首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The development of methods for the formation of hybrid cells and heterokaryons by virus-induced fusion of chemically-enucleated cells and nucleated cells has been described. Heterokaryons and hybrid cells formed by fusion of anucleate mouse peritoneal macrophages (MPM) and nucleated mouse L and human HEp-2 cells were identified by mixed haemadsorption, by their sensitivity to trypsin and by their capacity to ingest antibody-coated sheep red blood cells. The expression of macrophage markers in these cells declined rapidly after fusion. Hybrid cell and heterokaryon formation was identified in mixed cultures of anucleate L cells and nucleated MPM, and was accompanied by the reactivation of DNA synthesis in the macrophage nuclei. Other hybrids and heterokaryons were formed by virus-induced fusion of anucleate MPM and nucleated chick embryo erythrocytes and anucleate L cells and nucleated HEp-2 cells. The value of anucleate-nucleate cell hybrids in the study of metabolic and genetic regulation in mammalian cells is discussed.  相似文献   

2.
A method for the isolation of reactivated chick erythrocyte nuclei from heterokaryons was developed. The heterokaryons were produced by fusing chick erythrocytes with HeLa or L cells in the presence of inactivated Sendai virus. At various time intervals after fusion nuclei were isolated directly from the monolayer by treatment with an acidic detergent solution. Chick erythrocyte nuclei were then separated from other nuclei (HeLa or L cell) by centrifugation on sucrose gradients. The purified preparation of reactivated chick erythrocyte nuclei was shown to be free from other nuclei and cytoplasmic contamination. By using L cells which had been labelled with 3H-leucine before fusion or heterokaryons labelled after fusion it was demonstrated that labelled mouse proteins migrate from the cytoplasm of the heterokaryons into the reactivating chick erythrocyte nuclei. 3H-uridine labelling of heterokaryons made by fusing UV-irradiated chick erythrocytes with L cells failed to reveal any significant migration of mouse RNA into the chick erythrocyte nuclei.  相似文献   

3.
Pattern of chick gene activation in chick erythrocyte heterokaryons   总被引:1,自引:1,他引:0       下载免费PDF全文
The reactivation of chicken erythrocyte nuclei in chick-mammalian heterokaryons resulted in the activation of chick globin gene expression. However, the level of chick globin synthesis was dependent on the mammalian parental cell type. The level of globin synthesis was high in chick erythrocyte-rat L6 myoblast heterokaryons but was 10-fold lower in chick erythrocyte-mouse A9 cell heterokaryons. Heterokaryons between chick erythrocytes and a hybrid cell line between L6 and A9 expressed chick globin at a level similar to that of A9 heterokaryons. Erythrocyte nuclei reactivated in murine NA neuroblastoma, 3T3, BHK and NRK cells, or in chicken fibroblasts expressed less than 5% chick globin compared with the chick erythrocyte-L6 myoblast heterokaryons. The amount of globin expressed in heterokaryons correlated with globin mRNA levels. Hemin increased beta globin synthesis two- to threefold in chick erythrocyte-NA neuroblastoma heterokaryons; however, total globin synthesis was still less than 10% that of L6 heterokaryons. Distinct from the variability in globin expression, chick erythrocyte heterokaryons synthesized chick constitutive polypeptides in similar amounts independent of the mammalian parental cell type. Approximately 40 constitutive chick polypeptides were detected in heterokaryons after immunopurification and two-dimensional gel electrophoresis. The pattern of synthesis of these polypeptides was similar in heterokaryons formed by fusing chicken erythrocytes with rat L6 myoblasts, hamster BHK cells, or mouse neuroblastoma cells. Three polypeptides synthesized by non-erythroid chicken cells but less so by embryonic erythrocytes were conspicuous in heterokaryons. Two abundant erythrocyte polypeptides were insignificant in non-erythroid chicken cells and in heterokaryons.  相似文献   

4.
Extinction of muscle-specific properties in somatic cell heterokaryons   总被引:4,自引:0,他引:4  
In studies of gene regulation using somatic cell fusion techniques, the analysis of heterokaryons circumvents several problematic aspects of the more traditional approach utilizing proliferating hybrid cells. We have analyzed the expression of muscle specific properties in heterokaryons between muscle and nonmuscle cells in order to investigate whether differentiating cells contain regulatory factors that repress the expression of alternative developmental pathways. Heterokaryons and cybrids were derived from polyethylene glycol-mediated fusion of differentiated mononucleate chicken myocytes with mouse melanoma cells, mouse melanoma cytoplasts, chicken fibroblasts, or other chicken myocytes. Our results demonstrate that fusion of a myocyte with a nonmyogenic cell generally results in extinction of muscle-specific properties in the immediate fusion product. Myocyte X melanoma heterokaryons ceased to express the skeletal muscle forms of myosin, desmin and creatine kinase, reinitiated DNA synthesis, and showed a loss of spontaneous fusion competence within 96 hr after their formation. Although chicken myocyte X mouse melanoma heterokaryons showed extinction of muscle specific properties, they continued to synthesize protein and to incorporate [3H]hypoxanthine, presumably due to the continued production of constitutive chicken HPRT. That presence of the melanoma nucleus was required for extinction to be observed was demonstrated by the continued expression of muscle proteins in cybrids between chicken myocytes and melanoma cytoplasts. Significantly, heterokaryons between chicken myocytes and chicken fibroblasts also exhibited extinction of muscle proteins, demonstrating for the first time that extinction is not restricted to fusions in which at least one parental cell type was derived from an established cell line. Our results strongly support the notion that extinction reflects cell-type specific gene regulatory mechanisms operative during development.  相似文献   

5.
Chick-mouse heterokaryons were obtained by UV-Sendai virus-induced fusion of chick erythrocytes with thymidine (dT) kinase-deficient mouse fibroblast [LM(TK-)] cells. Autoradiographic studies demonstrated that 1 day after fusion, [3H]dT was incorporated into both red blood cell and LM(TK-) nuclei of 23% of the heterokaryons. Self-fused LM(TK-) cells failed to incorporate [3H]dT into nuclear DNA. 15 clonal lines of chick-mouse somatic cell hybrids [LM(TK-)/CRB] were isolated from the heterokaryons by cultivating them in selective hypoxanthine-aminopterin-thymidine-glycine medium. LM(TK-) and chick erythrocytes exhibited little, if any, cytosol dT kinase activity. In contrast, all 15 LM(TK-)/CRB lines contained levels of cytosol dT kinase activity comparable to that found in chick embryo cells. Disk polyacrylamide gel electrophoresis and isoelectric focusing analyses demonstrated that the LM(TK-)/CRB cells contained chick cytosol, but not mouse cytosol dT kinase. The LM(TK-)/CRB cells also contained mouse mitochondrial, but not chick mitochondrial dT kinase. Hence, the clonal lines were somatic cell hybrids and not LM(TK-) cell revertants. The experiments demonstrate that chick erythrocyte cytosol dT kinase can be activated in heterokaryons and in hybrid cells, most likely as a result of functions supplied by mouse fibroblast cells.  相似文献   

6.
Resident peritoneal mouse macrophages (non-dividing differentiated cells) were fused with mouse embryo fibroblasts (cells with a limited lifespan), NIH 3T3 and C3H 10T 1/2 cells ('immortal' cell lines) and SV 3T3 cells (a malignant cell line). DNA synthesis was investigated in the resultant heterokaryons. No inhibitory effect upon the transition of NIH 3T3 and mouse embryo fibroblasts nuclei to the S-phase was observed. C3H 10T 1/2, NIH 3T3 and SV 3T3 cells induced the reactivation of DNA synthesis in the macrophage nuclei in the heterokaryons. At the same time, no replication was detected in the macrophage nuclei after fusion with mouse embryo fibroblasts.  相似文献   

7.
Immunofluorescent analysis of markers specific for parental genomes was used to study heterokaryons and hybrid cells soon after the fusion of diploid embryonic stem (ES) cells marked with green fluorescent protein and diploid fibroblasts labeled by blue fluorescent beads. Heterokaryons were identified by an analysis of parental mitochondrial DNAs. Within 20 h after fusion, most heterokaryons (up to 80%) had a fibroblast-like phenotype, being positive for typical fibroblast markers (collagen type I, fibronectin, lamin A/C) and for the modification me3H3K27 chromatin marking the inactive X chromosome but being negative for Oct4 and Nanog. Approximately 20% of heterokaryons had an alternative ES-like phenotype being positive for Oct4 and Nanog, with signs of reactivation of the previously inactive X-chromosome but negative for fibroblast markers. Hybrid cells having alternative phenotypes were easily identified from 24-48 h. The level of DNA methylation at the promoter of the fibroblast Oct4 allele in the ES-like hybrid cells at day 4 was similar to that of ES cells but at the same time, both parental Oct4 alleles were heavily methylated in fibroblast-like hybrid cells. Thus, bidirectional reprogramming initiated at the heterokaryon stage seems to lead to the formation of two types of hybrid cells with alternative dominance of the parental genomes. However, the further fates of two types of hybrid cells are different: ES-like hybrid cells form colonies at 4-6 days but no colonies are derived from the fibroblast-like hybrid cells. The latter grow as disconnected single cells and are unable to form colonies, like mouse embryonic fibroblasts.  相似文献   

8.
Fusion of chick erythrocytes with human primary fibroblasts results in the formation of heterokaryons in which the inactive chick nuclei become reactivated. The expression of chick DNA repair functions was investigated by the analysis of the DNA repair capacity after exposure to ultraviolet (UV) irradiation of such heterokaryons obtained after fusion of chick erythrocytes with normal human or xeroderma pigmentosum (XP) cells of complementation groups A, B, C and D. Unscheduled DNA synthesis (UDS) in normal human nuclei in these heterokaryons is suppressed during the first 2–4 days after fusion. The extent and duration of this suppression is positively correlated with the number of chick nuclei in the heterokaryons. Suppression is absent in heterokaryons obtained after fusion of chicken embryonic fibroblasts with XP cells (complementation group A and C).Restoration of DNA repair synthesis is found after fusion in XP nuclei of all complementation groups studied. It occurs rapidly in XP group A nuclei, starting one day after fusion and reaching near normal human levels after 5–8 days. In nuclei of the B, C and D group increased levels of UDS are found 5 days after fusion. At 8 days after fusion the UDS level is about 50% of that found in normal human nuclei. The pattern of UDS observed in the chick nuclei parallels that of the human counterpart in the fusion. A fast complementation pattern is also observed in chick fibroblast-XP group A heterokaryons resulting within 24 h in a UDS level comparable with that in chick fibroblast-normal human heterokaryons. In heterokaryons obtained after fusion of chick fibroblasts with XP group C cells UDS remains at the level of chick cells. These data suggest that reactivation of chick erythrocyte nuclei results in expression of repair functions which are able to complement the defects in the XP complementation groups A, B, C and D.  相似文献   

9.
Abstract. Mouse teratocarcinoma cells and primary human fibroblasts were fluorescently labelled with fluorescein isothiocyanate (F1TC)- and trimethylrhodamine isothiocyanate (TR1TC)-stearylamine respectively. After fusion populations highly enriched for red-green heterokaryons (around 80%) were isolated from the fusion mixture using a FACS II cell sorter.
To study gene expression in the early hybrids [35S] methionine-labelled proteins synthesized by the sorted cells at two and three days after fusion were analysed by two-dimensional gel electrophoresis. Three spots were denser in gels of the fused cells than in those of 1:1 mixtures of parental cells. For one of these proteins it could be demonstrated that this reflects the enhanced synthesis of a mouse-specific protein present only in small amounts in teratocarcinoma cells. All three proteins were synthesized in relatively large amounts by differentiated mouse cells.
Collagen (type I) synthesis by the sorted hybrid cells was studied by analysing the [3H] proline-labelled material secreted into the medium. Analysis by sodium dodecyl sulphate (SDS)-gel electrophoresis and two-dimensional non-equilibrium pH gradient electrophoresis showed that the material secreted by the fused cells five days after fusion was the same as that secreted by the human fibroblasts. No evidence was obtained for synthesis of mouse α2(I) collagen. The amount of collagen produced by the sorted cells five days after fusion was about half the amount produced by the human fibroblasts. Immunofluorescence studies also showed that collagen synthesis was not suppressed after fusion both in heterokaryons and synkaryons.
In conclusion, we did not find evidence for activation of a previously completely silent mouse gene in the fused cells. The results show, however, that the fused cells do resemble the differentiated fibroblasts rather than the undifferentiated teratocarcinoma cells.  相似文献   

10.
Genetic determinants of metabolic cooperation were studied by fusing chick erythrocytes to HGPRT- mammalian cells. Heterokaryons were then tested for their ability to incorporate [3H]hypoxanthine and to transfer radioactive material to HGPRT- recipient cells. Chick erythrocytes (CE) have nuclei which are inactive but contain the HGPRT gene and some cytoplasmic HGPRT enzyme activity. They are unable, however, to cooperate with HGPRT- cells. Of the two mammalian cell lines used, the human GM29 line is HGPRT- and capable of functioning as a receptor cell in cooperation experiments with HGPRT+ cells. The HGPRT- mouse A9 line on the other hand is unable to cooperate. Immediately after fusion, both types of heterokaryons incorporated [3H]hypoxanthine, indicating the presence of some chick HGPRT enzyme contributed by the erythrocyte partner at the time of fusion. While the CE-GM29 heterokaryons participated in metabolic cooperation shortly after fusion, the CE-A9 heterokaryons did not. However, four days after fusion, i.e., at a time when the erythrocyte nucleus had been reactivated, the CE-A9 heterokaryons did cooperate. This suggests that in CE-A9 heterokaryons the genes required for metabolic cooperation are expressed by the previously dormant chick erythrocyte nucleus.  相似文献   

11.
Several types of culture cells with limited life span (rat embryo fibroblasts, rat chondrocytes and mouse premacrophages) were found to be unable to induce the reactivation of DNA synthesis in the nuclei of non-dividing differentiated cells (mouse peritoneal resident macrophages) in heterokaryons. By contrast, malignant HeLa cells have this ability. In heterokaryons formed by fusion of mouse macrophages with HE239 cells (Syrian hamster fibroblasts transformed with a ts mutant of the SV40 virus), DNA synthesis in macrophage nuclei is reactivated only at the permissive temperature (33° C), at which viral T antigen is stable. Immortalization of rat chondrocytes by transfection with p53 gene enables to induce DNA synthesis in macrophage nuclei upon fusion. All the evidence indicates that the function of immortalizing oncogenes is necessary for the resumption of the DNA synthesis in macrophage nuclei in heterokaryons.  相似文献   

12.
Although most mammalian cell lines can utilize either nicotinic acid or nicotinamide for the biosynthesis of nicotinamide adenine dinucleotide (NAD), thymidine kinase-deficient, mouse 3T3–4F cells are unable to utilize nicotinic acid. When 3T3–4E cells were fused with human D98/AH2 cells, autoradiography showed that the resultant heterokaryons synthesized NAD from nicotinic acid at rates comparable to the human parental cell. The rate of nicotinic acid utilization in heterokaryons remained unchanged over the fourday period of study following cell fusion. In contrast to the results observed with heterokaryons, nicotinic acid utilization was markedly reduced in hybrid cells. Of 100 hybrid clones examined at four or five days following cell fusion, 60 utilized nicotinic acid at rates less than one tenth that of the parental human cell. Similar results were observed in hybrid clones at nine or ten days following fusion. Uniformly high rates of NAD biosynthesis were observed in hybrid clones with nicotinamide as the precursor. This excludes the possibility that the reduction in nicotinic acid utilization in hybrid cells is due to a general metabolic dysfunction. The biochemical mechanism by which nicotinic acid utilization is markedly reduced has not been determined with certainty, however, several observations suggest genetic suppression.  相似文献   

13.
14.
The membrane mobility agent, A2C, actively promotes the fusion of hen erythrocytes under conditions similar to those used by Lucy et al. for glyceryl monooleate.  相似文献   

15.
We have investigated the regulation of DNA synthesis in the heterokaryons of HL60 human myelomonocytic leukemia cells and NIH3T3 mouse fibroblasts to examine if the differentiated leukemia cells contained a replication inhibiting activity. Cell fusions were performed either by exposing a suspension of mixed cells to an electric pulse or by the polyethylene glycol method. To identify the origin of the nuclei in a heterokaryon, one set of partner cells was prelabeled with [3H]thymidine before fusion. DNA synthetic activity after fusion was then revealed immunohistochemically by bromodeoxyuridine incorporation. DNA synthesis in the nuclei of 3T3 was inhibited in the heterokaryons of 3T3 and in either one of the two differentiated forms of HL60, i.e., the macrophage-like or the granulocyte-like. The result supports that a negative regulator of DNA synthesis exists in the differentiated HL60. Surprisingly, we have also found that DNA synthesis was inhibited in the nuclei of both 3T3 and nondifferentiated, proliferating HL60 when these two cells were fused. When unfused, proliferating cells were eliminated with cytosine arabinoside; these nonreplicating heterokaryons survived for at least 5 days, and 15% of them showed alpha-naphthylacetate esterase activity, a trait of the macrophage differentiation. The blockage of DNA synthesis in both partner nuclei was also observed in the heterokaryons of NIH3T3 cells and nondifferentiated human promonocytic leukemia cells U937, and in nondifferentiated HL60 and human diploid fibroblasts WI38. However, this effect was not found in the heterokaryons of NIH3T3 cells and human B lymphoma WI-729-HF2 cells. This is the first demonstration of the inhibition of DNA synthesis upon fusion of two proliferating cells.  相似文献   

16.
Attempts were made to reprogram chick erythrocyte nuclei to specify the synthesis of chick myosin. Chick erythrocytes were fused with rat myogenic cells with the aid of UV-inactivated Sendai virus. In the heterokaryons and hybrid myotubes which resulted from this fusion, the erythrocyte nuclei resumed RNA synthesis and formed nucleoli. Although some new chick antigens developed in those myotubes which contained fully reactivated chick erythrocyte nuclei, accumulation of chick myosin could not be detected by immunological methods. Neither small heterokaryons nor large hybrid myotubes which were actively synthesizing rat myosin reacted with antibodies directed against chick myosin. A small number of mononucleated cells, believed to be synkaryons formed by mitotic division of heterokaryons, did, however, react strongly with antibodies directed against chick myosin and showed a cross striation typical of skeletal muscle. The frequency of such cells was too low, however, to permit karyological analysis or further characterization of the antigen. Hybrids between chick myoblasts and rat myoblasts produced both chick and rat myosin thus indicating that simultaneous translation of chick and rat mRNA for myosin in a common cytoplasm was possible. In summary the evidence obtained suggested that reprogramming of chick erythrocyte nuclei, if it did occur in the present system, was a rare phenomenon.The possibility that hybrids between chick erythrocytes and rat myoblasts expressed markers typical of an erythroid phenotype was examined by immune staining with antibodies directed against chick haemoglobin. The results suggested that haemoglobin was introduced into hybrid cells by erythrocytes which failed to lyse before fusion. The intensity of this immune fluorescence decreased with increasing time after fusion. The rate at which this decrease occurred was not affected by inhibition of RNA synthesis. Thus, there was no evidence for the accumulation of haemoglobin in the hybrid cells.  相似文献   

17.
Senda?-virus-induced fusion between heavily X-irradiated hamster cells, BHK21 or RS2-3 (BHK21 cells transformed by Rous Sarcoma Virus), and unirradiated mouse cells, A9 or c11D, give rise to hybrids. These hybrids possess mouse and hamster surface antigens. However, RS2-3 x mouse hybrids do not form heterokaryons with chick-embryo fibroblasts producing infectious Rous sarcoma virus.  相似文献   

18.
Heterokaryons between terminally differentiated polymorphonuclear leukocytes (PL) and culture cells of different proliferative potentials: mouse and rat embryo fibroblasts (EFM, EFR); immortal cells NIH 3T3 and E2; malignant cells NCC2, L929, He239 and SV 3T3,--were obtained by means of electrofusion. Radioautographic study of 3H-thymidine incorporation in the nuclei of heterokaryons showed that all the cells taken for fusion were able to induce reactivation of DNA synthesis in PL nuclei, however, with different rates: 7-37% for EFM and NIH 3T3 and 20-40% for malignant cells. The presence of oncogenes Elan in E2 cells and ras in NCC2 cells increased the rate of PL reactivation approximately twice as compared with the cells of original lines (EFR and NIH 3T3, correspondingly). In parallel to reactivation of DNA synthesis in PL nuclei inhibition of the synthesis in culture cell nuclei in the same heterokaryons was found. The rate of inhibition was about 70% for non-malignant and 23, 40 and 18% for NCC2, L and SV 3T3 cells, respectively. He239 cells, transformed by a temperature-dependent mutant of virus SV40 showed at permissive temperature the increased capacity of inducing reactivation of PL nuclei, though He239 cells susceptibility to inhibitory action of PL nuclei did not change with temperature. According to the behaviour in heterokaryons PL were found to be similar to chick erythrocytes, but differing from them by a pronounced inhibiting effect upon DNA synthesis in the nuclei of malignant cells.  相似文献   

19.
Hepatocytes from mouse liver with experimental post-toxic cirrhosis (received by means of 10-12 inhalations with CCl4) were fused with serum-deprived (0.2%) resting NIH 3T3 mouse fibroblasts to elucidate mechanisms of liver stroma cells proliferation at cirrhosis. After fusion, nuclei of fibroblasts in such heterokaryons were found to enter into S-period without any exogenous stimulation of cell proliferation (in the medium with low content of serum). The obtained data allow us to suggest that hepatocytes from mouse liver with experimental post-toxic cirrhosis can produce and secrete into the medium (blood) factor (s) capable of stimulating the mesenchymal origin cell proliferation.  相似文献   

20.
The generation of enzymes located in lysosomes, in cytosol or in endoplasmatic reticulum/Golgi complex is studied in heterokaryons in which chick erythrocyte nuclei are reactivated. The lysosomal enzymes, alpha-glucosidase (alpha-glu) and beta-galactosidase (beta-gal), are synthesized in heterokaryons obtained after fusion of chick erythrocytes with human fibroblasts of patients with Pompe's disease (alpha-glu-deficient) and GM1-gangliosidosis (beta-gal-deficient), respectively. The enzymes appear to be of chick origin and their activities can be detected at first around 4 days after fusion, i.e., at a time when the nucleoli in the erythrocyte nuclei have been reactivated. Maximal activities are reached around 15 days after fusion. No generation of the lysosomal enzyme beta-hexosaminidase is detected in the heterokaryons up to 23 days after fusion of chick erythrocyte with either beta-hexosaminidase A- and B-deficient fibroblasts (Sandhoff's disease) or beta-hexosaminidase A-deficient fibroblasts (Tay-Sachs disease). Similarly no expression of the cytosol enzyme glucose-6-phosphate dehydrogenase (G6PD) is fond up to 30 days after fusion, when chick erythrocytes are fused with fibroblasts from two different G6PD-deficient cell strains (residual activities of 4 and 20% respectively). Indirectly we examined N-acetyl-glucosamine-1-phosphate transferase activity, an enzyme located in the endoplasmic reticulum/Golgi region. This enzyme is needed for the phosphorylation of the lysosomal hydrolases and absence of its activity is the cause of the multiple lysosomal enzyme deficiencies in patients with I-cell disease. The retention of both, chick and human beta-galactosidase in the experiments in which I-cell fibroblasts were fused with chick erythrocytes indicates a reactivation of the gene coding for this phosphorylating enzyme. It also implies that this step in the processing of human lysosomal enzymes is not species-specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号