首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-term potentiation (LTP) of synaptic transmission represents the cellular basis of learning and memory. Astrocytes have been shown to regulate synaptic transmission and plasticity. However, their involvement in specific physiological processes that induce LTP in vivo remains unknown. Here we show that in vivo cholinergic activity evoked by sensory stimulation or electrical stimulation of the septal nucleus increases Ca2+ in hippocampal astrocytes and induces LTP of CA3-CA1 synapses, which requires cholinergic muscarinic (mAChR) and metabotropic glutamate receptor (mGluR) activation. Stimulation of cholinergic pathways in hippocampal slices evokes astrocyte Ca2+ elevations, postsynaptic depolarizations of CA1 pyramidal neurons, and LTP of transmitter release at single CA3-CA1 synapses. Like in vivo, these effects are mediated by mAChRs, and this cholinergic-induced LTP (c-LTP) also involves mGluR activation. Astrocyte Ca2+ elevations and LTP are absent in IP3R2 knock-out mice. Downregulating astrocyte Ca2+ signal by loading astrocytes with BAPTA or GDPβS also prevents LTP, which is restored by simultaneous astrocyte Ca2+ uncaging and postsynaptic depolarization. Therefore, cholinergic-induced LTP requires astrocyte Ca2+ elevations, which stimulate astrocyte glutamate release that activates mGluRs. The cholinergic-induced LTP results from the temporal coincidence of the postsynaptic activity and the astrocyte Ca2+ signal simultaneously evoked by cholinergic activity. Therefore, the astrocyte Ca2+ signal is necessary for cholinergic-induced synaptic plasticity, indicating that astrocytes are directly involved in brain storage information.  相似文献   

2.
《Journal of Physiology》1996,90(5-6):317-319
Changes in [Ca2+]i were measured in layer II–III pyramid cells of the rat visual cortex slices during application of either LTP or LTD inducing stimulation protocols. At dendritic sites activated by the stimulated afferents [Ca2+]i reached higher amplitudes and decayed more slowly with LTP than with LTD inducing stimuli. In the presence of Ca2+ chelators, the stimulation protocol that would normally produce LTP induced either LTD or failed to induce synaptic modifications altogether. These results support the hypothesis that the polarity of synaptic gain changes depends on the magnitude of postsynaptic [Ca2+]i reponses, the induction of LTP requiring a more pronounced surge of [Ca2+i than the induction of LTD.  相似文献   

3.
Abstract: Activation of the calcium-dependent protease calpain has been proposed to be a necessary step in the formation of long-term potentiation (LTP) in the hippocampus, and stimulation of N-methyl-d -aspartate (NMDA) receptors leads to an increase in intracellular calcium concentration, calpain activation, proteolysis of cytoskeletal elements, and modification of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor properties. In the present study, we evaluated the effects of NMDA treatment of cultured hippocampal slices on the properties of AMPA receptors. Cultured hippocampal slices were treated with NMDA (100 µM) for 15 min and [3H]AMPA binding to membrane fractions was measured. NMDA-treated slices exhibited an increase in both “high-affinity” and “low-affinity” [3H]-AMPA binding, with smaller changes in 6-cyano-7-nitro[3H]quinoxaline-2,3-dione binding. The increase in [3H]AMPA binding was significantly reduced by preincubation of cultures with calpain inhibitor I or calpeptin (100 µM). Furthermore, NMDA exposure decreased the number of GluR1 subunits of AMPA receptors detected by an antibody against the C-terminal domain of the subunit in western blots and resulted in the formation of a lower molecular weight species detected by an antibody against the N-terminal domain. Both effects were completely prevented by calpain inhibitors. These results indicate that NMDA receptor activation produces calpain activation and complex modifications of AMPA receptor properties, which could be involved in NMDA receptor-mediated changes in synaptic efficacy.  相似文献   

4.
Abstract: The release of adenosine and ATP evoked by electrical field stimulation in rat hippocampal slices was investigated with the following two patterns of stimulation: (1) a brief, high-frequency burst stimulation (trains of stimuli at 100 Hz for 50 ms applied every 2 s for 1 min), to mimic a long-term potentiation (LTP) stimulation paradigm, and (2) a more prolonged (3 min) and low-frequency (5 Hz) train stimulation, to mimic a long-term depression (LTD) stimulation paradigm. The release of ATP was greater at a brief, high-frequency burst stimulation, whereas the release of [3H]adenosine was slightly greater at a more prolonged and low-frequency stimulation. To investigate the source of extracellular adenosine, the following two pharmacological tools were used; α,β-methylene ADP (AOPCP), an inhibitor of ecto-5′-nucleotidase, to assess the contribution of the catabolism of released adenine nucleotides as a source of extracellular adenosine, and S-(4-nitrobenzyl)-6-thioinosine (NBTI), an inhibitor of adenosine transporters, to assess the contribution of the release of adenosine, as such, as a source of extracellular adenosine. At low-frequency stimulation, NBTI inhibited by nearly 50% the evoked outflow of [3H]adenosine, whereas AOPCP inhibited [3H]adenosine outflow only marginally. In contrast, at high-frequency stimulation, AOPCP inhibited by 30% the evoked release of [3H]adenosine, whereas NBTI produced a 40% inhibition of [3H]adenosine outflow. At both frequencies, the kinetics of evoked [3H]adenosine outflow was affected in different manners by AOPCP and NBTI; NBTI mainly depressed the rate of evoked [3H]adenosine outflow, whereas AOPCP mainly inhibited the later phase of evoked [3H]adenosine accumulation. These results show that there is a simultaneous, but quantitatively different, release of ATP and adenosine from rat hippocampal slices stimulated at frequencies that can induce plasticity phenomena such as LTP (100 Hz) or LTD (5 Hz). The source of extracellular adenosine is also different according to the frequency of stimulation; i.e., at a brief, high-frequency stimulation there is a greater contribution of released adenine nucleotides for the formation of extracellular adenosine than at a low frequency with a more prolonged stimulation.  相似文献   

5.
Brain slices have a number of features that may be of value in the analysis of how physiological events affect neuronal chemistry. This paper discusses this topic and describes slice experiments concerned with the chemical events responsible for long-term potentiation (LTP) of synaptic responses found in hippocampus after brief episodes of high-frequency stimulation. Work with two variants of the slice procedure indicated that LTP is accompanied by an increase in the sodium-independent binding of [3H]glutamate to partially purified synaptic membranes; this effect very likely results from an increase in the numbers of a particular postsynaptic receptor. Stimulation that produces long-term potentiation also causes a significant change in the endogenous phosphorylation of pyruvate dehydrogenase (PDH), a key mitochondrial enzyme. Inasmuch as the phosphorylated state of PDH is strongly correlated with calcium sequestration by mitochondria, it is possible that LTP is triggered by a transient perturbation of the calcium buffering function provided by mitochondria. Low micromolecular levels of calcium increase glutamate binding to purified membranes apparently via the activation of a calcium-sensitive thiol proteinase. This mechanism could account for the increase in glutamate binding found in slices exhibiting LTP. These experiments suggest a possible explanation for long-term potentiation and indicate that slices can be used to detect at least some of the biochemical consequences of repetitive synaptic activity.  相似文献   

6.
7.
G Hess  U Kuhnt 《Folia biologica》1989,37(3-4):195-202
A minimal intensity of the stimulation necessary for the induction of long-term potentiation of synaptic transmission (LTP) was investigated by intracellular recording in guinea pig in vitro hippocampal slices. High frequency stimulation of afferent fibres at intensities evoking in CA 1 neurons control excitatory postsynaptic potentials (EPSPs) of amplitudes 1-5 mV, resulted usually in a long-lasting increase in response amplitude. LTP was not observed at lower stimulus strength. The coactivation of a certain, though small number of synaptic contacts is thus necessary for the production of LTP.  相似文献   

8.
Synaptosomes prepared from guinea-pig cerebral cortex were suspended in a medium containing [32P]orthophosphate and subjected to electrical stimulation. When the synaptosomal phospholipids were subsequently separated, the most highly labelled was phosphatidic acid and electrical stimulation over a 10 min period increased incorporation of 32P1 into this lipid. Stimulated synaptosomes were osmotically lysed and subsynaptosomal fractions isolated. The electrically stimulated increase in phosphatidic acid labelling was localized in a fraction enriched in synaptic vesicles. This phospholipid effect was not merely a reflection of an increased specific radioactivity of synaptosomal ATP, due to the electrically stimulated increase in respiration. The time course of the phosphatidic acid effect suggests that it is synchronous with release of transmitter.  相似文献   

9.
Cannabinoids exert powerful action on various forms of synaptic plasticity. These retrograde messengers modulate GABA and glutamate release from presynaptic terminals by acting on presynaptic CB1 receptors. In particular, they inhibit long-term potentiation (LTP) elicited by electrical stimulation of excitatory pathways in rat hippocampus. Recently, LTP of the field excitatory postsynaptic potential (fEPSP) induced by exogenous ATP has been thoroughly explored. The present study demonstrates that cannabinoids inhibit ATP-induced LTP in hippocampal slices of rat. Administration of 10 μM of ATP led to strong inhibition of fEPSPs in CA1/CA3 hippocampal synapses. Within 40 min after ATP removal from bath solution, robust LTP was observed (fEPSP amplitude comprised 130.1 ± 3.8% of control, n = 10). This LTP never appeared when ATP was applied in addition to cannabinoid receptor agonist WIN55,212-2 (100 nM). Selective CB1 receptor antagonist, AM251 (500 nM), completely abolished this effect of WIN55,212-2. Our data indicate that like canonical LTP elicited by electrical stimulation, ATP-induced LTP is under control of CB1 receptors.

Electronic supplementary material

The online version of this article (doi:10.1007/s11302-012-9296-5) contains supplementary material, which is available to authorized users.  相似文献   

10.
Excitatory synaptic stimulation of the R2 neuron in the abdominal ganglion of Aplysia californica causes an increased incorporation of 3Huridine into RNA. However, this could be the result of a change in precursor specific activity rather than an increase in RNA synthesis. We find that at low external uridine concentrations (1.5 μM) there is no increase in 3H-uridine incorporation correlated with synaptic stimulation. In addition, no change in incorporation of 3H-leucine into total protein or in the pattern of newly-synthesized proteins, resolved by electrophoresis on SDS-polyacrylamide gels, was detected with stimulation. Since the R2 neuron can be stimulated without a detectable change in RNA or protein synthesis, we conclude that the increase in incorporation observed at high external uridine concentrations (100 μM) could be caused by increased specific activity in a precursor pool rather than by an RNA synthesis change.  相似文献   

11.
Iron deficiency hinders hippocampus-dependent learning processes and impairs cognitive performance, but current knowledge on the molecular mechanisms underlying the unique role of iron in neuronal function is sparse. Here, we investigated the participation of iron on calcium signal generation and ERK1/2 stimulation induced by the glutamate agonist N-methyl-D-aspartate (NMDA), and the effects of iron addition/chelation on hippocampal basal synaptic transmission and long-term potentiation (LTP). Addition of NMDA to primary hippocampal cultures elicited persistent calcium signals that required functional NMDA receptors and were independent of calcium influx through L-type calcium channels or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; NMDA also promoted ERK1/2 phosphorylation and nuclear translocation. Iron chelation with desferrioxamine or inhibition of ryanodine receptor (RyR)-mediated calcium release with ryanodine-reduced calcium signal duration and prevented NMDA-induced ERK1/2 activation. Iron addition to hippocampal neurons readily increased the intracellular labile iron pool and stimulated reactive oxygen species production; the antioxidant N-acetylcysteine or the hydroxyl radical trapper MCI-186 prevented these responses. Iron addition to primary hippocampal cultures kept in calcium-free medium elicited calcium signals and stimulated ERK1/2 phosphorylation; RyR inhibition abolished these effects. Iron chelation decreased basal synaptic transmission in hippocampal slices, inhibited iron-induced synaptic stimulation, and impaired sustained LTP in hippocampal CA1 neurons induced by strong stimulation. In contrast, iron addition facilitated sustained LTP induction after suboptimal tetanic stimulation. Together, these results suggest that hippocampal neurons require iron to generate RyR-mediated calcium signals after NMDA receptor stimulation, which in turn promotes ERK1/2 activation, an essential step of sustained LTP.  相似文献   

12.
High-frequency electrical stimulation in the hippocampus leads to an increase in synaptic efficacy that lasts for many hours. This long-term potentiation (LTP) of synaptic transmission is presumed to play a crucial role in learning and memory in the brain. However, the frequency of stimulation generally used to obtain LTP is beyond the normal physiological range of activity of hippocampal neurons. We found that LTP can be induced by an electrical stimulation whose frequency is comparable to that of the naturally occurring firing activity of hippocampal neurons if the stimulating pulseinterval train has a special time structure. In the present experiment, we compared the magnitude of LTP induced by the four types of stimuli which have the same pulse number and the same mean frequency but different time structure in interstimulus intervals. One type of stimuli has regular intervals, and this served as a control stimulus. In the other three types of stimuli, the adjacent interstimulus interval had the following statistical properties: in type 1, their correlations are positive; in type 2, negative; and in type 3, independent. The magnitude of LTP induced by these four types of stimuli showed clear order relationships: type 3/type 1 control > type 2. Detailed analysis of the evoked potential during a period of temporal pattern stimulation revealed that the amplitude of the population spikes of repetitive firing, especially of the second and third population spikes, had the same order relationship as the LTP. Because 2-amino-5-phosphonovalerate (APV) (50 M) selectively abolished the second and the third population spikes but not the first, and blocked the formation of LTP, the second and the third peaks which appeared as part of the late component of excitatory postsynaptic potentials (EPSP) must involve LTP formation through the activities of N-methy-D-aspartate (NMDA) channels. From the experimental data, a dynamic induction rule concerning LTP in specific neural networks was derived by which the temporal information of the input stimuli can be extracted and transformed into the weight space of synaptic connections in hippocampal networks (see Fig. 1. CA1).  相似文献   

13.
Two semisynthetic acetyl derivatives of the alkaloid sauroine from Huperzia saururus, monoacetyl sauroine, and diacetyl sauroine (DAS) were obtained and their chemical structures were analyzed by NMR. While monoacetyl sauroine is the typical product of acetylation, DAS is an unexpected derivative related to the keto‐enol formation of sauroine. Recordings of field excitatory post‐synaptic potentials from the CA1 region of rat hippocampal slices showed that only DAS acutely applied induced chemical long‐term potentiation (LTP) in a dose‐dependent manner with an EC50 of 1.15 ± 0.09 μM. This effect was blocked by 10 μM D(‐)‐2‐amino‐5‐phosphonopentanoic acid (AP5), suggesting dependence on the NMDA receptor. DAS significantly increased NMDA receptor‐dependent excitatory post‐synaptic currents without affecting α‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionate receptor‐dependent currents. Repetitive administration of DAS improved visuo‐spatial learning in the Morris Water Maze. In slices from rats tested in the Morris Water Maze, LTP resulting from electrical synaptic stimulation was 2.5 times larger than in controls. Concentration of DAS measured in the brain after repetitive administration was 29.5 μM. We conclude that slices perfused with DAS display a robust NMDA receptor‐dependent chemical LTP. During chronic treatment, DAS enhances learning abilities through a metaplastic mechanism as revealed by the augmentation of LTP in slices. DAS, therefore, may be a promising compound as a nootropic therapeutic drug.

  相似文献   


14.
In the isolated abdominal ganglion of Aplysia, previously incubated in adenine-3H, the amount of 3H-labeled adenosine-3',5' monophosphate (cAMP) doubled after electrical stimulation of nerves at a physiological rate (1/sec). No change was detected after 4 min of stimulation. An increase in cAMP was first seen after 15 min; lengthening the period of stimulation to 1 hr did not increase the extent of the effect. ATP contained 50% of the total radioactivity taken up from adenine-3H, cAMP about 0.1%. During stimulation both the total amount and the specific radioactivity of adenosine triphosphate (ATP) did not change. Thus, the increased amount of radioactivity found in cAMP after stimulation represented an increase in its rate of synthesis. During stimulation formation of cAMP-3H was not altered in nerves or in the cell body of an identified neuron (R2). In addition, no changes were detected in the total amounts of cAMP in the ganglion and in the cell body of R2. It seems likely that the increase was initiated by synaptic activity rather than by action potentials. It was blocked by elevating the concentration of Mg, which also blocks synaptic activity without impairing conduction of impulses. Moreover, impulse activity induced by ouabain and glutamate did not result in increased formation of cAMP.  相似文献   

15.
The present study investigated the role of O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation (O-GlcNAcylation) in AMPA receptor trafficking. Alloxan, an inhibitor of O-GlcNAc transferase, potentiated responses of AMPA receptors composed of the GluR1 subunit expressed in Xenopus oocytes. No potentiating effect of alloxan was obtained with mutant GluR1 (S831A) receptor lacking CaMKII phosphorylation site. Alloxan facilitated basal synaptic transmission to approximately 120% of basal levels and enhanced Schaffer collateral-CA1 long-term potentiation (LTP) in rat hippocampal slices, especially in the late phase of the LTP. Alloxan stimulated translocation of the GluR1 and GluR2 subunit from the cytosol towards the plasma membrane in rat hippocampal slices with the LTP, although it had no effect on subcellular distribution of the NR1 subunit. Taken together, the results of the present study show that alloxan regulates AMPA receptor trafficking by inhibiting O-GlcNAcylation, to modulate hippocampal synaptic transmission and synaptic plasticity.  相似文献   

16.
Normal aging is characterized with a decline in hippocampal memory functions that is associated with changes in long‐term potentiation (LTP) of the CA3‐to‐CA1 synapse. Age‐related deficit of the dopaminergic system may contribute to impairment of CA1 LTP. Here we assessed how the modulation of CA1 LTP by dopamine is affected by aging and how it is dependent on the Ca2+ source. In slices from adult mice, the initial slope of the field potential showed strong LTP, but in slices from aged mice LTP was impaired. Dopamine did not affect LTP in adult slices, but enhanced LTP in aged slices. The dopamine D1/D5 receptor (D1R/D5R) agonist SKF‐81297 did not affect LTP in adult but caused a relative small increase in LTP in aged slices; however, although there was no difference in dopamine D4 receptor (D4R) expression, the D4R agonist PD168077 increased LTP in aged slices to a magnitude similar to that in adult slices. The N‐Methyl‐D‐aspartate receptor antagonist D‐AP5 reduced LTP in adult slices, but not in aged slices. However, in the presence of D‐AP5, PD168077 completely blocked LTP in aged slices. The voltage‐dependent calcium channel (VDCC) blocker nifedipine reduced LTP in adult slices, but surprisingly enhanced LTP in aged slices. Furthermore, in the presence of nifedipine, PD168077 caused a strong enhancement of LTP in aged slices to a magnitude exceeding LTP in adult slices. Our results indicate that the full rescue of impaired LTP in aging by the selective D4R activation and that a large potentiation role on LTP by co‐application of D4R agonist and VDCC blocker may provide novel strategies for the intervention of cognitive decline of aging and age‐related diseases.  相似文献   

17.
18.
Stimulation of [3H]inositol monophosphate ([3H]InsP) formation by ibotenate or trans-1-aminocyclopentyl-1,3-dicarboxylic acid (t-ACPD) in rat hippocampal slices was enhanced after tetanic stimulation of the Schaffer collaterals projecting to the CA1 region (in vitro) or the perforant pathway projecting to the dentate gyrus (in freely moving animals). This effect was observed 5 h (but not 2 h) after long-term potentiation (LTP) induction and was abolished if tetanic stimulation was performed in the presence of specific antagonists of N-methyl-D-aspartate receptors. The delayed increase in excitatory amino acid-induced polyphosphoinositide (PPI) hydrolysis was accompanied by an enhanced responsiveness to norepinephrine, whereas the basal and carbamylcholine-stimulated [3H]InsP formation were unchanged. These results suggest that an increased activity of "metabotropic" glutamate receptors may contribute to the synaptic mechanisms enabling the late expression and or maintenance of LTP. Accordingly, LTP decayed more rapidly (within 5 h) in rats repeatedly injected with LiCl (60-120 mg/kg, i.p., for 10 days), a treatment that led to a reduced efficacy of ibotenate and norepinephrine in stimulating PPI hydrolysis in hippocampal slices.  相似文献   

19.
20.
视皮层LTP维持阶段的突触形态计量学研究   总被引:6,自引:0,他引:6  
Chen YC  Han TZ  Shen JX  Qiao JT 《生理学报》1999,51(1):73-79
本实验使用18~20d的幼年大鼠视皮层脑片标本,在LTP出现后3h取局部微脑片固定进行LTP维持阶段超微结构的研究。分别与孵育相同时间而未予任何刺激的脑片和仅给予测试刺激的脑片作比较。运用图像分析仪分别对三组电镜结果进行以下参数的测量:(1)突触间隙的宽度;(2)突触后致密物(PSD)的厚度;(3)活性区的长度;和(4)突触界面曲率。用双盲法对突触数目进行计量,并用立体计量学方法对各种突触类型进行定量,所得数据用方差分析进行统计学处理。结果显示:(1)LTP形成后15h左右,其反应达到峰值,然后维持在最高水平一直到3h仍无下降趋势;(2)突触间隙的宽度较两个对照组明显增宽;(3)PSD的厚度也明显增厚;(4)活性区的面密度及突触界面曲率明显增加;(5)总突触数目和棘突触数目的数密度较空白对照明显增高;(6)穿孔性突触的数密度与对照组相比明显增加。结果提示:活性区面密度的增加及突触界面曲率的增大可能是LTP维持的形态学基础。穿孔性突触的形成与LTP的维持密切相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号