首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The effect of 2-tetradecylglycidic acid (TDGA), a potent, specific inhibitor of long-chain fatty acid oxidation, on fatty acid and glucose oxidation by isolated rat soleus muscle was studied. 2. TDGA inhibited [1-14C]palmitate oxidation by soleus muscle in a concentration-dependent manner. 3. TDGA inhibited the activity of soleus muscle mitochondrial carnitine palmitoyltransferase A (CPT-A). 4. Added palmitate (0.5 mM) significantly inhibited D-[U-14C]glucose oxidation and, under conditions where TDGA inhibited palmitate oxidation, the oxidation of D-[U-14C]glucose by isolated soleus muscle was significantly stimulated. 5. TDGA stimulation of glucose oxidation was reversed by octanoate, a medium-chain fatty acid whose oxidation is not inhibited by TDGA. 6. When nondiabetic rats were treated with TDGA (10 mg/kg p.o./day x 3 days), fasting plasma glucose was significantly lowered and the ability of isolated contralateral soleus muscles to oxidize palmitate was inhibited while glucose oxidation was significantly stimulated.  相似文献   

2.
alpha-Ketoisocaproate (ketoleucine) is shown to be metabolized to ketone bodies rapidly by isolated rat liver cells. Acetoacetate is the major end product and maximum rates were observed with 2 mM substrate. Studies with 2-tetradecylglycidic acid (an inhibitor of long chain fatty acid oxidation) showed that ketogenesis from alpha-ketoisocaproate and from endogenous fatty acids were additive. With alpha-ketoisocaproate present as soole substrate at 2 mM, leucine production was less than 10% of alpha-ketoisocaproate uptake and only 30% of the acetyl coenzyme A generated was oxidized in the citric acid cycle. Metabolism of alpha-ketoisocaproate was inhibited by fatty acids, alpha-ketoisovalerate, alpha-keto-beta-methylvalerate, and pyruvate. Oxidation of acetyl-CoA generated from alpha-ketoisocaproate was suppressed by oleate and by pyruvate, but was enhanced by lactate. Metabolism between the different branched chain alpha-ketoacids was mutually competitive. When alpha-ketoisocaproate (2 mM) was added in the presence of high pyruvate concentrations (4.4 mM), flux through pyruvate dehydrogenase was decreased, and the proportion of total pyruvate dehydrogenase in the active form (PDHa) also fell. With lactate as substrate, PDHa was only 25% of total activity and was little affected by addition of alpha-ketoisocaproate. These data suggest that enhanced oxidation of acetyl-CoA from alpha-ketoisocaproate by lactate addition is caused by a low activity of pyruvate dehydrogenase combined with increased flux through the citric acid cycle in response to the energy requirements for gluconeogenesis. However, acetyl-CoA generation from pyruvate is apparently insufficiently inhibited by alpha-ketoisocaproate to cause a diversion of acetyl-CoA formed during alpha-ketoisocaproate metabolism from ketone body formation to oxidation in the citric acid cycle. Measurements of the cell contents of CoASH, acetyl-CoA, acid-soluble acyl-CoA, and acid-insoluble fatty acyl-CoA indicated that when the branched chain alpha-ketoacids were added as sole substrate, their oxidation was limited at a step distal to the branched chain alpha-ketoacid dehydrogenase. Acid-soluble acyl-CoA derivatives were depleted after oleate addition in the presence of alpha-ketoisocaproate, suggesting an inhibition of the branched chain alpha-ketoacid dehydrogenase by the elevation of the mitochondrial NADH/NAD+ ratio observed during fatty acid oxidation. This effect was not observed in the presence of oleate and 2-tetradecylglycidic acid.  相似文献   

3.
J X Li  H Schulz 《Biochemistry》1988,27(16):5995-6000
In an attempt to develop a compound which would specifically inhibit 3-ketoacyl-CoA thiolase (EC 2.3.1.16) in whole mitochondria, 4-bromo-2-octenoic acid was synthesized and studied. After rat liver mitochondria were preincubated with 4-bromo-2-octenoic acid for 3 min, respiration supported by either palmitoylcarnitine or pyruvate was completely abolished, whereas no inhibition was observed with rat heart mitochondria. Addition of carnitine stimulated respiration supported by pyruvate without relieving inhibition of palmitoylcarnitine-dependent respiration. Hence, this compound seems to be a specific inhibitor of beta-oxidation. When the enzymes of beta-oxidation were assayed in a soluble extract prepared from mitochondria preincubated with 4-bromo-2-octenoic acid, only 3-ketoacyl-CoA thiolase was found to be inactivated. 4-Bromo-2-octenoic acid is metabolized by mitochondrial beta-oxidation enzymes to 3-keto-4-bromooctanoyl-CoA which effectively and irreversibly inhibits 3-ketoacyl-CoA thiolase but not acetoacetyl-CoA thiolase (EC 2.3.1.9). Even though 3-keto-4-bromooctanoyl-CoA inhibits the latter enzyme reversibly, 4-bromo-2-octenoic acid does not inhibit ketogenesis in rat liver mitochondria with acetylcarnitine as a substrate. It is concluded that 4-bromo-2-octenoic acid specifically inhibits mitochondrial fatty acid oxidation by inactivating 3-ketoacyl-CoA thiolase in rat liver mitochondria.  相似文献   

4.
Inhibitors of fatty acid oxidation   总被引:2,自引:0,他引:2  
H Schulz 《Life sciences》1987,40(15):1443-1449
This review discusses inhibitors of fatty acid oxidation for which sites and mechanisms of inhibition are reasonably well understood. Included in this review are hypoglycin, an inhibitor of butyryl-CoA dehydrogenase (EC 1.3.99.2), 4-pentenoic acid, 2-bromooctanoic acid, and 4-bromocrotonic acid all of which inhibit mitochondrial thiolases (EC 2.3.1.9 and 2.3.1.16) as well as several inhibitors of carnitine palmitoyltransferase I (EC 2.3.1.21) as for example 2-tetradecylglycidic acid, 2-bromopalmitic acid and aminocarnitine. Most of these inhibitors of fatty acid oxidation have been shown to cause hypoglycemia in animals and some also cause hypoketonemia. The advantages and limitations of using these inhibitors in metabolic studies are discussed.  相似文献   

5.
Methyl-2-tetradecylglycidic acid (MeTDGA) has been hypothesized to inhibit fatty acid oxidation by irreversible, active site-directed inactivation of carnitine palmitoyltransferase A after being converted to TDGA-CoA. Using synthetic TDGA-CoA, this hypothesis has been confirmed. Assessing enzyme inhibition in an isolated rat liver mitochondrial system, TDGA-CoA (synthetic or enzyme prepared) was more potent than TDGA or MeTDGA and retained activity in the absence of CoA or Mg2+-ATP. It inhibited palmitoyl-CoA but not palmitoyl carnitine oxidation. Enzyme inactivation was exponential, stereospecific, and fast (t0.5 = 38.5 s with 100 nM (R)-TDGA-CoA). TDGA-CoA was identified as a complexing type irreversible inhibitor (Ki approximately 0.27 microM) by the double reciprocal relationship between the pseudo-first order inactivation rate and its concentration, by the inverse dependence of the second order rate constant on its concentration, and by the independence of the first order rate from the enzyme concentration. Palmitoyl-CoA, CoA, and malonyl-CoA protected the enzyme, while L-carnitine and palmitoyl-L-carnitine were without effect. [3-14C] TDGA-CoA labeled a protein, Mr = 90,000, with a time course which paralleled that of enzyme inhibition; maximum specific binding was 16 pmol/mg of mitochondrial protein.  相似文献   

6.
Periods of fasting, in most animals, are fueled principally by fatty acids, and changes in the regulation of fatty acid oxidation must exist to meet this change in metabolic substrate use. We examined the regulation of carnitine palmitoyltransferase (CPT) I, to help explain changes in mitochondrial fatty acid oxidation with fasting. After fasting rainbow trout (Oncorhynchus mykiss) for 5 wk, the mitochondria were isolated from red muscle and liver to determine (1) mitochondrial fatty acid oxidation rate, (2) CPT I activity and the concentration of malonyl-CoA needed to inhibit this activity by 50% (IC(50)), (3) mitochondrial membrane fluidity, and (4) CPT I (all five known isoforms) and peroxisome proliferator-activated receptor (PPARα and PPARβ) mRNA levels. Fatty acid oxidation in isolated mitochondria increased during fasting by 2.5- and 1.75-fold in liver and red muscle, respectively. Fasting also decreased sensitivity of CPT I to malonyl-CoA (increased IC(50)), by two and eight times in red muscle and liver, respectively, suggesting it facilitates the rate of fatty acid oxidation. In the liver, there was also a significant increase CPT I activity per milligram mitochondrial protein and in whole-tissue PPARα and PPARβ mRNA levels. However, there were no changes in mitochondrial membrane fluidity in either tissue, indicating that the decrease in CPT I sensitivity to malonyl-CoA is not due to bulk fluidity changes in the membrane. However, there were significant differences in CPT I mRNA levels during fasting. Overall, these data indicate some important changes in the regulation of CPT I that promote the increased mitochondrial fatty acid oxidation that occurs during fasting in trout.  相似文献   

7.
The oxidation of the fatty acid [1-(14)C]22:4n-6 was studied in isolated hepatocytes. Labeled acetate was the main acid soluble product identified by HPLC after short incubation periods. At low substrate concentrations and longer incubations [(14)C]acetate was gradually replaced by labeled beta-hydroxybutyrate, acetoacetate and oxaloacetate/malate. Preincubation with 2-tetradecylglycidic acid (TDGA), an inhibitor of mitochondrial fatty acid oxidation, did not reduce the oxidation but acetate was the only product recovered. TDGA also strongly inhibited the metabolism of added [1-(14)C]acetate to mitochondrial oxidation products. During the preparation procedure of hepatocytes the cellular L-carnitine concentration was decreased but it was restored after preincubation with L-carnitine. With low [1-(14)C]22:4n-6, concentrating a low level of [(14)C]acetate and high levels of labeled mitochondrial oxidation products were recovered after preincubation with L-carnitine. A small amount of [(14)C]acetylcarnitine was also detected under this incubation condition. The results suggest that a significant part of labeled acetyl groups from the peroxisomal oxidation of [1-(14)C]22:4n-6 is transported to the mitochondria as free acetate. Moreover, the results also suggest that L-carnitine at physiological concentrations may facilitate the transport of part of the acetyl groups from peroxisomes to mitochondria as acetylcarnitine. However, the possibility that an increased cellular L-carnitine concentration may stimulate oxidation of [1-(14)C]22:4n-6 in mitochondria could not be excluded.  相似文献   

8.
The interactions of 1-5 mM valproic acid with the hepatic fatty acid oxidation are here described. Valproic acid was not substrate for hepatic peroxisomal fatty acid oxidation. Its activation outside the mitochondrial matrix compartment was poor when compared to that of octanoic acid, a fatty acid containing the same number of carbones. Valproic acid did not inhibit the fatty acyl-CoA oxidase nor the cyanide-insensitive acyl-CoA oxidation. Valproic acid inhibited the mitochondrial oxidations of both long-chain monocarboxylyl-CoAs and omega-hydroxymonocarboxylyl-CoAs. Valproic acid prevented the oxidation by coupled mitochondria of decanoic and 10-hydroxydecanoic acids. Both butyric and 4-hydroxybutyric acids were oxidized by coupled mitochondria. These activities were abolished by preincubating the enzyme source with valproic acid. Administration to rats of 0.5% (w/w)- or 1% (w/w)-valproate containing diets were efficient in producing increased liver peroxisomal population and beta-oxidation. Preliminary investigations on the effects of valproic acid on mitochondrial fatty acid oxidation as a function of the animal used for the experiments pointed out an association of the protection of the mitochondrial process against the toxicity of the drug with enhanced carnitine acyltransferase and acyl-CoA hydrolase activities.  相似文献   

9.
A previous study [Berry, M. N., Gregory, R. B., Grivell, A. R. & Wallace, P. G. (1983) Eur. J. Biochem. 131, 215-222] suggested that long-chain fatty acid (palmitate) oxidation by hepatocytes was less sensitive than short-chain fatty acid (hexanoate) oxidation to inhibition by a given concentration of antimycin. Re-examination of this phenomenon showed that palmitate oxidation by hepatocytes could be depressed by antimycin to the same degree as other NAD+-linked substrates, only if the concentration of the inhibitor was raised 2-4-fold. The presence of palmitate also reduced the sensitivity to antimycin of hepatocytes metabolizing lactate or pyruvate. Over the range of fatty acids tested, butyrate (C4) to stearate (C18), only long-chain (greater than C10) fatty acids endowed cells with decreased sensitivity towards antimycin. 2-Bromopalmitate, a non-metabolizable fatty acid, and inhibitor of fatty acid oxidation, also decreased the inhibitory effect of antimycin in cells, suggesting that long-chain fatty acids per se rather than their metabolites, reverse the inhibition by antimycin. Moreover, another inhibitor of fatty acid oxidation, 2-tetradecylglycidic acid, did not diminish the effects of palmitate. Succinate oxidation in isolated mitochondria that had been inhibited by a low concentration of antimycin could be restored by subsequent addition of palmitate or other long-chain fatty acids such as dodecanoate, tetradecanoate and oleate under conditions where fatty acid oxidation was prevented. 2-Bromopalmitate, likewise partially restored antimycin-depressed succinate oxidation. This amelioration of antimycin inhibition was counteracted by the addition of more antimycin and was not seen upon addition of defatted bovine serum albumin, palmitoylcarnitine or octanoate. The total amount of antimycin bound to mitochondria was not affected by the presence of palmitate. The data suggest that long-chain fatty acids are able to interact with the mitochondrial inner membrane in a manner which can relieve the inhibitory effect of antimycin, whether the antimycin is added to the cell or mitochondrial suspension before or after fatty acid addition.  相似文献   

10.
The extent of mitochondrial and peroxisomal contribution to beta-oxidation of 18-, 20- and 24-carbon n-3 and n-6 polyunsaturated fatty acids (PUFAs) in intact rat hepatocytes is not fully clear. In this study, we analyzed radiolabeled acid soluble oxidation products by HPLC to identify mitochondrial and peroxisomal oxidation of 24:5n-3, 18- and 20-carbon n-3 and n-6 PUFAs. Mitochondrial fatty acid oxidation produced high levels of ketone bodies, tricarboxylic acid cycle intermediates and CO(2), while peroxisomal beta-oxidation released acetate. Inhibition of mitochondrial fatty acid oxidation with 2-tetradecylglycidic acid (TDGA), high amounts of [14C]acetate from oxidation of 24:5n-3, 18- and 20-carbon PUFAs were observed. In the absence of TDGA, high amounts of [14C]-labeled mitochondrial oxidation products were formed from oxidation of 24:5n-3, 18- and 20-carbon PUFAs. With 18:1n-9, high amounts of mitochondrial oxidation products were formed in the absence of TDGA, and TDGA strongly suppressed the oxidation of this fatty acid. Data of this study indicated that a shift in the partitioning from mitochondrial to peroxisomal oxidation differed for each individual fatty acid and is a specific property of 24:5n-3, 18- and 20-carbon n-3 and n-6 PUFAs.[14C]22:6n-3 was detected with [3-14C]24:5n-3, but not with [1-14C]24:5n-3 as the substrate, while [14C]16:0 was detected with [1-14C]24:5n-3, but not with [3-14C]24:5n-3 as the substrate. Furthermore, the amounts of 14CO(2) were similar when cells were incubated with [3-14C]24:5n-3 versus [1-14C]24:5n-3. These findings indicated that the proportion of 24:5n-3 oxidized in mitochondria was high, and that 24:5n-3 and 24:6n-3 were mostly beta-oxidized only one cycle in peroxisomes.  相似文献   

11.
Perilipin 5 (PLIN5/OXPAT) is a lipid droplet (LD) coat protein mainly present in tissues with a high fat-oxidative capacity, suggesting a role for PLIN5 in facilitating fatty acid oxidation. Here, we investigated the role of PLIN5 in fat oxidation in skeletal muscle. In human skeletal muscle, we observed that PLIN5 (but not PLIN2) protein content correlated tightly with OXPHOS content and in rat muscle PLIN5 content correlated with mitochondrial respiration rates on a lipid-derived substrate. This prompted us to examine PLIN5 protein expression in skeletal muscle mitochondria by means of immunogold electron microscopy and Western blots in isolated mitochondria. These data show that PLIN5, in contrast to PLIN2, not only localizes to LD but also to mitochondria, possibly facilitating fatty acid oxidation. Unilateral overexpression of PLIN5 in rat anterior tibialis muscle augmented myocellular fat storage without increasing mitochondrial density as indicated by the lack of change in protein content of five components of the OXPHOS system. Mitochondria isolated from PLIN5 overexpressing muscles did not possess increased fatty acid respiration. Interestingly though, (14)C-palmitate oxidation assays in muscle homogenates from PLIN5 overexpressing muscles revealed a 44.8% (P?=?0.05) increase in complete fatty acid oxidation. Thus, in mitochondrial isolations devoid of LD, PLIN5 does not augment fat oxidation, while in homogenates containing PLIN5-coated LD, fat oxidation is higher upon PLIN5 overexpression. The presence of PLIN5 in mitochondria helps to understand why PLIN5, in contrast to PLIN2, is of specific importance in fat oxidative tissues. Our data suggests involvement of PLIN5 in directing fatty acids from the LD to mitochondrial fatty acid oxidation.  相似文献   

12.
The functional role of CD36 protein detected in mitochondrial fractions in long chain fatty acid (LCFA) oxidation is unclear due to conflicting results obtained in Cd36 knockout mice and experiments using sulfo-N-succinimidyl oleate (SSO) for inhibition of CD36 mediated LCFA transport. We investigated effect of SSO on mitochondrial respiration and found that SSO substantially inhibits not only LCFA oxidation, but also oxidation of flavoprotein- and NADH-dependent substrates and generation of mitochondrial membrane potential. Experiments in rat liver, heart and kidney mitochondria demonstrated a direct effect on mitochondrial respiratory chain with the most pronounced inhibition of the complex III (IC50 4 μM SSO). The results presented here show that SSO is a potent and irreversible inhibitor of mitochondrial respiratory chain.  相似文献   

13.
A reduction in fatty acid oxidation has been associated with lipid accumulation and insulin resistance in the skeletal muscle of obese individuals. We examined whether this decrease in fatty acid oxidation was attributable to a reduction in muscle mitochondrial content and/or a dysfunction in fatty acid oxidation within mitochondria obtained from skeletal muscle of age-matched, lean [body mass index (BMI) = 23.3 +/- 0.7 kg/m2] and obese women (BMI = 37.6 +/- 2.2 kg/m2). The mitochondrial marker enzymes citrate synthase (-34%), beta-hydroxyacyl-CoA dehydrogenase (-17%), and cytochrome c oxidase (-32%) were reduced (P < 0.05) in obese participants, indicating that mitochondrial content was diminished. Obesity did not alter the ability of isolated mitochondria to oxidize palmitate; however, fatty acid oxidation was reduced at the whole muscle level by 28% (P < 0.05) in the obese. Mitochondrial fatty acid translocase (FAT/CD36) did not differ in lean and obese individuals, but mitochondrial FAT/CD36 was correlated with mitochondrial fatty acid oxidation (r = 0.67, P < 0.05). We conclude that the reduction in fatty acid oxidation in obese individuals is attributable to a decrease in mitochondrial content, not to an intrinsic defect in the mitochondria obtained from skeletal muscle of obese individuals. In addition, it appears that mitochondrial FAT/CD36 may be involved in regulating fatty acid oxidation in human skeletal muscle.  相似文献   

14.
We investigated the role of energy supplied by long-chain fatty acid oxidation in rat platelet function. Inhibition of the mitochondrial uptake of long-chain fatty acids was achieved by treating rats with 2-tetradecylglycidic acid (TDGA), a potent inhibitor of the overt form of carnitine palmitoyltransferase (CPT-I). The maximum aggregation rate (MAR), CPT-I activity, lactate production, oxygen consumption and adenine nucleotide content of isolated rat platelets were then studied in vitro. 4 h after the in vivo administration of TDGA, the CPT-I activity in saponin-permeabilized platelets was nearly completely inhibited along with a significant reduction in the MAR induced by ADP, thrombin and ionophore A23187. The ATP level, adenylate energy charge (ATP + 1/2 ADP)/(ATP + ADP + AMP) and ATP/ADP ratio in the platelet cytoplasmic pool were also reduced. Platelets from TDGA-treated rats showed lower oxygen consumption rates in both the basal respiratory and oxygen burst states. These results indicate that mitochondrial long-chain fatty acid oxidation coupled to oxidative phosphorylation is an important energy source in rat platelets and is probably involved in the maintenance of platelet function. Enhanced in vitro lactate production in platelets from TDGA-treated rats may have resulted from a compensatory increase in glycolysis which only partly compensated for impaired long-chain fatty acid oxidation.  相似文献   

15.
Oxygen consumption (VO2) and beta-hydroxyacyl-CoA dehydrogenase (beta OAC) activity were measured in isolated mitochondria of developing rat kidney from late fetal to adult age. In the presence of palmitoyl-L-carnitine, VO2 consumption was higher in suckling than in adult rats while beta OAC activity rose during the postnatal period and declined after weaning. During postnatal development, the high level of mitochondrial fatty acid oxidation was linked to the high level of fatty acid supply and any change in lipid diet altered mitochondrial fatty acid oxidation. By contrast at adult age, a high fat diet did not change either mitochondrial fatty acid oxidation or beta OAC activity measured in two nephron structures (PCT and mTAL). Dietary lipids seem to play an important role in the evolution of mitochondrial fatty acid oxidation in developing rat kidney.  相似文献   

16.
A number of reports indicate that a long-chain free fatty acid export system may be operating in mitochondria. In this study, we sought evidence of its existence in rat heart mitochondria. To determine its potential role, we also sought evidence of its activation or inhibition in streptozotocin (STZ)-induced diabetic rat heart mitochondria. If confirmed, it could be a novel mechanism for regulation of long-chain fatty acid oxidation (FAO) in mitochondria. To obtain evidence of its existence, we tested whether heart mitochondria presented with palmitoyl-carnitine can generate and export palmitate. We found that intact mitochondria indeed generate and export palmitate. We have also found that the rates of these processes are markedly higher in STZ-diabetic rat heart mitochondria, in which palmitoyl-carnitine oxidation is also increased. Since mitochondrial thioesterase-1 (MTE-1) hydrolyzes acyl-CoA to CoA-SH + free fatty acid, and uncoupling protein-3 (UCP-3), reconstituted in liposomes, transports free fatty acids, we examined whether these proteins are also increased in STZ-diabetic rat heart mitochondria. We found that both of these proteins are indeed increased. Gene expression profile analysis revealed striking expression of mitochondrial long-chain fatty acid transport and oxidation genes, accompanying overexpression of MTE-1 and UCP-3 in STZ-diabetic rat hearts. Our findings provide the first direct evidence for the existence of a long-chain free fatty acid generation and export system in mitochondria and its activation in STZ-diabetic rat hearts in which FAO is enhanced. We suggest that its activation may facilitate, and inhibition may limit, enhancement of FAO. fatty acid oxidation; diabetes; lipotoxic cardiomyopathy; gene array  相似文献   

17.
Previously mildronate, an aza-butyrobetaine derivative, was shown to be a cytoprotective drug, through its mechanism of action of inhibition of carnitine palmitoyltransferase-1, thus protecting mitochondria from long-chain fatty acid accumulation and subsequent damage. Recently in an azidothymidine (AZT)-induced cardiotoxicity model in vivo (in mice), we have found mildronate's ability of protecting heart tissue from nuclear factor kappaB abnormal expression. Preliminary data also demonstrate cerebro- and hepatoprotecting properties of mildronate in AZT-toxicity models. We suggest that mildronate may target its action predominantly to mitochondria. The present study in isolated rat liver mitochondria was designed to clarify mitochondrial targets for mildronate by using AZT as a model compound. The aim of this study was to investigate: (1) whether mildronate may protect mitochondria from AZT-induced toxicity; and (2) which is the most critical target in mitochondrial processes that is responsible for mildronate's regulatory action. The results showed that mildronate protected mitochondria from AZT-induced damage predominantly at the level of complex I, mainly by reducing hydrogen peroxide generation. Significant protection of AZT-caused inhibition of uncoupled respiration, ADP to oxygen ratio, and transmembrane potential were also observed. Mildronate per se had no effect on the bioenergetics, oxidative stress, or permeability transition of rat liver mitochondria. Since mitochondrial complex I is the first enzyme of the respiratory electron transport chain and its damage is considered to be responsible for different mitochondrial diseases, we may account for mildronate's effectiveness in the prevention of pathologies associated with mitochondrial dysfunctions.  相似文献   

18.
1. Effects of alpha-cyano-4-hydroxycinnamate and alpha-cyanocinnamate on a number of enzymes involved in pyruvate metabolism have been investigated. Little or no inhibition was observed of any enzyme at concentrations that inhibit completely mitochondrial pyruvate transport. At much higher concentrations (1 mM) some inhibition of pyruvate carboxylase was apparent. 2. Alpha-Cyano-4-hydroxycinnamate (1-100 muM) specifically inhibited pyruvate oxidation by mitochondria isolated from rat heart, brain, kidney and from blowfly flight muscle; oxidation of other substrates in the presence or absence of ADP was not affected. Similar concentrations of the compound also inhibited the carboxylation of pyruvate by rat liver mitochondria and the activation by pyruvate of pyruvate dehydrogenase in fat-cell mitochondria. These findings imply that pyruvate dehydrogenase, pyruvate dehydrogenase kinase and pyruvate carboxylase are exposed to mitochondrial matrix concentrations of pyruvate rather than to cytoplasmic concentrations. 3. Studies with whole-cell preparations incubated in vitro indicate that alpha-cyano-4-hydroxycinnamate or alpha-cyanocinnamate (at concentrations below 200 muM) can be used to specifically inhibit mitochondrial pyruvate transport within cells and thus alter the metabolic emphasis of the preparation. In epididymal fat-pads, fatty acid synthesis from glucose and fructose, but not from acetate, was markedly inhibited. No changes in tissue ATP concentrations were observed. The effects on fatty acid synthesis were reversible. In kidney-cortex slices, gluconeogenesis from pyruvate and lactate but not from succinate was inhibited. In the rat heart perfused with medium containing glucose and insulin, addition of alpha-cyanocinnamate (200 muM) greatly increased the output and tissue concentrations of lactate plus pyruvate but decreased the lactate/pyruvate ratio. 4. The inhibition by cyanocinnamate derivatives of pyruvate transport across the cell membrane of human erythrocytes requires much higher concentrations of the derivatives than the inhibition of transport across the mitochondrial membrane. Alpha-Cyano-4-hydroxycinnamate appears to enter erythrocytes on the cell-membrane pyruvate carrier. Entry is not observed in the presence of albumin, which may explain the small effects when these compounds are injected into whole animals.  相似文献   

19.
The effect of various inhibitors of fatty acid transport and of respiratory chain on palmitate oxidation was investigated in homogenates and mitochondria of rat muscle and homogenates of rat liver and human muscle. Inhibition of fatty acid transport by carnitine omission, malonyl-CoA, tetradecylglycidic acid and mersalyl decreased oxidation more with muscle than with rat liver. Antimycin and KCN decreased markedly palmitate oxidation and caused a larger accumulation of peroxisomal oxidation products. Inhibition of mitochondrial long-chain fatty acid transport decreased accumulation of peroxisomal products in comparison to the control. The effect of malonyl-CoA was dependent on the nutritional state, the pH and the palmitate-albumin ratio with liver homogenates, and only on the latter parameter with muscle homogenates. Effects observed were comparable for rat and human muscle homogenates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号