首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cells of the proliferative compartment in the crypt of the small intestine undergo a step by step differentiation and/or maturation from stem cells to the functional cells on the villi. The consequent hierarchical organization of the proliferative cell population can be related to the actual position of cells within the crypt. The stem cells are found near the bottom of the crypt with the more mature cells occurring at increasingly higher positions. The sensitivity of proliferative cells in the crypt of small intestine to radiation-induced mitotic delay was investigated at each position within the crypt. Using the stathmokinetic method (vincristine accumulation), the following were noted. The yield of mitotic figures 3 h immediately after irradiation showed a strong cell position dependence with the cells at the base of the crypt being most inhibited and those at the top of the proliferative compartment least affected. The mitotic yields were largely unaffected for the first 15 min suggesting that there is a transition point (Tp) for radiosensitivity which is located about 15 min before metaphase for all crypt cells. Cells located less than 15 min from metaphase are unaffected while those more than 15 min from metaphase are inhibited from further cell cycle progression. After this initial delay all proliferative cells were inhibited in their progression through G2 but some recovered more quickly than others. The ratio of the time of division delay (Td) in stem cells to that in cells at the top of the proliferative compartment was about 3:1. In absolute values Td after 1.0 Gy was about 1 h and 2.8 h, for cells at the top of the crypt and at the base, respectively. After 2.5 Gy the corresponding values were less than 3 h and between 5 and 6 h for the mid-crypt and crypt base respectively. There is thus a dependence on dose for the duration of the mitotic inhibition which for the cells at the top of the crypt is similar to the widely quoted average value 1 h per Gy, but the duration depends strongly on cell position. Thus not all proliferative cells respond in the same way. The duration is shorter the closer the proliferative cells are to their last cell division in the proliferative hierarchy in the crypt and longest for cells situated where the stem cells are to be expected.  相似文献   

2.
The position-dependent mitotic index before, and 1, 2 and 3 h after vincristine was scored. The accumulation of cells in mitosis leads to an increase in the mitotic index from 0.06 to 0.34 at crypt positions 8-12. Surprisingly, the leading edge of the position-related mitotic index distribution moves to higher crypt positions although cell division was stopped. In addition, the vertical clustering of mitotic figures in sections was recorded. The data were examined using a previously described computer crypt model. We conclude: the average mitotic phase duration is about 0.7 h (40 min) and varies little with cell position; the geometrical correction factor for overscoring mitoses in crypt sections is about 0.6-0.7 and adjacent cell columns can merge. Lateral cell displacement after mitosis, as predicted in a previous model analysis, would be a mechanism to counteract other forces that tend to reduce the crypt circumference. In the normal steady state merging and expansion processes would just balance each other. This would not follow if one mechanism was blocked. Thus we propose a new concept in which the crypt geometry would be dynamically determined by cell proliferative activity in connection with lateral positioning of new cells on one hand and contracting forces on the other hand.  相似文献   

3.
Using autoradiographic methods it was noted that S phase cells at the bottom of the crypts in the small intestine were the most efficient scavengers of exogenous injected thymidine. The efficiency of the incorporation of 3H-TdR (salvage pathway of DNA synthesis) by cells at the crypt base (stem cell zone) was twice as high as for the S phase cells at the top of the crypt (maturing proliferative cells). There were no such position-dependent differences in incorporation of 3H-UdR (de novo pathway of DNA synthesis). Radiation (0.75-5.0 Gy 137Cs gamma-rays) inhibited the incorporation of 3H-TdR very rapidly and this was also cell-position dependent. The cells at the bottom of the crypt were the most affected. The injection of cold thymidine before 3H-TdR changed the pattern of the incorporation of 3H-TdR along the side of the crypt in a very similar way to radiation, and the grain number was decreased predominantly in the cells at lower positions. The possibility of the existence of a regional gradient of endogenous thymidine (reutilization from intestinal sources), and the influence of irradiation on the gradient of thymidine incorporation resulting from direct and abscopal effects of whole body exposure, are discussed.  相似文献   

4.
The process of cell maturation and cell ageing of absorptive epithelial cells was investigated in normal rat duodenum. The development of a number of enzymes bound to subcellular organelles was studied by using microchemical analyses on various cell compartments dissected from crypts and villi from freeze-dried cryostat sections. The development of the ultrastructural features of the absorptive epithelium was investigated by electron microscopy of various cell positions along the whole length of the crypt and the base of the villus. The data obtained were related to cell position along the crypt and villus and to cell age during migration from the bottom of the crypt to the tip of the villus.The influence of changes in the life-span of the cells and of increasing proliferative activity was studied by comparing normal rat duodenum with that from germfree rats and rats recovering from low radiation doses (72 hr after 400 R).Our data show that the specific activity of nonspecific esterases mainly localized in the endoplasmic reticulum increases when the cells migrate along the upper half of the crypt and the basal part of the villus. Activity of alkaline phosphatase, measured as a marker for the microvilli, is absent in the crypt, but increases linearly from the base of the villus to the tip. The longer life-span of villus cells in germfree animals does not result in a higher activity of these enzymes than in normal animals. An increased proliferative activity in the crypt, as present 72 hr after X-irradiation, is accompanied by a decreased activity of both enzymes but the pattern of activity during cell migration remains the same. The specific activity of enzymes bound to mitochondria or lysosomes (monoamineoxidase and β-N-acetylglucosaminidase) are not affected by changing crypt cell kinetics.Electrophoretic analyses of isolated cell compartments showed that the increase during normal differentiation or the decrease after X-irradiation of esterase activity is due to changes in overall activity, not to the appearance or disappearance of specific isoenzymes. Electron microscopy showed that in the normal intestine there is a gradual development of ultrastructural features during migration of the cell along the crypt while the most drastic changes in cell structure occur at the moment the cell enters the villus. Contrary to our expectation, the ultrastructural development was not influenced by increased proliferative activity in the crypt 72 hr after irradiation, and hence the decrease in enzyme activity found cannot be related to changes in ultrastructure.  相似文献   

5.
Pin C  Watson AJ  Carding SR 《PloS one》2012,7(5):e37115
We developed a slow structural relaxation model to describe cellular dynamics in the crypt of the mouse small intestine. Cells are arranged in a three dimensional spiral the size of which dynamically changes according to cell production demands of adjacent villi. Cell differentiation and proliferation is regulated through Wnt and Notch signals, the strength of which depends on the local cell composition. The highest level of Wnt activity is associated with maintaining equipotent stem cells (SC), Paneth cells and common goblet-Paneth cell progenitors (CGPCPs) intermingling at the crypt bottom. Low levels of Wnt signalling area are associated with stem cells giving rise to secretory cells (CGPCPs, enteroendocrine or Tuft cells) and proliferative absorptive progenitors. Deciding between these two fates, secretory and stem/absorptive cells, depends on Notch signalling. Our model predicts that Notch signalling inhibits secretory fate if more than 50% of cells they are in contact with belong to the secretory lineage. CGPCPs under high Wnt signalling will differentiate into Paneth cells while those migrating out from the crypt bottom differentiate into goblet cells. We have assumed that mature Paneth cells migrating upwards undergo anoikis. Structural relaxation explains the localisation of Paneth cells to the crypt bottom in the absence of active forces. The predicted crypt generation time from one SC is 4-5 days with 10-12 days needed to reach a structural steady state. Our predictions are consistent with experimental observations made under altered Wnt and Notch signalling. Mutations affecting stem cells located at the crypt floor have a 50% chance of being propagated throughout the crypt while mutations in cells above are rarely propagated. The predicted recovery time of an injured crypt losing half of its cells is approximately 2 days.  相似文献   

6.
Abstract. The position-dependent mitotic index before, and 1, 2 and 3 h after vincristine was scored. the accumulation of cells in mitosis leads to an increase in the mitotic index from 0.06 to 0.34 at crypt positions 8-12. Surprisingly, the leading edge of the position-related mitotic index distribution moves to higher crypt positions although cell division was stopped. In addition, the vertical clustering of mitotic figures in sections was recorded. the data were examined using a previously described computer crypt model. We conclude: the average mitotic phase duration is about 0.7 h (40 min) and varies little with cell position; the geometrical correction factor for overscoring mitoses in crypt sections is about 0.6-0.7 and adjacent cell columns can merge. Lateral cell displacement after mitosis, as predicted in a previous model analysis, would be a mechanism to counteract other forces that tend to reduce the crypt circumference. In the normal steady state merging and expansion processes would just balance each other. This would not follow if one mechanism was blocked. Thus we propose a new concept in which the crypt geometry would be dynamically determined by cell proliferative activity in connection with lateral positioning of new cells on one hand and contracting forces on the other hand.  相似文献   

7.
The durations of the phases of the cell cycle were measured at different levels in the jejunal crypts of male Balb/c mice. A mean cell cycle time of 12.3 h was found for the whole crypt. In cell positions 1 and 2, the cell cycle time was 16.7 h, and this time steadily decreased to a value of between 10 and 11 h for cell positions above 11. It is concluded that basally situated crypt cells in the mouse are cycling relatively slowly, and that they form the functional stem cell pool for the crypt. These cells may also compose the potential stem cell pool which repopulates the crypt after death of proliferative cells.  相似文献   

8.
The regional variation of the duration of cell cycle parameters was studied by constructing fraction of labelled mitoses curves at several levels in the jejunal crypt column of male Wistar rats. Prolonged Tc and Ts values were apparent only in the bottom eight cell positions, and these differences were shown to be significant compared with the remaining cell positions by analysing the data by the method of Gilbert (1972). Above cell position 8 the proliferating crypt cells showed effectively the same phase durations. For the whole crypt column Tc was 11.32 ± 0.14 (SE) and Ts 6.49 ± 0.10. Although variation in phase durations was confined to the basal portion of the crypt, the results essentially confirm the findings of Cairnie, Lamerton & Steel (1965a), and may be interpreted in terms of the slow cut-off model. The demonstration of prolonged Tc values in basal cell positions confirms the presence of a longer cycling subpopulation of cells at the bottom of the crypt.  相似文献   

9.
Synopsis The activity and ultrastructural localization of alkaline phosphatase and esterase has been studied in normal rat intestine and after the increased crypt cell proliferation that occurs during recovery after 400 rad X-irradiation. Alkaline phosphatase activity is not present in crypt cells of normal intestine, but becomes apparent after the cell has migrated on to the villus. The enzyme is localized in the microvilli, along the lateral cell membranes and in dense bodies. Its activity increases 10 to 15-fold from the base to the tip of the villus. Morphometric analysis of the cell structureswhere this enzyme is localized reveals no marked changes in their relative proportions during crypt cell development.The expansion of the proliferative cell compartment along the whole length of the crypt which occurs during recovery after irradiation (72 hr after 400 rad X-irradiation) results in a marked reduction of alkaline phosphatase activity in the lower 10–15 cell positions at the base of the villus. During subsequent migration of these cells, the activity increases with cell age but normal values are not attained. From a morphometric analysis it was found that the ultrastructural development is similar to that in controls. These results suggest that during cell maturation, normal values for alkaline phosphatase activity are only attained after a 10–12 hr period of maturation in a non-proliferative state and only after the cell has migrated on to the functional villus compartment.In normal intestine, esterase activity shows a 3-fold increase from the bottom to the tip of the crypt and a 3 to 4-fold increase during migration up to the middle of the villus. Enzyme activity is localized in the endoplasmic reticulum, the dense bodies and the perinuclear space. Morphometric analyses reveal a 2 to 3-fold increase in the absolute size of these subcellular compartments during crypt cell differentiation and a 2-fold increase at the crypt-villus junction. The relative sizes increase 1.5-fold during crypt cell differentiation and at the time of transition of the cells on to the villus.Increased crypt cell proliferation after irradiation leads to a marked decrease in esterase activity both in crypts and villi. Morphometric analyses of electron micrographs indicate that these changes in activity are not related to any changes in the subcellular structures in which the enzyme is localized. It appears that the normal development of esterase activity depends both on the functional state of the cell and its localization in the crypt or villus.  相似文献   

10.
11.
Some features of the proliferative cells at the bottom of the ileal crypts in BDF1 mice have been studied in relation to the distribution of Paneth cells (PC) in an attempt to clarify the nature and function of these crypt base columnar cells (BCC) and to elucidate some aspects of the role of the microenvironment created by the PC. Longitudinal sections of crypts have shown that the ratio of PC to the BCC, which are scattered amongst the PC, is 2.7:1 in sections or approximately 29 PC and 9 BCC per whole crypt, i.e., a ratio of 3.2:1. The labelling index of BCC is about 35%, which is comparable to that of mid-crypt columnar cells. Although the BCC do become labeled, it is concluded that they cannot create vertical pairs or runs of several adjacent BCC since this would seriously disturb the distribution of Paneth cells. Only in dividing crypts are such runs (consisting of 3 to 5 cells) observed. The ability of BCC to synthesize DNA is not dependent on their position in the Paneth cell zone. In 95% of the crypts, the highest Paneth cell is below the 7th cell position from the bottom of the crypt, and the positions of the highest PC on either side of a given crypt are similar. The secreted granules or the cytoplasm of PC specifically bind pokeweed lectin, and this can be used for identification. Tracer doses of 3HTdR (37 kBq/gm body weight) result in the histological death of some BCC, and these damaged cells are evenly distributed throughout the Paneth cell zone. These tracer doses are somewhat selectively incorporated into BCC, i.e., the BCC have a higher grain count in autoradiographs, probably because they possess more thymidine kinase enzyme activity. This ability is very sensitive to the withdrawal of food, because 24 hr of fasting abolished the observed gradient in the intensity of labelling, which is very well correlated with the distribution of BCC. Regeneration of the crypts following cytotoxic exposure to Ara-C is initiated at the base of the crypt and hence may involve the BCC with possible help from the Paneth cells. The latter are insensitive to cytotoxic (S phase specific) agents and may help in the regeneration by preserving the architecture of the base of the crypt.  相似文献   

12.
Y Li  H Naveed  S Kachalo  LX Xu  J Liang 《PloS one》2012,7(8):e43108
Regulation of cell growth and cell division has a fundamental role in tissue formation, organ development, and cancer progression. Remarkable similarities in the topological distributions were found in a variety of proliferating epithelia in both animals and plants. At the same time, there are species with significantly varied frequency of hexagonal cells. Moreover, local topology has been shown to be disturbed on the boundary between proliferating and quiescent cells, where cells have fewer sides than natural proliferating epithelia. The mechanisms of regulating these topological changes remain poorly understood. In this study, we use a mechanical model to examine the effects of orientation of division plane, differential proliferation, and mechanical forces on animal epithelial cells. We find that regardless of orientation of division plane, our model can reproduce the commonly observed topological distributions of cells in natural proliferating animal epithelia with the consideration of cell rearrangements. In addition, with different schemes of division plane, we are able to generate different frequency of hexagonal cells, which is consistent with experimental observations. In proliferating cells interfacing quiescent cells, our results show that differential proliferation alone is insufficient to reproduce the local changes in cell topology. Rather, increased tension on the boundary, in conjunction with differential proliferation, can reproduce the observed topological changes. We conclude that both division plane orientation and mechanical forces play important roles in cell topology in animal proliferating epithelia. Moreover, cell memory is also essential for generating specific topological distributions.  相似文献   

13.
The influence of 400 R X-irradiation on the localization and the number of mature and immature goblet cells and Paneth cells in rat duodenal epithelium has been studied. At short times after irradiation, when the total proliferative activity in the crypts of Lieberkuhn is reduced, the proportion of mature and immature goblet cells of the total number of crypt cells was increased; also an absolute increase in the number of goblet cells in the crypts was found. The immature goblet cells were localized in the lower half of the crypt as in control animals, whereas the number of the mature cells increased over the whole crypt length. When the proliferative activity of the crypt cells increases again from 12 to 48 hr after irradiation the number of both types of goblet cells decreases. Between 48 and 72 hr, when the whole crypt is involved in proliferation, a second increase of both types of goblet cells was found. However, the localization of the immature goblet cells is no longer restricted to the lower half of the crypt but they also appear at the higher cell positions. On the villus no immature goblet cells were found and the changes in the numbers of mature goblet cells do reflect the changes induced by irradiation in the goblet cell population in the crypt. The absolute number and localization of Paneth cells did not change under the experimental conditions. The findings are discussed in relation to cell proliferation and differentiation processes in intestinal crypts.  相似文献   

14.
Epithelial cell kinetics were investigated in the descending colon of the rat. The number of cells per crypt was found to be approximately 625, with 33 cells per cell column and 19 cell columns per crypt circumference. The growth fraction of the colonic crypt was 0.42, and proliferating cells were situated largely in the lower half of the crypt. The cell cycle time was 50.5 h, with values for the G1, S and G2 phases of 40.0, 7.6 and 2.9 h respectively. Cell migration studies showed that it took 60-72 h for a cell to migrate from the upper border of the proliferative cell compartment in the crypt to the luminal surface of the colon. Data were also obtained from continuous labelling with tritiated thymidine and from studying the circadian rhythm of proliferative activity, which suggest that the cells in the bottom of the crypt may constitute a separate, more slowly cycling (stem)cell compartment.  相似文献   

15.
Abstract. The control mechanisms involved in regeneration of murine intestinal crypts after perturbations are presently not well understood. The existence of some feedback signals from the cells on the villus to the cells in the crypt has been suggested. However, some recent experimental data point to the fact that regeneration in the crypt starts very early after perturbation, at a time when the villus cell population has hardly changed. In particular, this early cell proliferative activity is seen specifically at the bottom of the crypt, i.e. in the presumed stem cell zone and furthest from the villus.
The objective of this study was to investigate whether a new concept of regulation operating solely at the stem cell level could explain the present mass of accumulated data on the post-irradiation recovery, which is an extensively studied perturbation from the experimental point of view. In order to check its validity, the new concept was formalized as a mathematical simulation model thus enabling comparison with experimental data. The model describes the cellular development from stem cells to the mature villus cells. As a basic feature it is assumed that the self-maintenance and the cell cycle activity of the stem cells are controlled by the number of these cells in an autoregulatory fashion. The essential features of the experimental data (i.e. the recovery with time and the consistency between different types of measurements) can be very well reproduced by simulations using a range of model parameters. Thus, we conclude that stem cell autoregulation is a valid concept which could replace the villus crypt feedback concept in explaining the early changes after irradiation when the damage primarily affects the crypt. The question of the detailed nature of the control process requires further investigation.  相似文献   

16.
Epithelial cell recruitment was examined in mouse ileum after external gamma-irradiation (50 cGy) or internal beta-irradiation (0.148 MBq/g of [3H]thymidine), using the per cent-labelled-mitoses method and by analysing the distribution of mitotic cells in the crypts. In the presumptive stem cell zone at the lower cell positions of the crypt, the slowly cycling cells decreased their cell cycle 6 or 12 hours after a dose of 50 cGy. In the higher cell positions, a slight shortening of the cell cycle was also observed. After administration of a high dose of [3H]thymidine, dormant (G0) cells also entered the cell cycle in the lower cell positions. The results suggest that stem cells in the crypt may react to irradiation in two ways: first, by shortening the cell cycle in cycling cells; secondly, by an entry into the cell cycle by other dormant cells. There was destruction of some cycling stem cells before any recruitment. The data support the idea that the stem cell population in the crypt is heterogeneous.  相似文献   

17.
The influence of 400 R X-irradiation on the localization and the number of mature and immature goblet cells and Paneth cells in rat duodenal epithelium has been studied. At short times after irradiation, when the total proliferative activity in the crypts of Lieberkiihn is reduced, the proportion of mature and immature goblet cells of the total number of crypt cells was increased; also an absolute increase in the number of goblet cells in the crypts was found. The immature goblet cells were localized in the lower half of the crypt as in control animals, whereas the number of the mature cells increased over the whole crypt length. When the proliferative activity of the crypt cells increases again from 12 to 48 hr after irradiation the number of both types of goblet cells decreases. Between 48 and 72 hr, when the whole crypt is involved in proliferation, a second increase of both types of goblet cells was found. However, the localization of the immature goblet cells is no longer restricted to the lower half of the crypt but they also appear at the higher cell positions. On the villus no immature goblet cells were found and the changes in the numbers of mature goblet cells do reflect the changes induced by irradiation in the goblet cell population in the crypt. The absolute number and localization of Paneth cells did not change under the experimental conditions. The findings are discussed in relation to cell proliferation and differentiation processes in intestinal crypts.  相似文献   

18.
Asymmetric cell divisions occur repeatedly during plant development, but the mechanisms by which daughter cells are directed to adopt different fates are not well understood [1,2]. Previous studies have demonstrated roles for positional information in specification of daughter cell fates following asymmetric divisions in the embryo [3] and root [4]. Unequally inherited cytoplasmic determinants have also been proposed to specify daughter cell fates after some asymmetric cell divisions in plants [1,2,5], but direct evidence is lacking. Here we investigate the requirements for specification of stomatal subsidiary cell fate in the maize leaf by analyzing four mutants disrupting the asymmetric divisions of subsidiary mother cells (SMCs). We show that subsidiary cell fate does not depend on proper localization of the new cell wall during the SMC division, and is not specified by positional information acting on daughter cells after completion of the division. Instead, our data suggest that specification of subsidiary cell fate depends on polarization of SMCs and on inheritance of the appropriate daughter nucleus. We thus provide evidence of a role for unequal inheritance of an intracellular determinant in specification of cell fate after an asymmetric plant cell division.  相似文献   

19.

Background and Aims

The importance of cell division models in cellular pattern studies has been acknowledged since the 19th century. Most of the available models developed to date are limited to symmetric cell division with isotropic growth. Often, the actual growth of the cell wall is either not considered or is updated intermittently on a separate time scale to the mechanics. This study presents a generic algorithm that accounts for both symmetrically and asymmetrically dividing cells with isotropic and anisotropic growth. Actual growth of the cell wall is simulated simultaneously with the mechanics.

Methods

The cell is considered as a closed, thin-walled structure, maintained in tension by turgor pressure. The cell walls are represented as linear elastic elements that obey Hooke''s law. Cell expansion is induced by turgor pressure acting on the yielding cell-wall material. A system of differential equations for the positions and velocities of the cell vertices as well as for the actual growth of the cell wall is established. Readiness to divide is determined based on cell size. An ellipse-fitting algorithm is used to determine the position and orientation of the dividing wall. The cell vertices, walls and cell connectivity are then updated and cell expansion resumes. Comparisons are made with experimental data from the literature.

Key Results

The generic plant cell division algorithm has been implemented successfully. It can handle both symmetrically and asymmetrically dividing cells coupled with isotropic and anisotropic growth modes. Development of the algorithm highlighted the importance of ellipse-fitting to produce randomness (biological variability) even in symmetrically dividing cells. Unlike previous models, a differential equation is formulated for the resting length of the cell wall to simulate actual biological growth and is solved simultaneously with the position and velocity of the vertices.

Conclusions

The algorithm presented can produce different tissues varying in topological and geometrical properties. This flexibility to produce different tissue types gives the model great potential for use in investigations of plant cell division and growth in silico.  相似文献   

20.
This review examines under what circumstances the rate of cell division among cells of the root meristem is known to vary. First, methods are compared that have been used to quantify cell division rate. These can be grouped as being either cytological, in which the rate of accumulation of cells in a particular phase of the cell cycle is determined based on some form of cytological labeling, or kinematic, in which the rate of cell accumulation is determined from the net movement of cells. Then, evidence is reviewed as to whether cell division rates vary between different tissues or cell types, between different positions in the root, or finally between different environments. The evidence is consistent with cells dividing at a constant rate, and well documented examples where cell division rate changes substantially are rare. The constancy of cell division rate contrasts with the number of dividing cells, which varies extensively, and implies that a major point for cell cycle control is governing the exit from the proliferative state at the basal boundary of the meristem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号