATPase at pH 6.0–6.5 were observed in the presence of EDTA in the assay media. In preparations from control plants, the addition of EDTA to the assays resulted in a wide optimum between pH 6 and 7 for Mg2+-ATPase and low Ca2+-ATPase activity with no influence of pH in the range 4.5 to 8. Analysis of the pH dependence in the presence of both Ca2+ and Mg2+ indicates that the control plants mainly contain Mg2+-ATPase corresponding to the proton pump. Preparations from benzyladenine-treated wheat roots show, in addition, activation by Ca2+, which, in the slightly alkaline pH range may correspond to a Ca2+-extruding (Ca2++ Mg2+)-ATPase. In the acidic range, the responses are more complicated: the Mg2+-ATPase is inhibited by vanadate, while the Ca2+-ATPase is insensitive, and benzyladenine added during growth influences the interaction between Ca2+ and Mg2+ in a way that parallels the effect of high salt medium. 相似文献
8.
It has been previously shown that local anesthetics inhibit the total Ca2+, Mg2(+)-ATPase activity of synaptosomal plasma membranes. We have carried out kinetic studies to quantify the effects of these drugs on the different Ca2(+)-dependent and Mg2(+)-dependent ATPase activities of these membranes. As a result we have found that this inhibition is not altered by washing the membranes with EDTA or EGTA. We have also found that the Ca2(+)-dependent ATPase activity is not significantly inhibited in the concentration range of these local anesthetics and under the experimental conditions used in this study. The inhibition of the Mg2(+)-dependent ATPase activities of these membranes was found to be of a noncompetitive type with respect to the substrate ATP-Mg2+, did not significantly shift the Ca2+ dependence of the Ca2+, Mg2(+)-ATPase activity, and occurred in a concentration range of local anesthetics that does not significantly alter the order parameter (fluidity) of these membranes. Modulation of this activity by the changes of the membrane potential that are associated with the adsorption of local anesthetics on the synaptosomal plasma membrane is unlikely, on the basis of the weak effect of membrane potential changes on the Ca2+,Mg2(+)-ATPase activity. It is suggested that the local anesthetics lidocaine and dibucaine inhibit the Ca2+, Mg2(+)-ATPase of the synaptosomal plasma membrane by disruption of the lipid annulus. 相似文献
9.
Ischemia-Induced Inhibition of Calcium Uptake into Rat Brain Microsomes Mediated by Mg2+ /Ca2+ ATPase
Abstract: It is well established that ischemia is associated with prolonged increases in neuronal intracellular free calcium levels. Recent data suggest that regulation of calcium uptake and release from the endoplasmic reticulum is important in maintaining calcium homeostasis. The endoplasmic reticulum Mg2+ /Ca2+ ATPase is the major mechanism for sequestering calcium in this organelle. Inhibition of this enzyme may play a causal role in the loss of calcium homeostasis. In order to investigate the effect of ischemia on calcium sequestration into the endoplasmic reticulum, microsomes were isolated from control and ischemic whole brain homogenates by differential centrifugation. Calcium uptake was measured by radioactive calcium (45 Ca2+ ) accumulation in the microsomes mediated by Mg2+ /Ca2+ ATPase. Ischemia caused a statistically significant inhibition of presteady-state and steady-state calcium uptake. Duration of ischemia was directly proportional to the degree of inhibition. Decreased calcium uptake was shown not to be the result of increased calcium release from ischemic compared with control microsomes nor the result of selective isolation of ischemic microsomes from the homogenate with a decreased capacity for calcium uptake. The data demonstrate that ischemia inhibits the ability of brain microsomes to sequester calcium and suggest that loss of calcium homeostasis is due, in part, to ischemia-induced inhibition of endoplasmic reticulum Mg2+ /Ca2+ ATPase. 相似文献
10.
Superfusion of striatal slices with a medium deficient in Ca2+ and Mg2+ caused a large and sustained increase in release of lactate dehydrogenase, a finding indicative of the disruption of plasma membranes. This was associated with an efflux of dopamine (DA) and the depletion of DA from the tissue. In addition, whereas DA efflux was stimulated by either D-amphetamine (10 microM) or L-glutamate (10 mM) in the absence of Ca2+, these effects were greatly reduced when Mg2+ also was withdrawn from the buffer. These results suggest that (a) incubation in a Ca2+/Mg2(+)-free buffer disrupts plasma membranes, (b) this disruption affects dopaminergic neurons as well as those of other striatal elements, and (c) the failure of a treatment to stimulate DA release in a Ca2+/Mg2(+)-free buffer cannot be used as a test of Ca2+ dependence. 相似文献
11.
Adenosine triphosphatase (ATPase) activity stimulated by Ca2+ or Mg2+ was characterized in spinal nerve and spinal sensory ganglion of bullfrog. Enzyme activity of homogenates from both sources reached a maximum at a 1-2 mM concentration of either cation, although the level of maximal activity in nerve trunks was approximately twice that in ganglia. Enzyme activation was not observed with 2 mM-Sr2+ or Ba2+. Co2+ or Mn2+, at 2 mM, depressed Ca2+ activation of the enzyme by 50-60% in nerve but had no inhibitory effect on ganglia activity. In intact spinal ganglion/spinal nerve preparations, incubated for 20 h in medium containing 0.2 mM-Co2+, no effect was detected on Ca2+/Mg2+ ATPase activity in ganglia or nerve trunks whereas fast axonal transport was inhibited by 80%. Incubation in medium containing 0.02 mM-Hg2+ depressed enzyme activity in ganglia by 64% and in nerve trunks by 44%, whereas fast transport was again inhibited by 80%. When only nerve trunks were exposed to these ions, Hg2+ but not Co2+ was observed to slow the rate of fast axonal transport. The divalent cation specificity of the Ca2+/Mg2+ ATPase activity is distinct from the ion specificities, determined in previous work, of the Ca2+ requirement during initiation of fast axonal transport in the soma, and of the Ca2+ requirement during translocation in the axon. Thus, previous observations of Ca2+-dependent events in fast axonal transport cannot be taken per se to suggest the involvement of Ca2+/Mg+ ATPase in the transport process. 相似文献
12.
Kari R. Hoyt Sunita Rajdev Cheryl L. Fattman Ian J. Reynolds 《Journal of neurochemistry》1995,64(5):2049-2056
Abstract: We investigated the modulation of (±)-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-induced increases in intracellular free Ca2+ ([Ca2+ ]i ) and intracellular free Mg2+ ([Mg2+ ]i ) by cyclothiazide and GYKI 52466 using microspectrofluorimetry in single cultured rat brain neurons. AMPA-induced changes in [Ca2+ ]i were increased by 0.3–100 µ M cyclothiazide, with an EC50 value of 2.40 µ M and a maximum potentiation of 428% of control values. [Ca2+ ]i responses to glutamate in the presence of N -methyl- d -aspartate (NMDA) receptor antagonists were also potentiated by 10 µ M cyclothiazide. The response to NMDA was not affected, demonstrating specificity of cyclothiazide for non-NMDA receptors. Almost all neurons responded with an increase in [Ca2+ ]i to both kainate and AMPA in the absence of extracellular Na+ , and these Na+ -free responses were also potentiated by cyclothiazide. GYKI 52466 inhibited responses to AMPA with an IC50 value of 12.0 µ M . Ten micromolar cyclothiazide significantly decreased the potency of GYKI 52466. However, the magnitude of this decrease in potency was not consistent with a competitive interaction between the two ligands. Cyclothiazide also potentiated AMPA- and glutamate-induced increases in [Mg2+ ]i . These results are consistent with the ability of cyclothiazide to decrease desensitization of non-NMDA glutamate receptors and may provide the basis for the increase in non-NMDA receptor-mediated excitotoxicity produced by cyclothiazide. 相似文献
13.
Arrhenius plots of the maximal velocities for the Ca2+ -and Mg2+ -dependent ATPase activities found in a plasma membrane-rich microsome fraction isolated from the roots of barley ( Hordeum vulgare L. cv. Conquest) were nonlinear. Arrhenius plot analyses using a relation which produced curvilinear Arrhenius plots accurately fit the data and allowed the calculation of the activation enthalpies and molar heat capacities of activation. The temperature dependence of the computed Km values for the Ca2+ - and Mg2+ -dependent ATPase activities was complex, with the highest enzyme-substrate affinities being obtained near the barley seedling growth temperature (16°C). Using electron paramagnetic resonance spectroscopy with amphiphilic cationic and anionic spin probes, it was possible to demonstrate that temperature changes and increasing Ca2+ concentrations could alter the mobility of the membrane lipid polar head groups. Inhibition of the ATPase activities by high levels of Ca2+ may result from a Ca2+-induced reduction in the lipid polar head group mobility. The possible role of lipid polar head group-protein interactions in the complex temperature dependence of the barley root ATPase kinetic constants is discussed. 相似文献
14.
Joao B. T. Rocha Herman Wolosker †Diogo O. Souza Leopoldo de Meis 《Journal of neurochemistry》1996,66(2):772-778
Abstract: Rat brain microsomes accumulate Ca2+ at the expense of ATP hydrolysis. The rate of transport is not modulated by the monovalent cations K+, Na+, or Li+. Both the Ca2+ uptake and the Ca2+-dependent ATPase activity of microsomes are inhibited by the sulfated polysaccharides heparin, fucosylated chondroitin sulfate, and dextran sulfate. Half-maximal inhibition is observed with sulfated polysaccharide concentrations ranging from 0.5 to 8.0 µg/ml. The inhibition is antagonized by KCl and NaCl but not by LiCl. As a result, Ca2+ transport by the native vesicles, which in the absence of polysaccharides is not modulated by monovalent cations, becomes highly sensitive to these ions. Trifluoperazine has a dual effect on the Ca2+ pump of brain microsomes. At low concentrations (20–80 µM) it stimulates the rate of Ca2+ influx, and at concentrations >100 µM it inhibits both the Ca2+ uptake and the ATPase activity. The activation observed at low trifluoperazine concentrations is specific for the brain Ca2+-ATPase; for the Ca2+-ATPases found in blood platelets and in the sarcoplasmic reticulum of skeletal muscle, trifluoperazine causes only a concentration-dependent inhibition of Ca2+ uptake. Passive Ca2+ efflux from brain microsomes preloaded with Ca2+ is increased by trifluoperazine (50–150 µM), and this effect is potentiated by heparin (10 µg/ml), even in the presence of KCl. It is proposed that the Ca2+-ATPase isoform from brain microsomes is modulated differently by polysaccharides and trifluoperazine when compared with skeletal muscle and platelet isoforms. 相似文献
15.
A purification procedure is presented which differs in three respects from other procedures for the purification of plant plasma membrane H+ -pumping ATPase (EC 3.6.1.35) from various plants. Soybean ( Glycine max L. cv. Williams) hypocotyls were homogenized in the presence of physiological ionic strength and plasma membrane vesicles were purified by aqueous polymer two-phase partitioning. Plasma membrane vesicles were then solubilized in one step by using non-ionic detergent (either Triton X-100 or C12 E8 ). The Mg-ATPase was separated by ion exchange chromatography from other solubilized membrane proteins. ATPase molecules bound to phosphocellulose fibers were eluted by a 0–1 M gradient of NaCl. The NaCl-eluted fractions contained a Mg-ATPase which showed the characteristics of Mg-ATPase present in the plasma membranes. The specific activity of the partially purified enzyme was 2–5 μmol mg−1 min−1 when it was reconstituted into proteoliposomes. This value is in good agreement with data obtained by other purification methods in the literature. 相似文献
16.
Yutaka Nagata Masato Ando Mitsuyoshi Iwata Atsushi Hara Tamotsu Taketomi 《Journal of neurochemistry》1987,49(1):201-207
The effects of some gangliosides on active uptake of nonmetabolizable alpha-aminoisobutyric acid (AIB) and Na+, K+-ATPase and Ca2+, Mg2+-ATPase activities in superior cervical ganglia (SCG) and nodose ganglia (NG) excised from adult rats were examined during aerobic incubation at 37 degrees C for 2 h. In NG, amino acid uptake was greatly accelerated with the addition of galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylgluc osyl ceramide (GM1) (85%) and also with N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosyl ceramide (GM2) or [N-acetylneuraminyl]-galactosyl-N-acetylgalactosaminyl-[N-acetyl- neuraminyl]-galactosylglucosyl ceramide (GD1a) (43% each) compared with a nonaddition control at a 5 nM concentration. Under identical conditions, Na+, K+-ATPase activity was strongly stimulated with GM1 (180%) and GD1a (93%), whereas Ca2+, Mg2+-ATPase activity showed no change. In SCG, on the other hand, AIB uptake was apparently inhibited (-27%) by addition of GM1, with a slight decrease in Na+, K+-ATPase but no change in Ca2+, Mg2+-ATPase activity in the tissue. Both asialo-GM1, in which N-acetylneuraminic acid is deficient, and Forssman glycolipid, which is not present in nervous tissue, failed to produce any significant increase in both SCG and NG not only in amino acid uptake, but also in Na+, K+-ATPase activity. A kinetic study of active AIB uptake showed that GM1 ganglioside produced an increase in Km with no change in Vmax in SCG, whereas it caused a decrease in Km with a slight increase in Vmax in NG. Treatment of NG and SCG with neuraminidase from Vibrio cholerae, an enzyme that split off sialic acid from polysialoganglioside, leaving GM1 intact, caused little inhibition of the amino acid uptake.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
17.
E. García-Martín F. J. Martín-Romero C. Gutiérrez-Merino 《Journal of neurochemistry》1995,65(6):2757-2764
Abstract: Synaptosomes can be loaded with mag-fura-2 without significant perturbation of their ATP content by incubation for 10 min at 37°C with 10 µM mag-fura-2 acetoxymethyl ester in Hanks'-HEPES buffer (pH 7.45). The intrasynaptosomal free Mg2+ concentration ([Mg2+]i) was found to be dependent on external Mg2+ concentration, increasing from 0.8 to 1.25 mM when the concentration of Mg2+ in the incubation medium increased from 1 to 8 mM. Dissipation of the Na+ gradient across the plasma membrane of synaptosomes by treatment with the Na+ ionophore monensin (0.2 mM) or with veratridine (0.2 mM) and ouabain (0.6 mM) produced a moderate increase of [Mg2+]i, from 1.0 to 1.2–1.3 mM in an incubation medium containing 5 mM Mg2+. Plasma membrane depolarization by incubation of synaptosomes in a medium containing 68 mM KCl and 68 mM NaCl had no effect on [Mg2+]i. Reversal of the Na+ gradient by incubation of synaptosomes in a medium in which external Na+ was replaced by choline increased [Mg2+]i up to 1.6 and 2.2 mM for extrasynaptosomal Mg2+ concentrations of 1 and 8 mM, respectively. We conclude that a Na+/Mg2+ exchange operates in the plasma membrane of synaptosomes. In the presence of Mg2+ in the incubation medium, extrasynaptosomal ATP, but not ADP or adenosine, increased [Mg2+]i from 1.1 ± 0.1 up to 1.6 ± 0.1 mM. The nonhydrolyzable ATP analogue adenosine 5′-(βγ-imido)triphosphate antagonized the effect of ATP, but had no effect by itself on [Mg2+]i. It is concluded that Mg2+ transport across the plasma membrane of synaptosomes is modulated by the activity of an ecto-ATPase or an ecto-protein kinase. 相似文献
18.
19.
Effects of Ca2+ Channel Blockers on Ca2+ Translocation Across Synaptosomal Membranes 总被引:2,自引:0,他引:2
The binding of [3H]nimodipine to purified synaptic plasma membranes (SPM) isolated from sheep brain cortex was characterized, and the effects of nimodipine, nifedipine, and (+)-verapamil on the [3H]nimodipine binding were compared to the effects on 45Ca2+ translocation under conditions that separate 45Ca2+ fluxes through Ca2+ channels from 45Ca2+ uptake via Na+/Ca2+ exchange. [3H]Nimodipine labels a single class of sites in SPM, with a KD of 0.64 +/- 0.1 nM, a Bmax of 161 +/- 27 fmol X mg-1 protein, and a Hill slope of 1.07, at 25 degrees C. Competition of [3H]nimodipine binding to purified SPM with unlabelled Ca2+ channel blockers shows that: nifedipine and nimodipine are potent competitors, with IC50 values of 4.7 nM and 5.9 nM, respectively; verapamil and (-)-D 600 are partial competitors, with biphasic competition behavior. Thus, (+)-verapamil shows an IC50 of 708 nM for the higher affinity component and the maximal inhibition is 50% of the specific binding, whereas for (-)-verapamil the IC50 is 120 nM, and the maximal inhibition is 30%; (-)-D 600 is even less potent than verapamil in inhibiting [3H]nimodipine binding (IC50 = 430 nM). However, (+)-verapamil, nifedipine, and nimodipine are less potent in inhibiting depolarization-induced 45Ca2+ influx into synaptosomes in the absence of Na+/Ca2+ exchange than in competing for [3H]nimodipine binding. Thus, (+)-verapamil inhibits Ca2+ influx by 50% at about 500 microM, whereas it inhibits 50% of the binding at concentrations 200-fold lower, and the discrepancy is even larger for the dihydropyridines. The Na+/Ca2+ exchange and the ATP-dependent Ca2+ uptake by SPM vesicles are also inhibited by the Ca2+ channel blockers verapamil, nifedipine, and d-cis-diltiazem, with similar IC50 values and in the same concentration range (10(-5)-10(-3) M) at which they inhibit Ca2+ influx through Ca2+ channels. We conclude that high-affinity binding of the Ca2+ blockers by SPM is not correlated with inhibition of the Ca2+ fluxes through channels in synaptosomes under conditions of minimal Na+/Ca2+ exchange. Furthermore, the relatively high concentrations of blockers required to block the channels also inhibit Ca2+ translocation through the Ca2+-ATPase and the Na+/Ca2+ exchanger. In this study, clear differentiation is made of the effects of the Ca2+ channel blockers on these three mechanisms of moving Ca2+ across the synaptosomal membrane, and particular care is taken to separate the contribution of the Na+/Ca2+ exchange from that of the Ca2+ channels under conditions of K+ depolarization. 相似文献
20.
In order to identify physiological components that contribute to salinity tolerance, we compared the effects of Na+, Mg2+ and K+ salts (NaCl, Na2SO4, MgCl2, MgSO4, KCl and K2SO4), Ca2+ (CaSO4), mannitol and melibiose on the wild type and the single-gene NaCl-tolerant mutants stl1 and stl2 of Ceratopteris richardii. Compared with gametophytic growth of the wild type, stl2 showed a low level of tolerance that was restricted to Na+ salts and osmotic stress. stl2 exhibited high tolerance to both Na+ and Mg2+ salts, as well as to osmotic stress. In response to short-term exposure (3 d) to NaCl, accumulation of K+ and Na+ was similar in the wild type and stl1. In contrast, stl2 accumulated higher levels of K+ and lower levels of Na+. Ca2+ supplementation (1.0 mol m?3) ameliorated growth inhibition by Na+ and Mg2+ stress in wild type and stll, but not in stl2. In addition, under Na+ stress (175 mol m?3) wild-type, stll and stl2 gametopbytes maintained higher tissue levels of K+ and lower levels of Na+ when supplemented with Ca2+ (1.0 mol m?3). stl2 gametophytes were extremely sensitive to K+ supplementation. Growth of stl2 was greater than or equal to that of the wild type at trace concentrations of K+ but decreased substantially with increasing K+ concentration. Supplementation with K+ from 0 to 1.85 mol m?3 alleviated some of the inhibition by 75 mol m?3 NaCl in the wild type and in stl1. In stl2, growth at 75 mol m?3 NaCl was similar at 0 and 1.85 mol m?3 K+ supplementation. Although K+ supplementation above 1.85 mol m?3 did not alleviate inhibition of growth by Na+ in any genotype, stl2 maintained greater relative tolerance to NaCl at all K+ concentrations tested. 相似文献