首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A kinetic analysis of substrate and inhibitor binding, based on the conventional carrier model, leads to the following conclusions. The substrate constant derived from equilibrium binding studies is not a simple dissociation constant; rather, it is identical to the half-saturating substrate concentration for equilibrium exchange transport, which is a function of both the dissociation constant and the rate constants for carrier reorientation. In general, binding and transport constants are identical, assuming the same substrate distribution across the membrane in the two experiments. Binding studies reveal only a single substrate site--even if the carrier is unsymmetrical, with different substrate affinities on the two sides of the membrane. The binding constants for inhibitors are identical to the inhibition constants found in transport. These rules, which apply to a carrier imbedded in the cell membrane or free in solution, offer a means of deciding whether an isolated carrier retains the properties of the intact system.  相似文献   

2.
3.
Two seemingly contradictory sets of observations have been made in studies of biological transport, which are essential for our understanding of the transport mechanism: carriers are integral membrane proteins, which span the membrane and are not free to rotate across the membrane; carriers appear to function like a ferryboat, with a substrate binding site moving back and forth from one side of the membrane to the other. To reconcile these facts, it is necessary to postulated gated channels connecting the substrate site with the two membrane surfaces: the channels are arranged so that as one opens the other closes, with the result that the substrate site is alternately accessible from opposite sides of the membrane. Based on these properties, the following distinguishing features of molecules specifically bound in the channels may be predicted: if sufficiently bulky, they inhibit transport; they bind outside the substrate site (though adjacent to it), they bind asymmetrically either to the outward-facing carrier and on the outer surface of the membrane, or to the inward-facing carrier and on the inner surface of the membrane. The asymmetrical inhibition of the glucose and choline transport systems of erythrocytes by various inhibitors is examined, and the behavior in every case is found to conform with these criteria. From the results it may be concluded that the glucose carrier binds cytochalasin B in the inner gated channel and phloretin and tetrathionate in the outer gated channel.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The kinetics of the transport of citrate by the tricarboxylate transport system located in the inner mitochondrial membrane was studied in proteoliposomes containing the purified carrier protein, in order to verify the previously hypothesized mechanism of uniport (J. Bioenerg. Biomembr. 35, 133–140, 2003) and achieve some information on the kinetic properties of the carrier transport system. For this purpose, a mathematical model has been elaborated and the experimental data were analyzed according to it. The results indicate that the data actually fit with the uniport model, and hence it is confirmed that the carrier has a single binding site for its substrates and can oscillate between the inside and outside form, in both the free and substrate-bound states. The rearrangement of the free form is slower than the bound form in both directions. The dissociation constants for the internal substrate are at least one order of magnitude higher than the one for external citrate. As a consequence of these last two points, the rate of citrate transport by the carrier is much higher when it operates in exchange with another substrate than when it operates in net uniport.  相似文献   

5.
Summary Sodium tetrathionate reacts with the glucose carrier of human erythrocytes at a rate which is greatly altered in the presence of competitive inhibitors of glucose transport. Inhibitors bound to the carrier on the outer surface of the membrane, either at the substrate site (maltose) or at the external inhibition site (phloretin and phlorizin), more than double the reaction rate. Inhibitors bound at the internal inhibition site (cytochalasin B and androstenedione), protect the system against tetrathionate. After treatment with tetrathionate, the maximum transport rate falls to less than one-third, and the properties of the binding sites are modified in unexpected ways. The affinity of externally bound inhibitors rises: phloretin is bound up to seven times more strongly and phlorizin and maltose twice as strongly. The affinity of cytochalasin B, bound at the internal inhibition site, falls to half while that of androstenedione is little changed. The affinity of external glucose falls slightly. Androstenedione prevents both the fall in transport activity and the increase in phloretin affinity produced by tetrathionate. An inhibitor of anion transport has no effect on the reaction. The observations support the following conclusions: (1) Tetrathionate produces its effects on the glucose transport system by reacting with the carrier on the outer surface of the membrane. (2) The carrier assumes distinct inward-facing and outward-facing conformations, and tetrathionate reacts with only the outward-facing form. (3) The thiol group with which tetrathionate is presumed to react is not present in either the substrate site or the internal or external inhibitor site. (4) In binding asymmetrically to the carrier, a reversible inhibitor shifts the carrier partition between inner and outer forms and thereby raises or lowers the rate of tetrathionate reaction with the system. (5) Reaction with tetrathionate converts the carrier to an altered state in which the conformation at all three binding sites is changed and the rate of carrier reorientation is reduced.  相似文献   

6.
Bilitranslocase is a plasma membrane carrier involved in the uptake of bilirubin and other organic anions from the blood into the liver cell. In the membrane, the carrier occurs as two interchangeable metastable forms, with high and low affinity for the substrates, respectively. The latter form can be specifically produced by either cysteine- or arginine modification. In liver plasma membrane vesicles, the serine-specific reagent phenylmethylsulphonyl fluoride is a partial inhibitor of bilitranslocase-mediated BSP transport rate. In this work, phenylmethyl-sulphonyl fluoride is shown to reduce the carrier maximal transport rate, without affecting its affinity for that substrate. In addition, it is found that the chemical modification caused by this reagent neither influences the equilibrium between the high- and the low-affinity forms nor prevents their free interconversion. From the effects of combined derivatizations of cysteine(s), arginine(s) and serine(s), it is concluded that the functionally relevant aminoacid residues lie in a close spatial arrangement. Also, in this study, the PMSF-modified serine(s) is shown to be involved in bilirubin binding by bilitranslocase.  相似文献   

7.
Bilitranslocase is a plasma membrane carrier involved in the uptake of bilirubin and other organic anions from the blood into the liver cell. In the membrane, the carrier occurs as two interchangeable metastable forms, with high and low affinity for the substrates, respectively. The latter form can be specifically produced by either cysteine- or arginine modification. In liver plasma membrane vesicles, the serine-specific reagent phenylmethylsulphonyl fluoride is a partial inhibitor of bilitranslocase-mediated BSP transport rate. In this work, phenylmethylsulphonyl fluoride is shown to reduce the carrier maximal transport rate, without affecting its affinity for that substrate. In addition, it is found that the chemical modification caused by this reagent neither influences the equilibrium between the high- and the low-affinity forms nor prevents their free interconversion. From the effects of combined derivatizations of cysteine(s), arginine(s) and serine(s), it is concluded that the functionally relevant aminoacid residues lie in a close spatial arrangement. Also, in this study, the PMSF-modified serine(s) is shown to be involved in bilirubin binding by bilitranslocase.  相似文献   

8.
The kinetics of K(+)-leucine cotransport in the midgut of lepidopteran larvae was investigated using brush border membrane vesicles. Initial rate (3 s) of leucine uptake was determined under experimental conditions similar to those occurring in vivo, i.e. in the presence of delta psi much greater than 0 (inside negative) and a delta pH of 1.4 units (7.4in/8.8out). Leucine and K+ bind to the carrier according to a sequential mechanism, and the binding of one substrate changed the dissociation constant for the other substrate by a factor of 0.15. Both trans-K+ and trans-leucine were mixed-type inhibitors of leucine uptake. Moreover, a portion of total leucine uptake was K+ independent, and it was competitively inhibited by trans-leucine. We interpret the trans inhibitory effects to mean that the partially loaded K+ only form is virtually unable to translocate across the membrane, whereas the binary complex carrier, leucine, can isomerize from the trans to the cis side of the membrane. However, the K(+)-independent leucine uptake occurs with a Keq greater than 1, i.e. the efflux route through the partially loaded leucine only form is slower than the rate of isomerization of the unloaded carrier from trans to cis side. Taken together, these results suggest a model in which transport occurs by an iso-random Bi Bi system. Since K+ does not act as a pure competitive activator, this model is different from that proposed for most of the Na(+)-linked solutes transport agencies and may be related to the broadening of the cation specificity of the amino acid transporters in lepidopteran larvae.  相似文献   

9.
We have previously described simple models for active transport and have derived steady state equations for the unidirectional flux of substrate in terms of a minimal set of kinetic parameters. Here we consider how to maximize the pumping rate of a carrier-enzyme through the optimal utilization of the ATP hydrolysis reaction. The equations for net flux contain rate constants and dissociation constants and these determine the maximum velocities and affinities measured in transport kinetic analysis. It is assumed that the rate constants can evolve to the diffusion limited rate of substrate binding as has apparently occurred in the enzyme triosephosphate isomerase (Knowles & Albery, 1977). The dissociation constants of the rate limiting intermediates fit the affinities for substrates on different sides of the membrane and are dependent on the basic free energy levels (Hill, 1976) of the carrier substrate system. From our analysis it is clear that there are three ways to design a system with optimal affinities and that the choice is linked to the sequence of substrate binding. It is possible to use free energy differences of isomerization (Boyer, 1975) or ligand-ligand interactions (Weber, 1975) both of which have been described previously, but which are incorporated here into a unified treatment. A third possibility is to couple the binding step of a transported ligand to the progress of a chemical reaction as might occur, for example, if Na+ must be bound before the carrier can be phosphorylated. In this way the free energy of hydrolysis can be used not only to drive the overall pumping reaction, but also to fix differentially the affinity for substrate on either side of the membrane, as required for rapid pumping.  相似文献   

10.
The initial rate of transport of the bile acid glycocholic acid (GCA) has been measured in influx and efflux across placental basal membrane vesicles, and the mechanism of inhibition of its transport by the analogue taurochenodeoxycholic acid (TCDCA) analysed kinetically. This analogue, although trans-stimulating GCA efflux, inhibits influx in a way which does not depend upon substrate concentration; moreover, its potency as an inhibitor is markedly influenced by whether it is placed on one or on both sides of the vesicles membrane. These findings can be accounted for by postulating that both GCA and TCDCA are translocated through the carrier, but that the rate of loaded carrier reorientation is higher than that of the free carrier only when loaded with TCDCA and not with GCA.  相似文献   

11.
The first application of a laser-temperature-jump apparatus for the study of ion transport through planar (artificial) lipid membranes is described. The relaxation of the electric current is detected, either continuously at a constant applied voltage or discontinuously by a series of short voltage pulses. The second technique, a combined voltage- and temperature-jump method, is especially appropriate to investigate the kinetics of the adsorption/desorption process of hydrophobic ions and neutral carriers of cations at the membrane interface and to separate this phenomenon from the diffusion process through the unstirred aqueous layers adjacent to the membrane. The aim is to determine the rate-limiting step of transport. The permeation rate of the hydrophobic anion 2,4,6-trinitrophenolate is limited by the inner membrane barrier. For tetraphenylberate the rate constant of translocation across the inner barrier and that of desorption from the membrane into water are found to be of comparable magnitude. The membrane permeability of the neutral macrocyclic ion carrier enniatin B is strongly interface limited by its comparatively small rate of desorption into water. These results show that the frequently used a priori assumption of partition equilibrium at the membrane interfaces during transport is not justified.  相似文献   

12.
The lactose carrier, a galactoside:H+ symporter in Escherichia coli, has been purified from cytoplasmic membranes by pre-extraction of the membranes with 5-sulfosalicylate, solubilization in dodecyl-O-beta-D-maltoside, Ecteola-column chromatography, and removal of residual impurities by anti-impurity antibodies. Subsequently, the purified carrier was reincorporated into E. coli phospholipid vesicles. Purification was monitored by tracer N-[3H]ethylmaleimide-labeled carrier and by binding of the substrate p-nitrophenyl-alpha-D-galactopyranoside. All purified carrier molecules were active in substrate binding and the purified protein was at least 95% pure by several criteria. Substrate binding to the purified carrier in detergent micelles and in reconstituted proteoliposomes yielded a stoichiometry close to one molecule substrate bound per polypeptide chain. Large unilamellar proteoliposomes (1-5-micron diameter) were prepared from initially small reconstituted vesicles by freeze-thaw cycles and low-speed centrifugation. These proteoliposomes catalyzed facilitated diffusion and active transport in response to artificially imposed electrochemical proton gradients (delta mu H+) or one of its components (delta psi or delta pH). Comparison of the steady-state level of galactoside accumulation and the nominal value of the driving gradients yielded cotransport stoichiometries up to 0.7 proton/galactoside, suggesting that the carrier protein is the only component required for active galactoside transport. The half-saturation constants for active uptake of lactose (KT = 200 microM) or beta-D-galactosyl-1-thio-beta-D-galactoside (KT = 50-80 microM) by the purified carrier were found to be similar to be similar to those measured in cells or cytoplasmic membrane vesicles. The maximum rate for active transport expressed as a turnover number was similar in proteoliposomes and cytoplasmic membrane vesicles (kcat = 3-4 s-1 for lactose) but considerably smaller than in cells (kcat = 40-60 s-1). Possible reasons for this discrepancy are discussed.  相似文献   

13.
A functional model for the aspartate/glutamate carrier of the inner mitochondrial membrane was established based on a kinetic evaluation of this transporter. Antiport kinetics were measured in proteoliposomes that contained partially purified carrier protein of definite transmembrane orientation (Dierks, T. and Kr?mer, R. (1988) Biochim. Biophys. Acta 937, 122-126). Bireactant initial velocity analyses of the counterexchange reaction were carried out varying substrate concentrations both in the internal and the external compartment. The kinetic patterns obtained were inconsistent with a pong-pong mechanism; rather they demonstrated the formation of a ternary complex as a consequence of sequential binding of one internal and one external substrate molecule to the carrier. Studies on transport activity in the presence of aspartate and glutamate in the same compartment (formally treated as substrate inhibition) clearly indicated that during exchange only one form of the carrier at either membrane surface exposes its binding sites, for which the two different substrates compete. In the deenergized state (pH 6.5) both substrates were translocated at about the same rate. Aspartate/glutamate antiport became asymmetric if a membrane potential was imposed, due to the electrogenic nature of the heteroexchange resulting from proton cotransport together with glutamate. Investigation of the electrical properties of aspartate/aspartate homoexchange led to the conclusion that the translocating carrier-substrate intermediate exhibits a transmembrane symmetry with respect to the (negative) charge, which again only is conceivable assuming a ternary complex. Thus, an antiport model is outlined that shows the functional complex of the carrier with two substrate molecules bound, one at either side of the membrane. The conformational change associated with the transition of both substrate molecules across the membrane then occurs in a single step. Furthermore the model implicates a distinct proton binding site, which is derived from the different influence of H+ concentration observed on transport affinity and transport velocity, respectively, when glutamate is used as a substrate.  相似文献   

14.
The orientation of the lactose:H+ carrier of Escherichia coli in various preparations of native and reconstituted vesicles is determined with two impermeant, macromolecular probes: antibodies directed against the C-terminal decapeptide of the carrier and carboxypeptidase A (EC 3.4.17.1). Two methods are employed. Method I is based upon the digestion of all accessible and, therefore, presumably external, C termini of the carrier with carboxypeptidase A and detection of the remaining, internal C termini with 125I-labelled anti-(C-terminus) antibody after electrophoresis of the carrier in the presence of sodium dodecyl sulfate and transfer to nitrocellulose filters. Method II is based upon the binding of 125I-labelled anti-(C-terminus) antibody to the external C termini of the carrier in vesicles and the subsequent isolation of bound antibody by centrifugation. The labelled antibodies are calibrated using a preparation of inside-out vesicles prepared by high-pressure lysis of strain T206. The carrier content is determined by substrate binding. Because the C terminus of the carrier is known to reside on the cytoplasmic side of the membrane, these methods can also be used to determine the sidedness of various preparations of membrane vesicles. Spheroplasts are confirmed to contain carrier molecules of a single orientation, corresponding to that in right-side-out vesicles. In contrast, in purified cytoplasmic membrane vesicles and in crude membrane preparations obtained by sonication or by high-pressure lysis, 96% of the C termini are accessible to carboxypeptidase A, even after repeated sonication. This implies that nearly all carrier molecules in these preparations possess an orientation opposite to that in the cell or in right-side-out vesicles. In proteoliposomes containing carrier reconstituted or purified and reconstituted by two different methods, only 48% of the carrier molecules are oriented in the same way as in the cell. Subjecting such proteoliposomes to cycles of freezing and thawing or to sonication results in a reshuffling of carrier molecules between the inside-out and right-side-out populations while maintaining 41% in the right-side-out orientation. Digestion of the C terminus of the carrier with carboxypeptidase A does not alter either galactoside binding or countertransport. Thus carrier molecules of the inside-out orientation cannot be selectively inactivated. Additionally, an antiserum directed against the purified carrier is demonstrated to contain nearly exclusively anti-(C-terminus) antibodies, which can, in principle, be used in Method I.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Proton leak pathways uncouple substrate oxidation from ATP synthesis in mitochondria. These pathways are classified as basal (not regulated) or inducible (activated and inhibited). Previously it was found that over half of the basal proton conductance of muscle mitochondria was catalyzed by the adenine nucleotide translocase (ANT), an abundant mitochondrial anion carrier protein. To determine whether ANT is the unique protein catalyst, or one of many proteins that catalyze basal proton conductance, we measured proton leak kinetics in mitochondria isolated from brown adipose tissue (BAT). BAT can express another mitochondrial anion carrier, UCP1, at concentrations similar to ANT. Basal proton conductance was measured under conditions where UCP1 and ANT were catalytically inactive and was found to be lower in mitochondria from UCP1 knockout mice compared to wild-type. Ablation of another abundant inner membrane protein, nicotinamide nucleotide transhydrogenase, had no effect on proton leak kinetics in mitochondria from liver, kidney or muscle, showing that basal proton conductance is not catalyzed by all membrane proteins. We identify UCP1 as a second protein propagating basal proton leak, lending support to the hypothesis that basal leak pathways are perpetrated by members of the mitochondrial anion carrier family but not by other mitochondrial inner membrane proteins.  相似文献   

16.
Non-vesiculated membrane fragments of the basolateral membrane of the rat kidney cortex were isolated by the osmotic shock method and fractionated by means of differentional centrifugation. Formation and purity of membrane fragments were tested morphologically (contact luminescent, phase-contrast and electron microscopy) and biochemically (determination of the activity of marker enzymes--Na+, K+-dependent ATPase and alkaline phosphatase). The activities of Na+, K+-ATPase and alkaline phosphatase in the purified fraction of the basolateral membrane were 21 and 0.2%, respectively, of those in the kidney cortex homogenate. The binding of 14C-hyppuric and 14C-uric acids with basolateral membrane fragments was studied by means of filtration through the millipore filters. The existence of competitive inhibition and substrate saturation of the binding testify to the presence of organic acid carrier in the basolateral membrane. The affinity of the carrier to hyppurate in membrane preparations was proved to be the same as in the intact proximal tubules (the apparent Michaelis constant is equal to 0.7 mM). The equilibrium constant (Kf) for the carrier-hyppurate complex does not exceed 10 M-1. That means that the complex of the carrier with hyppurate is not strong.  相似文献   

17.
Summary Choline transport across the human erythrocyte membrane is irreversibly inhibited when N-ethylmaleimide (NEM) reacts with a carrier SH group which is located outside the substrate site, and which is exposed in the inward-facing form of the carrier but prevented from reacting in the outward-facing form. The location of the SH group with respect to the membrane has now been determined by studying the dependence of the NEM-alkylation rate on the intracellular and extracellular pH. The results show that the reactive SH group equilibrates with hydrogen ions in the cytoplasm, but is completely isolated from hydrogen ions in the external medium. With this added evidence it becomes possible to conclude that the SH group is located in the inner gated channel of the choline carrier.  相似文献   

18.
Carrier facilitated diffusion   总被引:2,自引:0,他引:2  
The concept of a mobile carrier combining reversibly with a substrate is considered as a possible mechanism for facilitated transport across biological membranes. The mathematical model is a system of three reaction diffusion equations with certain boundary conditions. Two limiting cases are discussed in detail: The case of a "thin" membrane where the diffusion of bound and unbound carrier from one surface to the other may be simulated by a single jump. If the diffusion rate of the substance to be transported is small, then an approximate stationary solution is derived using singular perturbation theory. Finally, the results of numerical simulations are presented for a wide range of parameters.  相似文献   

19.
The integral membrane protein, sn-glycerol-3-phosphate acyltransferase, catalyzes the first committed step in phospholipid synthesis, and both acyl-CoA and acyl-acyl carrier protein can be used as acyl donors in this reaction. We found that spermidine increased the specific activity of the acyltransferase when either substrate was used as the acyl donor. Magnesium, as well as other cations, also increased acyltransferase activity but were not nearly as effective as spermidine. Two roles for spermidine in this reaction were deduced from our data. First, spermidine dramatically lowered the Km for glycerol 3-phosphate resulting in an overall rate enhancement when either substrate was used as the acyl donor. This effect was attributed to the modification of the acyl-transferase environment due to the binding of spermidine to membrane phospholipids. A second effect of spermidine was evident only when acyl-acyl carrier protein was used as substrate. Using this acyl donor, a pH optimum of 7.5 was found in the absence of spermidine, but in its presence, the pH optimum was shifted to 8.5. Between pH 7.5 and 8.5, palmitoyl-acyl carrier protein undergoes a conformational change to a more expanded, denatured state and its activity in the acyltransferase assay decreases dramatically. Spermidine restored the native conformation of palmitoyl-acyl carrier protein at pH 8.5, thus accounting for the majority of rate enhancement observed at elevated pH.  相似文献   

20.
In the intravesicle scooting mode of interfacial catalysis, the interfacial complex E*S is formed by the interaction of the membrane bound phospholipase A2 (E*) with the substrate monomer (S) in the interface. In the presence of nonhydrolyzable substrate analogs (I) the kinetics of interfacial catalysis is modified. If phospholipase A2 is added to a mixture of the vesicles of L-DMPMe ester and of DTPMe ether or D-DMPMe ester, the extent of hydrolysis, A, decreases and the interfacial scooting rate constant, ki, remains unchanged. On the other hand, when the enzyme is added to the vesicles prepared from premixed L-DMPMe ester with D-DMPMe ester or L-DTPMe ether, ki decreases but A remains constant. Qualitatively, these results are in excellent accord with the Scheme I for interfacial catalysis. However, a quantitative departure has been noted, which suggests that the interfacial dissociation constant for E*S is larger than that for E*I. These results are interpreted to suggest that the catalytic rate constant for decomposition of E*S to E* + P is larger than the rate constant for decomposition of E*S to E* + S. Broader implications of the scooting mode of interfacial catalysis are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号