首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulsations of the dorsal vessel were investigated with new optocardiographic techniques based on the transmission and reflection of pulse-light through optic fibers. This noninvasive technique enabled simultaneous, in vivo multisensor recordings of the heartbeat without touching the pupal integument. There was a very regular heartbeat reversal with 3 distinctive phases: (a) a backward-oriented (retrograde) cardiac pulsation; (b) a forward-oriented (anterograde) pulsation with faster frequency; and (c) shorter or longer periods of temporary cardiac standstill that usually occurred after the termination of the anterograde phase. Occasionally, there were localized series of systolic cardiac contractions during the retrograde phase. Simultaneous recordings from the base and the tail of the abdomen revealed a reciprocal, "mirror image-like", quantitative relationship. The most intensive anterograde hemolymph flow occurred at the base while the most intensive retrograde flow occurred at the tail of the abdomen. The bi-directional switchovers of heartbeat (reversal) were occasionally associated with modifications during each of the unidirectional cardiac phases. Anterograde peristalsis showed a 2-fold higher frequency of pulsation in the thoracic aorta in comparison with the posterior parts of the heart. Thus, in addition to the "odd" peristaltic waves originating at the tail, there were intercallated "even" peristaltic waves originating in the middle of the abdomen. Both of them propagated hemolymph through the thoracic aorta into the head; the first waves took the hemolymph in from the distal end, while the second sucked it from the middle of the abdomen. The use of multiple optocardiographic sensors also enabled detection of cardiac pulsations on the opposite, ventral side of the body, within the ventral perineural sinus. The ventral side of the head showed only the presence of an anterograde pulse, whereas the ventral side of the tail exhibited a strong reciprocal retrograde phase and a very weak anterograde phase. These results explain why the existence of a periodic heartbeat reversal should be essential for circulatory functions at both extremities of the cylindrical insect body. In diapausing pupae, regular cycles of heartbeat reversal were substituted by prolonged periods of anterograde pulsation during the entire duration of bursts of CO2 release (average duration of the burst was 18-20 min, periodicity 5 to 18 h). The physiological nature of such feed-back correlation between heartbeat and metabolic CO2 production is not yet clear, because the anterograde heartbeat could be also induced by a number of nonspecific factors unrelated to CO2 (mechanical irritation, injury, injections, elevated temperature). During the postdiapause, developing pharate-adult stage, the correlation between CO2 and anterograde heartbeat completely disappeared. It has been concluded that regulation of insect heartbeat represents a highly coordinated, myogenic stereotype with inherent rhythmicity, which can be modified by a number of external and internal factors.  相似文献   

2.
Pulsations in mechanical pressure of the pupal haemocoele were investigated by means of simultaneous recording from multiple sensors. It has been determined that cardiac and extracardiac haemocoelic pulsations are each regulated by substantially different and quite independent physiological mechanisms. At the beginning and in the middle of the pupal interecdysial period the anterograde heartbeat and extracardiac pulsations occur in similar, but not identical periods. During the advanced pharate adult stage, there appear almost uninterrupted pulsations from different sources: cardiac, extracardiac, intestinal, and the ventral diaphragm.Extracardiac pulsations are associated with pressure peaks of 200-500 Pa, occurring at frequencies of 0.3-0.5 Hz. The effect of heartbeat on haemocoelic pressure is very small, 100- to 500-fold smaller, comprising only some 1 or 2 Pa during the vigorous anterograde systolic contractions. Accordingly, extracardiac pulsations are associated with relatively large abdominal movements from 30-90 μm whereas heartbeat produces movements of only 100-500 nm. This shows that extracardiac pulsations can be easily confused with the anterograde heartbeat. It does not seem realistic to assume that the relatively weak insect heart, and not the 100- to 500-fold more powerful extracardiac system of abdominal pump, could be at all responsible for selective accumulation of haemolymph in anterior parts of the body, for inflation of wings or enhancement of tracheal ventilation.It has been established that thermography from the pericardial region is not specific for the heartbeat. It records subepidermal movement of haemolymph resulting from the actions of both dorsal vessel and extracardiac pressure pulses as well. Shortly before adult eclosion the cardiac and extracardiac pulsations occasionally strike in concert, which profoundly increases the flow of haemolymph through pericardial and perineural sinuses. The relatively strong extracardiac pulsations cause passive movements of various visceral organs, tissue membranes, or tissue folds, giving thus a false impression of an authentic pulsation of tissues. In addition, extracardiac pulsations cause rhythmical movements of haemolymph between various organs, thus preventing haemolymph occlusion at the sites where the heart does not reach. It has been emphasized, finally, that the function of the autonomic nervous system (coelopulse), which integrates extracardiac pulsations, depends on homeostatic moderation of excessive or deficient conditions in insect respiration and haemolymph circulation.  相似文献   

3.
Abstract. The effects in vivo of cardioactive peptides proctolin, CCAP and leucomyosuppressin (LMS) are investigated by means of noninvasive optocardiographic or thermographic techniques in postdiapause pupae of Manduca sexta. A constant pattern of heartbeat reversal in these pupae is manifested by regular alternations of the forward orientated (anterograde) and the backward orientated (retrograde) cardiac pulsations, with a periodicity of some 5–10 min. The heartbeat pattern is monitored continuously for several hours before and 24 h after injection of the investigated peptides. Injections of Ringer solution alone cause a slight, almost immediate increase of the rate of the pupal heartbeat (0–10%), which lasts only for 20–30 min. Injection of proctolin, CCAP or LMS does not show any immediate cardiostimulating effects (beyond those of Ringer) at concentrations up to 2 × 10−6 M (calculated from µg of the injected peptide and 70% pupal water content; 5–7 g pupal body mass). By contrast, injections of proctolin and CCAP in the range of 10-9 − 10-6 M concentrations cause delayed effects on the heartbeat, which are manifested only several hours after the injections. The delayed effects involve prolonged, or even continuous periods of unidirectional, more efficient and faster anterograde pulsations. Consequently, the flow of haemolymph through the head and thoracic parts of the pupal body increases. In the case of proctolin, the prolonged anterograde cardiac activity usually starts 5 h after the injections and the effect persists for 7–12 h. Using CCAP, the stimulation of anterograde activity starts 2.5–3 h after injections and lasts usually 7–8 h. Very small doses of peptides (10-8 − 10-9 M) do not change the latency period significantly, but they decrease the duration of the response. The frequency of the systolic contractions of the heart does not increase during the prolonged anterograde phase. Injections of LMS to produce a final concentration of 10−6 M in the pupa induce pathophysiological disturbances of heartbeat reversal and peristalsis. The effects start with a delay of some 1.5–2.5 h after the injections. By contrast to the effects of proctolin and CCAP, LMS does not produce delayed anterograde cardiac pulsations. These results show that the most intensively investigated cardiostimulating peptides in vitro, proctolin and CCAP, have no direct cardiostimulating activity under physiological conditions in vivo. It is concluded therefore that the delayed pharmacological effects of these peptides observed in the pupae of M. sexta, represent a secondary effect, resulting from stimulation of nonspecific, extracardiac myotropic or other physiological functions.  相似文献   

4.
Regulation of autonomic physiological functions has been investigated by means of multisensor electronic methods, including electrocardiographic recording of heartbeat, strain-gauge recording of extracardiac hemocoelic pulsations (EHPs), anemometric recording of air passage through spiracles and respirographic recording of O(2) consumption and CO(2) output. Pupae of Cydia exhibit continuous respiration without remarkable bursts of CO(2). The dorsal vessel of these pupae exhibited regular heartbeat reversals characterized by shorter intervals of faster (forward oriented or anterograde) pulsations and longer intervals of slower (backward oriented or retrograde) peristaltic waves. The periodically repeated EHPs were present during the whole pupal interecdysial period. The internal physiological mechanisms regulating the cardiac (heartbeat) and extracardiac (EHP) pulsations were completely independent for most of the pupal instar. Simultaneous multisensor analysis revealed that the anterograde heartbeat of the dorsal vessel had similar but not identical frequency with EHPs. During advanced pharate adult development, frequency of cardiac and extracardiac pulsation periods profoundly increased until almost uninterrupted pulsation activity towards adult eclosion. At this time, the cardiac and extracardiac pulsations occasionally performed in concert, which enhanced considerably the efficacy of hemolymph circulation in pharate adults with high metabolic rates. The fastest hemolymph flow through the main body cavity was always associated with EHPs and with anterograde heartbeat. Simple physical diffusion of O(2) and CO(2) through spiracles (diffusion theory of insect respiration) does not play a significant role in pupal respiration. Instead, several kinds of regulated, mechanical ventilations of the tracheal system, including EHPs are responsible for effective tracheal ventilation.  相似文献   

5.
The frontal ganglion of the silkworm (Bombyx mori) gives rise to a visceral nerve, branches of which include a pair of anterior cardiac nerves and a pair of the posterior cardiac nerves. Forward-fill of the visceral nerve with dextran labeled with tetramethyl rhodamine shows the anterior cardiac nerves innervate the anterior region of the dorsal vessel. Back-fill of the anterior cardiac nerves with Co2+ and Ni2+ ions and the fluorescent dye reveals that the cell bodies of two motor neurons are located in the frontal ganglion. Injection of 5, 6-carboxyfluorescein into the cell body of an identified motor neuron shows that the neuron gives rise to an axon running to the visceral nerve. Unitary excitatory junctional potentials (EJPs) were recorded from a myocardial cell at the anterior end of the heart. They responded in a one-to-one manner to electrical stimuli applied to the visceral nerve, or to impulses generated by a depolarizing current injected into the cell body. EJPs induced by stimuli at higher than 0.5 Hz showed facilitation while those induced at higher than 2 Hz showed summation. Individual EJPs without summation, or a train of EJPs with summation, caused acceleration in the phase of posterograde heartbeat and heart reversal from anterograde heartbeat to posterograde heartbeat. It is likely that the innervation of the anterior region of the dorsal vessel by the motor neurons, through the anterior cardiac nerves is responsible for the control of heartbeat in Lepidoptera, at least in part.  相似文献   

6.
Larvae of the greater waxmoth (Galleria mellonella) become paralysed by the venom of the braconid wasp (Habrobracon hebetor) a few minutes after intoxication. The profound neuromuscular paralysis, which may last for several weeks, includes all somatic muscles that are innervated through neuromuscular transmission. The peristaltic contractions of the heart and intestine, which are regulated by the depolarisation potentials of the myocardium or intestinal epithelial muscles, remain unaffected and fully functional. Heartbeat patterns and intestinal pulsations were monitored in the motionless, paralysed larvae by means of advanced electrocardiographic recording methods (contact thermography, pulse-light optocardiography). The records revealed more or less constant cardiac pulsations characterised by 20-25 systolic contractions per minute. The contractions were peristaltically propagated in the forward (anterograde) direction, with a more or less constant speed of 10 mm per second (23-25 °C). Additional electrocardiographic investigations on larvae immobilised by decapitation revealed the autonomic (brain independent) nature of heartbeat regulation. Sectioning performed in the middle of the heart (4th abdominal segment) seriously impaired the pacemaker rhythmicity and slowed down the rate of heartbeat in the anterior sections. By contrast, the functions of the posterior compartments of the disconnected heart remained unaffected. These results confirmed our previous conclusions about the existence of an autonomic, myogenic, pacemaker nodus in the terminal part of an insect heart. They show an analogy to the similar myogenic, sinoatrial or atrioventricular nodi regulating rhythmicity of the human heart. Peristaltic contractions of the intestine also represent a purely myogenic system, which is fully functional in larvae with complete neuromuscular paralysis. Unlike the constant anterograde direction of the heartbeat, intestinal peristaltic waves periodically reversed anterograde and retrograde directions. A possibility that the functional similarity between insect and human hearts may open new avenues in the field of comparative cardiology has been discussed.  相似文献   

7.
Recent electrocardiographic (ECG) studies of insect hearts revealed the presence of human-like, involuntary and purely myogenic hearts. Certain insects, like a small light-weight species of hoverfly (Episyrphus balteatus), have evolved a very efficient cardiac system comprised of a compact heart ventricle and a narrow tube of aorta, which evolved as an adaptation to sustained hovering flights. Application of thermocardiographic and optocardiographic ECG methods revealed that adult flies of this species use the compact muscular heart chamber (heart ventricle) for intensive pumping of insect "blood" (haemolymph) into the head and thorax which is ringed all over with indirect flight musculature. The recordings of these hearts revealed extremely high, record rates of forward-directed, anterograde heartbeat (up to 10Hz), associated with extremely enhanced synchronic (not peristaltic) propagation of systolic myocardial contractions (32.2mm/s at room temperature). The relatively slow, backward-directed or retrograde cardiac contractions occurred only sporadically in the form of individual or twinned pulses replacing occasionally the resting periods. The compact heart ventricle contained bi-directional lateral apertures, whose opening and closure diverted the intracardiac anterograde "blood" streams between the abdominal haemocoelic cavity and the aortan artery, respectively. The visceral organs of this flying machine (crop, midgut) exhibited myogenic, extracardiac peristaltic pulsations similar to heartbeat, including the periodically reversed forward and backward direction of the peristaltic waves. The tubular crop contracted with a periodicity of 1Hz, both forwards and backwards, with propagation of the peristaltic waves at 4.4mm/s. The air-inflated and blindly ended midgut contracted at 0.2Hz, with a 0.9mm/s propagation of the peristaltic contraction waves. The neurogenic system of extracardiac haemocoelic pulsations, widely engaged in the regulation of circulatory and respiratory functions in other insect species, has been replaced here by a more economic, myogenic pulsation of the visceral organs as a light-weight evolutionary adaptation to prolonged hovering flight. Striking structural, functional and even genetic similarities found between the hearts of Episyrphus, Drosophila and human hearts, have been practically utilised for inexpensive testing of new cardioactive or cardioinhibitory drugs on insect heart.  相似文献   

8.
Previously described salines for lepidoptera did not maintain a constant heart rate for a very long. We have been successful in maintaining a normal heartbeat for many hours in a newly designed saline. This saline was also suitable for maintaining normal neuromuscular junctional potentials. The cardiac reflexes studied in larvae of Bombyx and Agrius were five types of cardiac responses induced by mechanical stimuli to sensillar setae. The cardiac responses were caused by electrical stimulation of nerves in the reflex pathways. The antidromic heartbeat was triggered even in larvae before the 5th instar by stimulation of axons in the visceral nerve arising from the frontal ganglion and terminating at the aorta, while spontaneous heartbeat reversal started to occur in wandering larvae. Other axons in the visceral nerve terminate at the rear end of the heart. Electrical stimuli to the nerves caused cardiac inhibition of the orthodromic heartbeat. Nerves extending from the visceral nerve to the alary muscles of the 2nd abdominal segment contain axons to increase the tone of the muscles. Nerves extending from the 7th abdominal ganglion to the most posterior alary muscles also contain axons to increase the tone of the muscles, and were responsible for acceleration of the antidromic and orthodromic heartbeat, respectively.  相似文献   

9.
1. Leydig neurons fire spontaneously at low rates (less than 4 Hz), but their activity increases with mechanical stimulation or electrical stimulation of mechanosensory neurons. These conditions also cause acceleration of bursting in heart motor neurons. 2. The firing rate of Leydig cells was found to regulate heart rate in chains of isolated ganglia. When Leydig neurons were made to fire action potentials at relatively high frequencies (ca. 5-10 Hz), however, heart motor neurons ceased bursting and were either silenced or fired erratically. 3. Firing of Leydig neurons at high rates caused bilateral heart interneurons of ganglia 3 or 4 to fire tonically rather than in their normal alternating bursts Tonic firing of these heart interneurons accounts for the prolonged barrages of ipsps recorded in heart motor neurons and the disruption of their normal cyclic activity. 4. Preventing spontaneous activity of Leydig neurons with injected currents in isolated ganglia caused deceleration of the heartbeat rhythm but did not halt oscillation. 5. Electrical stimulation of peripheral nerve roots with Leydig neuron activity suppressed in isolated ganglia caused acceleration of heart rate.  相似文献   

10.
The sweet potato hornworm, Agrius convolvuli, possesses a pair of anterior cardiac nerves innervating the dorsal vessel. The anterior cardiac nerves branch off the visceral nerve that arises posteriorly from the frontal ganglion. Heartbeat reversal from anterograde heartbeat to posterograde heartbeat is triggered by the anterior cardiac nerves. Application of octopamine (OA) during the anterograde heartbeat phase reverses the anterograde heartbeat to the posterograde heartbeat, while application of OA during the phase of posterograde heartbeat accelerates heartbeat. The heartbeat reversal from anterograde heartbeat to posterograde heartbeat evoked by stimuli applied to the visceral nerve is blocked by application of the octopaminergic antagonists, phentolamine and chlorpromazine. The results suggest that OA may be a neurotransmitter for the anterior cardiac nerve. The alary muscle of the second segment receives excitatory innervation from the posterior cardiac nerve and from the nerve which extends from the second abdominal ganglion. Activation of the alary muscle results in acceleration of posterograde heartbeat. Other neurotransmitters, besides OA, may take part in the resultant acceleration.  相似文献   

11.
Cardiograms demonstrate that heart activity of Manduca sexta changes from larva, to pupa, to adult. The larval heart has only anterograde contractions. During metamorphosis, heart activity becomes a cyclic alternation of anterograde and retrograde contractions. Thus, the adult heart has both an anterograde and a retrograde pacemaker. External stimuli also can initiate cardiac reversal. Cardiac reversal is blocked by tetrodotoxin, indicating that reversal is under neuronal control. A branch of each dorsal nerve 8 innervates the posterior chamber of the heart, the location of the anterograde pacemaker. Only retrograde contractions occur when dorsal nerves 8 are cut. Stimulation of ml(-1) 8 initiates anterograde contractions; when stimulation ceases, the heart reverses to retrograde contractions. These experiments indicate that the anterograde pacemaker receives neural input that makes it the dominant pacemaker. In the absence of neural input this pacemaker is inactive, and the retrograde pacemaker becomes active. Application of crustacean cardioactive peptide accelerates the heart but does not eliminate cardiac reversal. The terminal chamber of the heart is also innervated by a branch of each dorsal nerve 7; stimulation of this nerve increases the strength of contraction of the terminal chamber but has no effect on contractions of the remainder of the heart or on cardiac reversal.  相似文献   

12.
Electrocardiograms and electrical action potentials of cerebral neurosecretory cells producing bombyxin (an insulin-related neuropeptide) were simultaneously recorded from male pupae of the silkmoth Bombyx mori. A pupa showed alternations in the flow of haemolymph due to a rhythmic heartbeat reversal: a train of retrograde heartbeat with a slow pulse rate followed a train of anterograde heartbeat with a higher pulse rate. Intervals of heartbeat reversals changed throughout the pupal period. At any stage of the pupal period, firing activity of a population of bombyxin-producing (BP) cells rapidly declined after the start of anterograde heartbeat and an inactive state of cells continued during an anterograde heartbeat period. Analyses of ultradian bursting rhythmicity of a single BP cell revealed that a bursting phase of the cell often delayed at a time when the anterograde cardiac activity occurred at the preceding inter-burst period of firing rhythm. The results support the postulation that firing (secretory) activity of an insect neurosecretory cell system may be co-ordinated with circulation of haemolymph for rapid and pulsatile delivery of the peptides released to target organs.  相似文献   

13.
Abstract.  The periodically occurring convective inflow of air into the tracheal system, or passive suction ventilation, together with the cyclic bursts of release of CO2 and active ventilation, is recorded in diapausing pupae of Mamestra brassicae . A constant volume respirometer combined with an opto-cardiograph-actograph is used. In all pupae with a metabolic rate of 0.025–0.054 mL g−1 h−1, the bouts of almost imperceptible abdominal contractions are recorded during the bursts of carbon dioxide release and this mode of active ventilation is qualified as extracardiac haemocoelic pulsations. The pupae whose metabolic rate is 0.052–0.075 mL−1 g−1 h−1 show more vigorous abdominal contractions. The results demonstrate that, in diapausing pupae, characterized with low metabolic rates, both passive suction ventilation, referred to also as passive suction inspiration, and active ventilation occurs. In approximately 50% of the pupae, each gas exchange microcycle during the interburst periods begins with a miniature PSI followed by a microburst of CO2 release; in approximately 30% of the individuals, passive suction inspirations occur separately from CO2 microbursts; in the remaining pupae, miniature ones without microbursts of CO2 are recorded. A typical event is heartbeat reversion: in longer periods, the heart peristalses are directed forward (anterograde of heartbeat) and, in shorter periods, the heart peristalses are directed backward (retrograde of heartbeat). At 0 °C, the cyclic release of CO2 and miniature passive suction inspirations during the interburst periods are preserved at lower frequencies but active ventilation is lost.  相似文献   

14.
The heartbeat of adult Drosophila melanogaster displays two cardiac phases, the anterograde and retrograde beat, which occur in cyclic alternation. Previous work demonstrated that the abdominal heart becomes segmentally innervated during metamorphosis by peripheral neurons that express crustacean cardioactive peptide (CCAP). CCAP has a cardioacceleratory effect when it is applied in vitro. The role of CCAP in adult cardiac function was studied in intact adult flies using targeted cell ablation and RNA interference (RNAi). Optical detection of heart activity showed that targeted ablation of CCAP neurons selectively altered the anterograde beat, without apparently altering the cyclic cardiac reversal. Normal development of the abdominal heart and of the remainder of cardiac innervation in flies lacking CCAP neurons was confirmed by immunocytochemistry. Thus, in addition to its important role in ecdysis behavior (the behavior used by insects to shed the remains of the old cuticle at the end of the molt), CCAP may control the level of activity of the anterograde cardiac pacemaker in the adult fly. Expression of double stranded CCAP RNA in the CCAP neurons (targeted CCAP RNAi) caused a significant reduction in CCAP expression. However, this reduction was not sufficient to compromise CCAP's function in ecdysis behavior and heartbeat regulation.  相似文献   

15.
The objective of this study was to locate nerves arising from the CNS that have a cardioregulatory function in the tarantula, Eurypelma marxi Simon. Ramifications of the paired abdominal nerve VIIIb merge with the cardiac ganglion within the first heart segment. Electrical stimulation of the branches of nerve VIIIb that connect with the cardiac ganglion produce changes in heartbeat rate and amplitude. Nerve cutting experiments indicate that no other cardioregulatory nerves are present. Both increases and decreases in heart activity can be produced upon electrical stimulation of nerve VIIIb on each side of the heart. Only one action potential associated with the response of each type could be recorded in each member of the nerve pair. Therefore, we conclude that there are two inhibitory and two acceleratory neurons that arise in the central nervous system to modulate heartbeat activity. The inhibitory effect becomes maximal at a stimulation frequency of 20-30 Hz and the accelerator effect at 30-40 Hz. The aftereffect of acceleratory nerve activity exceeds that of inhibitory nerve activity. When the inhibitor and accelerator are activated simultaneously, the inhibitor dominates. The regulatory nerves interact with neurons in the cardiac ganglion. During inhibition, the number of externally recorded spikes in each ganglionic burst is decreased. The rate and magnitude of the heartbeat are decreased concomitantly. Stimulation of the accelerator enhances electrical activity in the cardiac ganglion at the same time that the heartbeat rate and amplitude are increased.  相似文献   

16.

Background

Hemolymph circulation in mosquitoes is primarily controlled by the contractile action of a dorsal vessel that runs underneath the dorsal midline and is subdivided into a thoracic aorta and an abdominal heart. Wave-like peristaltic contractions of the heart alternate in propelling hemolymph in anterograde and retrograde directions, where it empties into the hemocoel at the terminal ends of the insect. During our analyses of hemolymph propulsion in Anopheles gambiae, we observed periodic ventral abdominal contractions and hypothesized that they promote extracardiac hemolymph circulation in the abdominal hemocoel.

Methodology/Principal Findings

We devised methods to simultaneously analyze both heart and abdominal contractions, as well as to measure hemolymph flow in the abdominal hemocoel. Qualitative and quantitative analyses revealed that ventral abdominal contractions occur as series of bursts that propagate in the retrograde direction. Periods of ventral abdominal contraction begin only during periods of anterograde heart contraction and end immediately following a heartbeat directional reversal, suggesting that ventral abdominal contractions function to propel extracardiac hemolymph in the retrograde direction. To test this functional role, fluorescent microspheres were intrathoracically injected and their trajectory tracked throughout the hemocoel. Quantitative measurements of microsphere movement in extracardiac regions of the abdominal cavity showed that during periods of abdominal contractions hemolymph flows in dorsal and retrograde directions at a higher velocity and with greater acceleration than during periods of abdominal rest. Histochemical staining of the abdominal musculature then revealed that ventral abdominal contractions result from the contraction of intrasegmental lateral muscle fibers, intersegmental ventral muscle bands, and the ventral transverse muscles that form the ventral diaphragm.

Conclusions/Significance

These data show that abdominal contractions potentiate extracardiac retrograde hemolymph propulsion in the abdominal hemocoel during periods of anterograde heart flow.  相似文献   

17.
The rhythms of abdominal movements, heartbeats and gas exchange in the pupae of Leptiontarsa decemlineata (Say) were recorded simultaneously using an electrolytic respirometer and infrared gas analyser, both combined with contact thermography. Abdominal pulsations and heartbeat occurred periodically with little variance among individuals. The abdominal pulsations and heartbeat pauses varied individually within large limits, with the frequency of abdominal pulsations being six to seven times lower than that of the heart pulses. A proportion of the pupae (20%) showed discontinuous gas exchange with large, actively ventilated CO2 bursts, whereas others (≈ 25%) exhibited continuous regular microcycles (flutter) with abrupt intake of air into the tracheae before discrete microbursts of carbon dioxide. The abdominal pulsations exerted only a minor influence on ventilation during the microcycles. More than 90% of the bursts of abdominal movement coincided with a series of forward directed heartbeats, but interspersed between the bouts of abdominal movement commonly two to three heartbeat pulses were observed that were not associated with abdominal movements. A period of abdominal movement associated with a heartbeat pulse was commonly initiated by one or two vigorous strokes of abdominal rotation.  相似文献   

18.
This study was designed to examine the effects of microwaves on the electric activity of hearts as a means of elucidating interactive mechanisms of nonionizing radiation with cardiac tissue. Experiments were performed on isolated hearts of 9-12-day-old chick embryos placed in small petri dishes. Oxygenated isotonic Ringer's solution at 37 degrees C permitted heart survival. Samples were irradiated at 2.45 GHz with a power density of 3 mW/cm2. The heart signal was detected with a glass micropipet inserted into the sinoatrial node and examined by means of a Berg-Fourier analyzer. Pulsed microwaves caused the locking of the heartbeat to the modulation frequency, whereas continuous wave irradiation might have induced slight bradycardia. Pulsed fields induced stimulation or regularization of the heartbeat in arrhythmia, fibrillation, or arrest of the heart.  相似文献   

19.
Changes in the frequency of cardiac pulsations have been monitored in the decapitated body of adult P. americana before and 5 h after the injections of [Arg(7)]-corazonin and CCAP, using newly invented touch-free, noninvasive optocardiographic methods. Relatively large dosages of these peptides (10(-6) M concentrations in the body) had no effect on the rate of the heartbeat beyond the Ringer control limits. It has been concluded, therefore, that Corazonin and CCAP, which are currently cited in the literature as "the most potent cardiostimulating peptides" in insects, have no effect on the physiological regulation of cardiac functions in the living body.  相似文献   

20.
The pupae of Tenebrio exhibit periodic pulsations in the haemolymph pressure which are independent of the heartbeat. Tensometric records of the extracardiac pulses show certain specific modifications caused by changes in either the internal or external environment. Chronological changes in the pulse pattern were associated with adult morphogenesis and ecdysis. The abdominal pump controlling extracardiac pressure pulsations is independent of the brain or of any other cephalic part of the nervous system. The nerve impulses controlling the pump arise only in the mesothoracic ganglion. They are carried by the connectives to certain abdominal ganglia from which they are further transmitted to the contracting intersegmental abdominal muscles. The extracardiac pulses in haemolymph pressure aid in the maintenance of water balance and respiration and assist with the circulation of haemolymph through the appendages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号