首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Airway remodeling is a repair process that occurs after injury resulting in increased airway hyper-responsiveness in asthma. Thymic stromal lymphopoietin (TSLP), a vital cytokine, plays a critical role in orchestrating, perpetuating and amplifying the inflammatory response in asthma. TSLP is also a critical factor in airway remodeling in asthma.

Objectives

To examine the role of TSLP-induced cellular senescence in airway remodeling of asthma in vitro and in vivo.

Methods

Cellular senescence and airway remodeling were examined in lung specimens from patients with asthma using immunohischemical analysis. Both small molecule and shRNA approaches that target the senescent signaling pathways were used to explore the role of cellular senescence in TSLP-induced airway remodeling in vitro. Senescence-Associated β-galactosidase (SA-β-Gal) staining, and BrdU assays were used to detect cellular senescence. In addition, the Stat3-targeted inhibitor, WP1066, was evaluated in an asthma mouse model to determine if inhibiting cellular senescence influences airway remodeling in asthma.

Results

Activation of cellular senescence as evidenced by checkpoint activation and cell cycle arrest was detected in airway epithelia samples from patients with asthma. Furthermore, TSLP-induced cellular senescence was required for airway remodeling in vitro. In addition, a mouse asthma model indicates that inhibiting cellular senescence blocks airway remodeling and relieves airway resistance.

Conclusion

TSLP stimulation can induce cellular senescence during airway remodeling in asthma. Inhibiting the signaling pathways of cellular senescence overcomes TSLP-induced airway remodeling.  相似文献   

2.
The field of research on cellular senescence experienced a rapid expansion from being primarily focused on in vitro aspects of aging to the vast territories of animal and clinical research. Cellular senescence is defined by a set of markers, many of which are present and accumulate in a gradual manner prior to senescence induction or are found outside of the context of cellular senescence. These markers are now used to measure the impact of cellular senescence on aging and disease as well as outcomes of anti‐senescence interventions, many of which are at the stage of clinical trials. It is thus of primary importance to discuss their specificity as well as their role in the establishment of senescence. Here, the presence and role of senescence markers are described in cells prior to cell cycle arrest, especially in the context of replicative aging and in vivo conditions. Specifically, this review article seeks to describe the process of “cellular aging”: the progression of internal changes occurring in primary cells leading to the induction of cellular senescence and culminating in cell death. Phenotypic changes associated with aging prior to senescence induction will be characterized, as well as their effect on the induction of cell senescence and the final fate of cells reviewed. Using published datasets on assessments of senescence markers in vivo, it will be described how disparities between quantifications can be explained by the concept of cellular aging. Finally, throughout the article the applicational value of broadening cellular senescence paradigm will be discussed.  相似文献   

3.
Cellular Senescence is associated with organismal aging and related pathologies. Previously, we reported that plasminogen activator inhibitor-1 (PAI-1) is an essential mediator of senescence and a potential therapeutic target for preventing aging-related pathologies. In this study, we investigate the efficacies of PAI-1 inhibitors in both in vitro and in vivo models of homocysteine (Hcy)-induced cardiovascular aging. Elevated Hcy, a known risk factor of cardiovascular diseases, induces endothelial senescence as evidenced by increased senescence-associated β-Gal positivity (SA-β-Gal), flattened cellular morphology, and cylindrical appearance of cellular nuclei. Importantly, inhibition of PAI-1 by small molecule inhibitors reduces the number of SA-β-Gal positive cells, normalizes cellular morphology and nuclear shape. Furthermore, while Hcy induces the levels of senescence regulators PAI-1, p16, p53 and integrin β3, and suppresses catalase expression, treatment with PAI-1 inhibitors blocks the Hcy-induced stimulation of senescence cadres, and reverses the Hcy-induced suppression of catalase, indicating that PAI-1 specific small molecule inhibitors are efficient to prevent Hcy-induced cellular senescence. Our in vivo study shows that the levels of integrin β3, a recently identified potential regulator of cellular senescence, and its interaction with PAI-1 are significantly elevated in Hcy-treated heart tissues. In contrast, Hcy suppresses antioxidant gene regulator Nrf2 expression in hearts. However, co-treatment with PAI-1 inhibitor completely blocks the stimulation of Hcy-induced induction of integrin β3 and reverses Nrf2 expression. Collectively these in vitro and in vivo studies indicate that pharmacological inhibition of PAI-1 improves endothelial and cardiac health by suppressing the pro-senescence effects of hyperhomocysteinemia through suppression of Hcy-induced master regulators of cellular senescence PAI-1 and integrin β3. Therefore, PAI-1 inhibitors are promising drugs for amelioration of hyperhomocysteinemia-induced vascular aging and aging-related disease.  相似文献   

4.
The senescence‐associated secretory phenotype (SASP) is a striking characteristic of senescence. Accumulation of SASP factors causes a pro‐inflammatory response linked to chronic disease. Suppressing senescence and SASP represents a strategy to prevent or control senescence‐associated diseases. Here, we identified a small molecule SR9009 as a potent SASP suppressor in therapy‐induced senescence (TIS) and oncogene‐induced senescence (OIS). The mechanism studies revealed that SR9009 inhibits the SASP and full DNA damage response (DDR) activation through the activation of the NRF2 pathway, thereby decreasing the ROS level by regulating the expression of antioxidant enzymes. We further identified that SR9009 effectively prevents cellular senescence and suppresses the SASP in the livers of both radiation‐induced and oncogene‐induced senescence mouse models, leading to alleviation of immune cell infiltration. Taken together, our findings suggested that SR9009 prevents cellular senescence via the NRF2 pathway in vitro and in vivo, and activation of NRF2 may be a novel therapeutic strategy for preventing cellular senescence.  相似文献   

5.
6.
7.
Extracellular adenosine is well reported to suppress tumor growth by induction of apoptosis. However, in this study we found that adenosine treatment results in cellular senescence in A549 lung cancer cells both in vitro and in vivo; adenosine induces cell cycle arrest and senescence in a p53/p21 dependent manner; adenosine elevates the level of phosphor-γH2AX, pCHK2 and pBRCA1, the markers for prolonged DNA damage response which are likely responsible for initiating the cellular senescence. Our study first demonstrates that adenosine suppresses growth of cancer cells by inducing senescence and provides additional evidence that adenosine could act as an effective anticancer agent for targeted cancer therapy.  相似文献   

8.
Bmal1 is a core circadian clock gene. Bmal1?/? mice show disruption of the clock and premature aging phenotypes with a short lifespan. However, little is known whether disruption of Bmal1 leads to premature aging at cellular level. Here, we established primary mouse embryonic fibroblast (MEF) cells derived from Bmal1?/? mice and investigated its effects on cellular senescence. Unexpectedly, Bmal1?/? primary MEFs that showed disrupted circadian oscillation underwent neither premature replicative nor stress-induced cellular senescence. Our results therefore uncover that Bmal1 is not required for in vitro cellular senescence, suggesting that circadian clock does not control in vitro cellular senescence.  相似文献   

9.
Collaborator of ARF (CARF) has been shown to directly bind to and regulate p53, a central protein that controls tumor suppression via cellular senescence and apoptosis. However, the cellular functions of CARF and the mechanisms governing its effect on senescence, apoptosis, or proliferation are still unknown. Our previous studies have shown that (i) CARF is up-regulated during replicative and stress-induced senescence, and its exogenous overexpression caused senescence-like growth arrest of cells, and (ii) suppression of CARF induces aneuploidy, DNA damage, and mitotic catastrophe, resulting in apoptosis via the ATR/CHK1 pathway. In the present study, we dissected the cellular role of CARF by investigating the molecular pathways triggered by its overexpression in vitro and in vivo. We found that the dosage of CARF is a critical factor in determining the proliferation potential of cancer cells. Most surprisingly, although a moderate level of CARF overexpression induced senescence, a very high level of CARF resulted in increased cell proliferation. We demonstrate that the level of CARF is crucial for DNA damage and checkpoint response of cells through ATM/CHK1/CHK2, p53, and ERK pathways that in turn determine the proliferative fate of cancer cells toward growth arrest or proproliferative and malignant phenotypes. To the best of our knowledge, this is the first report that demonstrates the capability of a fundamental protein, CARF, in controlling cell proliferation in two opposite directions and hence may play a key role in tumor biology and cancer therapeutics.  相似文献   

10.
The DNA damage response (DDR) is activated upon DNA damage generation to promote DNA repair and inhibit cell cycle progression in the presence of a lesion. Cellular senescence is a permanent cell cycle arrest characterized by persistent DDR activation. However, some reports suggest that DDR activation is a feature only of early cellular senescence that is then lost with time. This challenges the hypothesis that cellular senescence is caused by persistent DDR activation. To address this issue, we studied DDR activation dynamics in senescent cells. Here we show that normal human fibroblasts retain DDR markers months after replicative senescence establishment. Consistently, human fibroblasts from healthy aged donors display markers of DDR activation even three years in culture after entry into replicative cellular senescence. However, by extending our analyses to different human cell strains, we also observed an apparent DDR loss with time following entry into cellular senescence. This though correlates with the inability of these cell strains to survive in culture upon replicative or irradiation-induced cellular senescence. We propose a model to reconcile these results. Cell strains not suffering the prolonged in vitro culture stress retain robust DDR activation that persists for years, indicating that under physiological conditions persistent DDR is causally involved in senescence establishment and maintenance. However, cell strains unable to maintain cell viability in vitro, due to their inability to cope with prolonged cell culture-associated stress, show an only-apparent reduction in DDR foci which is in fact due to selective loss of the most damaged cells.  相似文献   

11.

Background

Cellular senescence can be a functional barrier to carcinogenesis. We hypothesized that inflammation modulates carcinogenesis through senescence and DNA damage response (DDR). We examined the association between senescence and DDR with macrophage levels in inflammatory bowel disease (IBD). In vitro experiments tested the ability of macrophages to induce senescence in primary cells. Inflammation modulating microRNAs were identified in senescence colon tissue for further investigation.

Methodology/Principal Findings

Quantitative immunohistochemistry identified protein expression by colon cell type. Increased cellular senescence (HP1γ; P = 0.01) or DDR (γH2A.X; P = 0.031, phospho-Chk2, P = 0.014) was associated with high macrophage infiltration in UC. Co-culture with macrophages (ANA-1) induced senescence in >80% of primary cells (fibroblasts MRC5, WI38), illustrating that macrophages induce senescence. Interestingly, macrophage-induced senescence was partly dependent on nitric oxide synthase, and clinically relevant NO• levels alone induced senescence. NO• induced DDR in vitro, as detected by immunofluorescence. In contrast to UC, we noted in Crohn’s disease (CD) that senescence (HP1γ; P<0.001) and DDR (γH2A.X; P<0.05, phospho-Chk2; P<0.001) were higher, and macrophages were not associated with senescence. We hypothesize that nitric oxide may modulate senescence in CD; epithelial cells of CD had higher levels of NOS2 expression than in UC (P = 0.001). Microarrays and quantitative-PCR identified miR-21 expression associated with macrophage infiltration and NOS2 expression.

Conclusions

Senescence was observed in IBD with senescence-associated β-galactosidase and HP1γ. Macrophages were associated with senescence and DDR in UC, and in vitro experiments with primary human cells showed that macrophages induce senescence, partly through NO•, and that NO• can induce DDR associated with senescence. Future experiments will investigate the role of NO• and miR-21 in senescence. This is the first study to implicate macrophages and nitrosative stress in a direct effect on senescence and DDR, which is relevant to many diseases of inflammation, cancer, and aging.  相似文献   

12.
Nω-nitro-L-arginine methyl ester (L-NAME) treatment induces arteriosclerosis and vascular senescence. Here, we report that the systemic inhibition of nitric oxide (NO) production by L-NAME causes pulmonary emphysema. L-NAME-treated lungs exhibited both the structural (alveolar tissue destruction) and functional (increased compliance and reduced elastance) characteristics of emphysema development. Furthermore, we found that L-NAME-induced emphysema could be attenuated through both genetic deficiency and pharmacological inhibition of plasminogen activator inhibitor-1 (PAI-1). Because PAI-1 is an important contributor to the development of senescence both in vitro and in vivo, we investigated whether L-NAME-induced senescence led to the observed emphysematous changes. We found that L-NAME treatment was associated with molecular and cellular evidence of premature senescence in mice, and that PAI-1 inhibition attenuated these increases. These findings indicate that NO serves to protect and defend lung tissue from physiological aging.  相似文献   

13.
Statins are widely used hypocholesterolemic drugs that block the mevalonate pathway, responsible for the biosysnthesis of cholesterol. However, statins also have pleiotropic effects that interfere with several signaling pathways. Mesenchymal stromal cells (MSC) are a heterogeneous mixture of cells that can be isolated from a variety of tissues and are identified by the expression of a panel of surface markers and by their ability to differentiate in vitro into osteocytes, adipocytes and chondrocytes. MSC were isolated from amniotic membranes and bone marrows and characterized based on ISCT (International Society for Cell Therapy) minimal criteria. Simvastatin-treated cells and controls were directly assayed by CFSE (Carboxyfluorescein diacetate succinimidyl ester) staining to assess their cell proliferation and their RNA was used for microarray analyses and quantitative PCR (qPCR). These MSC were also evaluated for their ability to inhibit PBMC (peripheral blood mononuclear cells) proliferation. We show here that simvastatin negatively modulates MSC proliferation in a dose-dependent way and regulates the expression of proliferation-related genes. Importantly, we observed that simvastatin increased the percentage of a subset of smaller MSC, which also were actively proliferating. The association of MSC decreased size with increased pluripotency and the accumulating evidence that statins may prevent cellular senescence led us to hypothesize that simvastatin induces a smaller subpopulation that may have increased ability to maintain the entire pool of MSC and also to protect them from cellular senescence induced by long-term cultures/passages in vitro. These results may be important to better understand the pleiotropic effects of statins and its effects on the biology of cells with regenerative potential.  相似文献   

14.
15.

Background

Secretory Apolipoprotein J/Clusterin (sCLU) is a ubiquitously expressed chaperone that has been functionally implicated in several pathological conditions of increased oxidative injury, including aging. Nevertheless, the biological role of sCLU in red blood cells (RBCs) remained largely unknown. In the current study we identified sCLU as a component of human RBCs and we undertook a detailed analysis of its cellular topology. Moreover, we studied the erythrocytic membrane sCLU content during organismal aging, in conditions of increased organismal stress and accelerated RBCs senescence, as well as during physiological in vivo cellular senescence.

Methodology/Principal Findings

By using a combination of molecular, biochemical and high resolution microscopical methods we found that sCLU is a novel structural component of RBCs extra- and intracellular plasma membrane and cytosol. We observed that the RBCs membrane-associated sCLU decreases during organismal aging or exposure to acute stress (e.g. smoking), in patients with congenital hemolytic anemia, as well as during RBCs in vivo senescence. In all cases, sCLU reduction paralleled the expression of typical cellular senescence, redox imbalance and erythrophagocytosis markers which are also indicative of the senescence- and oxidative stress-mediated RBCs membrane vesiculation.

Conclusions/Significance

We propose that sCLU at the mature RBCs is not a silent remnant of the erythroid precursors, but an active component being functionally implicated in the signalling mechanisms of cellular senescence and oxidative stress-responses in both healthy and diseased organism. The reduced sCLU protein levels in the RBCs membrane following cell exposure to various endogenous or exogenous stressors closely correlates to the levels of cellular senescence and redox imbalance markers, suggesting the usefulness of sCLU as a sensitive biomarker of senescence and cellular stress.  相似文献   

16.
BackgroundChronic Hepatitis B virus (HBV) infection can lead to the development of chronic hepatitis, cirrhosis and hepatocellular carcinoma. We hypothesized that HBV might accelerate hepatocyte ageing and investigated the effect of HBV on hepatocyte cell cycle state and biological age. We also investigated the relation between inflammation, fibrosis and cell cycle phase.MethodsLiver samples from patients with chronic HBV (n = 91), normal liver (n = 55) and regenerating liver (n = 15) were studied. Immunohistochemistry for cell cycle phase markers and HBV antigens was used to determine host cell cycle phase. Hepatocyte-specific telomere length was evaluated by quantitative fluorescent in-situ hybridization (Q-FISH) in conjunction with hepatocyte nuclear area and HBV antigen expression. The effects of induced cell cycle arrest and induced cellular senescence on HBV production were assessed in vitro.Results13.7% hepatocytes in chronic HBV had entered cell cycle, but expression of markers for S, G2 and M phase was low compared with regenerating liver. Hepatocyte p21 expression was increased (10.9%) in chronic HBV and correlated with liver fibrosis. Mean telomere length was reduced in chronic HBV compared to normal. However, within HBV-affected livers, hepatocytes expressing HBV antigens had longer telomeres. Telomere length declined and hepatocyte nuclear size increased as HBV core antigen (HBcAg) expression shifted from the nucleus to cytoplasm. Nuclear co-expression of HBcAg and p21 was not observed. Cell cycle arrest induced in vitro was associated with increased HBV production, in contrast to
in vitro induction of cellular senescence, which had no effect.ConclusionChronic HBV infection was associated with hepatocyte G1 cell cycle arrest and accelerated hepatocyte ageing, implying that HBV induced cellular senescence. However, HBV replication was confined to biologically younger hepatocytes. Changes in the cellular location of HBcAg may be related to the onset of cellular senescence.  相似文献   

17.
ZNF313 encoding a zinc-binding protein is located at chromosome 20q13.13, which exhibits a frequent genomic amplification in multiple human cancers. However, the biological function of ZNF313 remains largely undefined. Here we report that ZNF313 is an ubiquitin E3 ligase that has a critical role in the regulation of cell cycle progression, differentiation and senescence. In this study, ZNF313 is initially identified as a XIAP-associated factor 1 (XAF1)-interacting protein, which upregulates the stability and proapoptotic effect of XAF1. Intriguingly, we found that ZNF313 activates cell cycle progression and suppresses cellular senescence through the RING domain-mediated degradation of p21WAF1. ZNF313 ubiquitinates p21WAF1 and also destabilizes p27KIP1 and p57KIP2, three members of the CDK-interacting protein (CIP)/kinase inhibitor protein (KIP) family of cyclin-dependent kinase inhibitors, whereas it does not affect the stability of the inhibitor of CDK (INK4) family members, such as p16INK4A and p15INK4B. ZNF313 expression is tightly controlled during the cell cycle and its elevation at the late G1 phase is crucial for the G1-to-S phase transition. ZNF313 is induced by mitogenic growth factors and its blockade profoundly delays cell cycle progression and accelerates p21WAF1-mediated senescence. Both replicative and stress-induced senescence are accompanied with ZNF313 reduction. ZNF313 is downregulated during cellular differentiation process in vitro and in vivo, while it is commonly upregulated in many types of cancer cells. ZNF313 shows both the nuclear and cytoplasmic localization in epithelial cells of normal tissues, but exhibits an intense cytoplasmic distribution in carcinoma cells of tumor tissues. Collectively, ZNF313 is a novel E3 ligase for p21WAF1, whose alteration might be implicated in the pathogenesis of several human diseases, including cancers.  相似文献   

18.
Long non-coding RNAs (lncRNAs) have recently emerged as key players in many physiologic and pathologic processes. Although many lncRNAs have been identified, few lncRNAs have been characterized functionally in aging. In this study, we used human fibroblast cells to investigate genome-wide lncRNA expression during cellular senescence. We identified 968 down-regulated lncRNAs and 899 up-regulated lncRNAs in senescent cells compared with young cells. Among these lncRNAs, we characterized a senescence-associated lncRNA (SALNR), whose expression was reduced during cellular senescence and in premalignant colon adenomas. Overexpression of SALNR delayed cellular senescence in fibroblast cells. Furthermore, we found that SALNR interacts with NF90 (nuclear factor of activated T-cells, 90 kDa), an RNA-binding protein suppressing miRNA biogenesis. We demonstrated that NF90 is a SALNR downstream target, whose inhibition led to premature senescence and enhanced expressions of senescence-associated miRNAs. Moreover, our data showed that Ras-induced stress promotes NF90 nucleolus translocation and suppresses its ability to suppress senescence-associated miRNA biogenesis, which could be rescued by SALNR overexpression. These data suggest that lncRNA SALNR modulates cellular senescence at least partly through changing NF90 activity.  相似文献   

19.
Chinese flowering cabbage is one of the main leafy vegetables produced in China. They have a rapid leaf yellowing due to chlorophyll degradation after harvest that limits their marketing. In the present study, leaf senescence of the cabbages was manipulated by ethylene and 6-benzyl aminopurine (6-BA) treatment to investigate the correlation of leaf senescence and chlorophyll degradation related to gene expression/activities in the darkness. The patterns of several senescence associated markers, including a typical marker, the expression of senescence-associated gene SAG12, demonstrated that ethylene accelerated leaf senescence of the cabbages, while 6-BA retarded this progress. Similar to the trends of BrSAG12 gene expression, strong activation in the expression of three chlorophyll degradation related genes, pheophytinase (BrPPH), pheophorbide a oxygenase (BrPAO) and red chlorophyll catabolite reductase (BrRCCR), was detected in ethylene treated and control leaves during the incubation, while no evident increase was recorded in 6-BA treated leaves. The overall dynamics of Mg-dechelatase activities in all treatments displayed increasing trends during the senescence process, and a delayed increase in the activities was observed for 6-BA treated leaves. However, chlorophyllase activity as well as the expression of BrChlase1 and BrChlase2 decreased with the incubation in all treatments. Taken together, the expression of BrPPH, BrPAO and BrRCCR, and the activity of Mg-dechelatase was closely associated with the chlorophyll degradation during the leaf senescence process in harvested Chinese flowering cabbages under dark conditions.  相似文献   

20.
Nuclear factor (NF)-κB is a positive regulator of tumour development and progression, but how it functions in normal cells leading to oncogenesis is not clear. As cellular senescence has proven to be an intrinsic tumour suppressor mechanism that cells must overcome to establish deregulated growth, we used primary fibroblasts to follow NF-κB function in cells transitioning from senescence to subsequent immortalization. Our findings show that RelA/p65−/− murine fibroblasts immortalize at considerably faster rates than RelA/p65+/+ cells. The ability of RelA/p65−/− fibroblasts to escape senescence earlier is due to their genomic instability, characterized by high frequencies of DNA mutations, gene deletions and gross chromosomal translocations. This increase in genomic instability is closely related to a compromised DNA repair that occurs in both murine RelA/p65−/− fibroblasts and tissues. Significantly, these results can also be duplicated in human fibroblasts lacking NF-κB. Altogether, our findings present a fresh perspective on the role of NF-κB as a tumour suppressor, which acts in pre-neoplastic cells to maintain cellular senescence by promoting DNA repair and genomic stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号