首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract. In a previous study the epidermal cell kinetics of hairless mice were investigated with bivariate DNA/anti-bromodeoxyuridine (BrdU) flow cytometry of isolated basal cells after BrdU pulse labelling. The results confirmed our previous observations of two kinetically distinct sub-populations in the G2 phase. However, the results also showed that almost all BrdU-positive cells had left S phase 6–12 h after pulse labelling, contradicting our previous assumption of a distinct, slowly cycling, major sub-population in S phase. The latter study was based on an experiment combining continuous tritiated thymidine ([3H]TdR) labelling and cell sorting. The purpose of the present study was to use a mathematical model to analyse epidermal cell kinetics by simulating bivariate DNA/BrdU data in order to get more details about the kinetic organization and cell cycle parameter values. We also wanted to re-evaluate our assumption of slowly cycling cells in S phase. The mathematical model shows a good fit to the experimental BrdU data initiated either at 08.00 hours or 20.00 hours. Simultaneously, it was also possible to obtain a good fit to our previous continuous labelling data without including a sub-population of slowly cycling cells in S phase. This was achieved by improving the way in which the continuous [3H]TdR labelling was simulated. The presence of two distinct sub-populations in G2 phase was confirmed and a similar kinetic organization with rapidly and slowly cycling cells in G1 phase is suggested. The sizes of the slowly cycling fractions in G1 and G2 showed the same distinct circadian dependency. The model analysis indicates that a small fraction of BrdU labelled cells (3–5%) was arrested in G2 phase due to BrdU toxicity. This is insignificant compared with the total number of labelled cells and has a negligible effect on the average cell cycle data. However, it comprises 1/3 to 1/2 of the BrdU positive G2 cells after the pulse labelled cells have been distributed among the cell cycle compartments.  相似文献   

2.
The abilities of four models to describe nitrogenase light-response curves were compared, using the heterocystous cyanobacterium Nodularia spumigena and a cyanobacterial bloom from the Baltic Sea as examples. All tested models gave a good fit of the data, and the rectangular hyperbola model is recommended for fitting nitrogenase-light response curves. This model describes an enzymatic process, while the others are empirical. It was possible to convert the process parameters between the four models and compare N2 fixation with photosynthesis. The physiological meanings of the process parameters are discussed and compared to those of photosynthesis.  相似文献   

3.
The kinetics of symplastic transport in staminal hairs of Setcreasea purpurea was studied. The tip cell of a staminal hair was microinjected with carboxyfluorescein (CF) and the symplastic transport of this CF was videotaped and the digital data analyzed to produce kinetic curves. Using a finite difference equation for diffusion between cells and for loss of dye into the vacuole, kinetic curves were calculated and fitted to the observed data. These curves were matched with data from actual microinjection experiments by adjusting K (the coefficient of intercellular junction diffusion) and L (the coefficient of intracellular loss) until a minimum in the least squares difference between the curves was obtained. (a) Symplastic transport of CF was governed by diffusion through intercellular pores (plasmodesmata) and intracellular loss. Diffusion within the cell cytoplasm was never limiting. (b) Each cell and its plasmodesmata must be considered as its own diffusion system. Therefore, a diffusion coefficient cannot be calculated for an entire chain of cells. (c) The movement through plasmodesmata in either direction was the same since the data are fit by a diffusion equation. (d) Diffusion through the intercellular pores was estimated to be slower than diffusion through similar pores filled with water.  相似文献   

4.
CYTODYNAMICS IN THE THYMUS OF YOUNG ADULT MICE:   总被引:1,自引:0,他引:1  
Cell proliferation and cell loss in the thymic blast cell population were studied in young adult mice by (1) stathmokinetic methods combined with an analysis of the PLMe-curve after a pulse 3H-TdR, and (2) nigrosin-dye exclusion combined with 3H-TdR-autoradiography. It was calculated that about 17% of the blast cells do not progress into mitosis within the period of an average cell cycle. The dye exclusion studies indicated a rate of blast cell death of about 2–5 %/hr. The two methods of assessing blast cell loss (death) support each other very well. In spite of these findings scintillation countings on thymuses removed from 1 to 17 hr after 3H-TdR injection showed fairly constant levels of thymic radioactivity. This suggests a very extensive reutilization of 3H-labelled break-down products from dying blast cells. The very sparse labelling of pyknotic thymocytes strongly suggests that thymic blast cells do not become pyknotic. The rate of small thymocyte production and disappearance was studied by pulse and repeated 3H-TdR labelling techniques combined with dye exclusion studies and pyknotic counts. The data from the repeated labelling experiment were analysed by use of a model based on the assumption of first order kinetics of small viable, dead, and pyknotic thymocytes. The rate of cell production was estimated to 1–6 %/hr whereas the rates of cell loss due to disintegration, i.e. supravital stainability and nuclear pyknosis, were calculated to 0–02 %/hr and 0–0006 %/hr respectively. Cell loss due to disintegration was less than 2 % of the total loss of small thymocytes. It was concluded that pyknotic counts are a useless method of assessing the cell death in the population of thymic blast cells and small thymocytes. On the basis of a model for thymocyte proliferation, production and loss it is suggested that about 45 % of the small viable thymocytes re-enter the generative cell pool, whereas about 55% disappear by emigration.  相似文献   

5.
The insect cuticle is non-cellular matrix secreted from a monolayer of epidermal cells. After abrasion of the larval cuticle of the silkworm, Bombyx mori, a protein with molecular mass of 135 kDa is newly detected in the cuticle. Mass spectrometric analysis of the tryptic fragments from this protein revealed that the 135-kDa protein is encoded by the Cb10 gene. In the predicted amino acid sequence of Cb10, three repeated motifs with [YxGGFGGppG(L/V)L] sequence are found in the C-terminal region. In addition to the repeated motifs, Cb10 has seventeen CxxxxC motifs randomly distributed throughout the polypeptide chain and serine rich region at the N-terminal region. The Cb10 gene is strongly expressed in epidermal cells after pupal ecdysis, and its expression in the larval epidermal cells is induced not only by cuticular abrasion, but also by bacterial infection. These expression patterns suggest some specific roles of this protein in pupal cuticle formation and defense reactions.  相似文献   

6.

Background

Biochemical equilibria are usually modeled iteratively: given one or a few fitted models, if there is a lack of fit or over fitting, a new model with additional or fewer parameters is then fitted, and the process is repeated. The problem with this approach is that different analysts can propose and select different models and thus extract different binding parameter estimates from the same data. An alternative is to first generate a comprehensive standardized list of plausible models, and to then fit them exhaustively, or semi-exhaustively.

Results

A framework is presented in which equilibriums are modeled as pairs (g, h) where g = 0 maps total reactant concentrations (system inputs) into free reactant concentrations (system states) which h then maps into expected values of measurements (system outputs). By letting dissociation constants K d be either freely estimated, infinity, zero, or equal to other K d , and by letting undamaged protein fractions be either freely estimated or 1, many g models are formed. A standard space of g models for ligand-induced protein dimerization equilibria is given. Coupled to an h model, the resulting (g, h) were fitted to dTTP induced R1 dimerization data (R1 is the large subunit of ribonucleotide reductase). Models with the fewest parameters were fitted first. Thereafter, upon fitting a batch, the next batch of models (with one more parameter) was fitted only if the current batch yielded a model that was better (based on the Akaike Information Criterion) than the best model in the previous batch (with one less parameter). Within batches models were fitted in parallel. This semi-exhaustive approach yielded the same best models as an exhaustive model space fit, but in approximately one-fifth the time.

Conclusion

Comprehensive model space based biochemical equilibrium model selection methods are realizable. Their significance to systems biology as mappings of data into mathematical models warrants their development.  相似文献   

7.
A mathematical model for the normal circadian rhythm in epidermis is formulated. It reproduces the experimental data for mice if the duration of either the G1 or the S phase oscillates. As a second step, the model is generalized to account for the influence of 3HTdR on the circadian rhythm. A simultaneous interpretation of experimental curves for LI, PLM, the mitotic rate (MR) and the phase indices G1I, SI, G2I and MI measured by micro-spectrophotometry or flow cytometry, can be given by the following hypothesis. (a) Of the S phase cells (as measured by DNA content), only the most mature fraction is labelled. Some of these labelled cells die (or loose their label) within a few hours. The free label is then reutilized. (b) For about 12 hr the flux of unlabelled cells from G1 into S phase is accelerated. These cells stay correspondingly longer in S so that their cell cycle time is scarcely affected. (c) The normal circadian triggering is disturbed for at least 36 hr after labelling. The implications of this hypothesis for double labelling experiments are discussed.  相似文献   

8.
The model is based on the assumption that the cell cycle contains a Go-phase which cells leave randomly with a constant probability per unit time, γ. After leaving the Go-phase, the cells enter the C-phase which ends with cell division. The C-phase and its constituent phases, the‘true’G1-phase, the S-phase, the G2-phase and mitosis are assumed to have constant durations of T, T1Ts, T2 and Tm, respectively. For renewal tissue it is assumed that the probability per unit time of being lost from the population is a constant for all cells irrespective of their position in the cycle. The labelled mitosis curve and labelling index for continuous labelling are derived in terms of γ, T, and Ts. The model generates labelled mitosis curves which damp quickly and reach a constant value of twice the initial labelling index, if the mean duration of the Go-phase is sufficiently long. It is shown that the predicted labelled mitosis and continuous labelling curves agree reasonably well with the experimental curves for the hamster cheek pouch if T has a value of about 60 hr. Data are presented for the rat dorsal epidermis which support the assumption that there is a constant probability per unit time of a cell being released from the Go-phase.  相似文献   

9.
Seedlings of Crepis capillaris were irradiated after pulse-labelling with tritiated thymidine ([3H]TdR), and both chromosomal aberrations and presence of silver grains were recorded in the same metaphase cells at various intervals throughout the whole mitotic cycle. The following results were obtained: (a) irradiated roots were homogeneous with respect to the number of aberrations, and heterogenous with respect to labelling index (LI); (b) time-effect curves for labelled (L) and unlabelled (U) cells showed no significant difference from one another; (c) no significant quantitative difference of aberration spectra produced in S and G2 stages was found. These results support the view that the major factor which determines both quantitative and qualitative variation in the production of chromosomal aberrations by radiation is the time lapse between irradiation and fixation rather than relation of the time of irradiation to the time of DNA synthesis. In addition, it was found that labelling with [3H]TdR modifies the effect of radiation on chromosomes.  相似文献   

10.
The cell flow and cell loss of an in vivo growing Ehrlich ascites tumour were calculated by sequential estimation of changes in the total number of cells in the cell cycle compartments. Normal growth was compared with the grossly disturbed cell flow evident after a 5 Gy X-irradiation. The doubling time of normal, exponentially growing cells was 24 hr. the generation time was 21 hr based on double-isotope labelling studies and the potential doubling time was 21 hr. Thus, the growth fraction was 1.0 and the cell loss rate about 0.5%/hr. Following irradiation, a transiently increased relative outflow rate from all cell cycle compartments was found at about 3 and 40 hr, and from S phase at 24 hr after irradiation. Minimum flow rates from all compartments were found up to 20 hr. Cell loss as calculated from the cell flow was compared with non-viable cells determined by Percoll density separation. Increase in cell loss as well as non-viable cells was observed at 24 hr after irradiation at the time of release of the irradiation-induced G2 blockage. Up to 50 hr, about 70% of the initial total number of cells were lost. the experiments show the applicability and limitations of cell flow and cell loss calculations by sequential analysis of the total number of cells in the various parts of the cell cycle.  相似文献   

11.
A mathematical model for cell kinetics, based on a random walk, is developed. the model allows variations with time of the rates of passage of proliferating cells through the four phases of the mitotic cycle. Circadian variations in the mitotic and labelling indices of the Syrian hamster cheek pouch epithelium have previously been observed, and the random walk model has been used to simulate this phenomenon. Assuming that all basal cells are proliferative and that these cells leave the basal layer randomly throughout the mitotic cycle to become differentiated cells, it was found that the experimentally observed circadian rhythms of the mitotic and labelling indices could be reproduced in the model by postulating a circadian rhythm in the rate of passage of cells through the G1 and S phases only. Moreover, the growth activity of cells in both the G1 and S phases appears to reach a peak during the dark hours of the light-dark cycle, and to fall off rapidly in the early hours of daylight. the postulate of Møller, Larsen & Faber (1974) that injection of the animals with tritiated thymidine causes a shortening of the G2 phase duration has been qualitatively confirmed by using the random walk model to simulate the FLM and MI curves after injection with tritiated thymidine.  相似文献   

12.
The proliferative behaviour induced in the acinar cells of the rat submaxillary gland in response to isoprenaline has been used to examine the transit time of cells from a quiescent (G0) state into the S phase. Cumulative 3H-TdR labelling index curves were constructed to determine the mean time interval (Gis time) between stimulation with isoprenaline and entry into the S phase. Data were collected for the proliferative wave induced by three sequential injections of isoprenaline, and the effects of varying the interval between the second and third injections of isoprenaline, and of changing the dose of the drug, were examined. Intervals of 28, 52 and 76 hr between isoprenaline injections resulted in mean Gis times of 16-2, 20-9 and 25-6 hr respectively. It was concluded that the Gis time depended on the recent history of cells with respect to stimulation, but not division. The results are considered in terms of two models, in one of which the time to leave G0 is variable, whilst in the other the cells leave G0 immediately the stimulus is applied.  相似文献   

13.
At rat hepatic membrane α1-adrenergic receptors, the nonhydrolyzable GTP analogue p[NH]ppG causes a rightward shift of agonist competition curves and a loss of high-affinity binding. This p[NH]ppG effect is consistent with the involvement of a guanine nucleotide-binding regulatory protein (G-protein) in α1-adrenergic receptor signalling. Although readily apparent in membranes prepared to avoid retention of endogenous nucleotides and activation of Ca2+-sensitive proteinases (+pi), this p[NH]ppG effect is not observed in membranes prepared without proteinase inhibitors (−pi), or in −pi membranes treated with Ca2+ (−pi, +Ca2+). In these various membrane preparations, different Mr forms of the receptor are also identified by photoaffinity labelling with [125I]CP65 526, an aryl azide analog of the α1-selective antagonist, prazosin, followed by SDS-polyacrylamide gel electrophoresis and autoradiography. Whereas a predominant Mr = 80 000 subunit is identified in +pi membranes, in −pi membranes a proteolytic Mr = 59 000 fragment is also observed. In −pi, +Ca2+ membranes, only this latter peptide is detected. To evaluate the ability of each of these forms of the receptor to couple with a G-protein, the effect of p[NH]ppG on the agonist-inhibition of [125I]CP65 526 labelling was determined by laser densitometry scanning and computer analysis. At the Mr = 80 000 subunit, p[NH]ppG causes a rightward shift of agonist competition curves and a loss of high-affinity binding, even in −pi membranes. By contrast, agonist-binding at the Mr = 59 000 subunit is of low-affinity and was not affected by p[NH]ppG. These data indicate that the cleaved Mr = 59 000 fragment, while retaining hormone binding activity is unable to undergo G-protein coupling. Thus, the α1-adrenergic receptor appears to contain a discrete domain necessary for G-protein coupling that is distinct from its ligand recognition site.  相似文献   

14.
Aging in the epidermis is marked by a gradual decline in barrier function, impaired wound healing, hair loss, and an increased risk of cancer. This could be due to age‐related changes in the properties of epidermal stem cells and defective interactions with their microenvironment. Currently, no biochemical tools are available to detect and evaluate the aging of epidermal stem cells. The cellular glycosylation is involved in cell–cell communications and cell–matrix adhesions in various physiological and pathological conditions. Here, we explored the changes of glycans in epidermal stem cells as a potential biomarker of aging. Using lectin microarray, we performed a comprehensive glycan profiling of freshly isolated epidermal stem cells from young and old mouse skin. Epidermal stem cells exhibited a significant difference in glycan profiles between young and old mice. In particular, the binding of a mannose‐binder rHeltuba was decreased in old epidermal stem cells, whereas that of an α2‐3Sia‐binder rGal8N increased. These glycan changes were accompanied by upregulation of sialyltransferase, St3gal2 and St6gal1 and mannosidase Man1a genes in old epidermal stem cells. The modification of cell surface glycans by overexpressing these glycogenes leads to a defect in the regenerative ability of epidermal stem cells in culture. Hence, our study suggests the age‐related global alterations in cellular glycosylation patterns and its potential contribution to the stem cell function. These glycan modifications detected by lectins may serve as molecular markers for aging, and further functional studies will lead us to a better understanding of the process of skin aging.  相似文献   

15.
Cells of Listeria monocytogenes or Salmonella enterica serovar Typhimurium taken from six characteristic stages of growth were subjected to an acidic stress (pH 3.3). As expected, the bacterial resistance increased from the end of the exponential phase to the late stationary phase. Moreover, the shapes of the survival curves gradually evolved as the physiological states of the cells changed. A new primary model, based on two mixed Weibull distributions of cell resistance, is proposed to describe the survival curves and the change in the pattern with the modifications of resistance of two assumed subpopulations. This model resulted from simplification of the first model proposed. These models were compared to the Whiting's model. The parameters of the proposed model were stable and showed consistent evolution according to the initial physiological state of the bacterial population. Compared to the Whiting's model, the proposed model allowed a better fit and more accurate estimation of the parameters. Finally, the parameters of the simplified model had biological significance, which facilitated their interpretation.  相似文献   

16.
Migration of cells within epithelial sheets is an important feature of embryogenesis and other biological processes. Previous work has demonstrated a role for inositol 1,4,5-trisphosphate (IP3)-mediated calcium signalling in the rearrangement of epidermal cells (also known as hypodermal cells) during embryonic morphogenesis in Caenorhabditis elegans. However the mechanism by which IP3 production is stimulated is unknown. IP3 is produced by the action of phospholipase C (PLC). We therefore surveyed the PLC family of C. elegans using RNAi and mutant strains, and found that depletion of PLC-1/PLC-ε produced substantial embryonic lethality. We used the epithelial cell marker ajm-1::gfp to follow the behaviour of epidermal cells and found that 96% of the arrested embryos have morphogenetic defects. These defects include defective ventral enclosure and aberrant dorsal intercalation. Using time-lapse confocal microscopy we show that the migration of the ventral epidermal cells, especially of the leading cells, is slower and often fails in plc-1(tm753) embryos. As a consequence plc-1 loss of function results in ruptured embryos with a Gex phenotype (gut on exterior) and lumpy larvae. Thus PLC-1 is involved in the regulation of morphogenesis. Genetic studies using gain- and loss-of-function alleles of itr-1, the gene encoding the IP3 receptor in C. elegans, demonstrate that PLC-1 acts through ITR-1. Using RNAi and double mutants to deplete the other PLCs in a plc-1 background, we show that PLC-3/PLC-γ and EGL-8/PLC-β can compensate for reduced PLC-1 activity. Our work places PLC-ε into a pathway controlling epidermal cell migration, thus establishing a novel role for PLC-ε.  相似文献   

17.
The [125I]UdR loss technique was used to estimate cell loss from RIF-1, EMT6 and KHJJ tumors in order to determine the length of the delay between labeling and the beginning of the loss of labeled cells, and also to calculate a value for ø, the cell loss factor. To determine the importance of reutilization of label released from the gut and/or the influx of labeled host cells, the blood flow to some tumors was occluded during and for 30 min after injection of the label. Relatively small amounts of radioactivity entered occluded RIF-1 tumors during 9 days after injection of [125I]UdR, indicating that reutilization of systemic label and influx of labeled host cells are not significant in this system. In contrast, substantial amounts of radioactivity entered occluded EMT6 and KHJJ tumors, reaching 40% of the total activity in non-occluded tumors during 6 days following injection. After corrections were made for this influx of label, the [125I]UdR loss curves from RIF-1 and EMT6 tumors were essentially exponential from the first day following injection of label. This was interpreted as indicating the loss of proliferating as well as non-proliferating cells from both tumors. The cell loss factor derived from the [125I]UdR loss curves corrected for influx appeared to agree well with published values derived from analysis of percent labeled mitoses curves. In contrast, the corrected [125I]UdR loss curves from KHJJ tumors showed that loss of activity began three days after injection of label, indicating that primarily nonproliferating cells are lost from this tumor.  相似文献   

18.
Resting cells in tumours present a major problem in cancer chemotherapy. In the plateau phase of growth of the murine JB-1 ascites tumour (i.e. 10 days after 2–5 × 106 cells i.p.) large fractions of non-cycling cells with G1 and G2 DNA content (Q1 and Q2 cells) are present, and the fate of these resting cells was investigated after treatment with l-β-d-arabinofuranosylcytosine (Ara-C). The experimental work consisted of growth curves, percentage of labelled mitoses curves after continuous labelling with 3H-TdR, and cytophotometric determination of single-cell DNA content in unlabelled tumour cells. Treatment with an i.p. single injection of Ara-C 200 mg/kg in the plateau JB-1 tumour resulted in a significant reduction in the number of tumour cells 1 and 2 days later as compared with untreated controls, while no difference in the number of tumour cells was observed after 3 days. In tumours prelabelled with 3H-TdR 24 hr before Ara-C treatment, a significant decrease in the percentage of labelled mitoses was observed 6–8 hr later followed by a return to the initial value after 12 hr, and a new pronounced fall from 20 hr after Ara-C. The second fall in the percentage of labelled mitoses disappeared when the labelling with 3H-TdR was continued also after Ara-C treatment. Cytophotometry of unlabelled tumour cells prelabelled for 24 hr with 3H-TdR before Ara-C treatment showed 20 hr after Ara-C a pronounced decrease in the fraction of Qt cells paralleled by an increase in the fraction of unlabelled cells with S DNA content. These results indicate recycling of resting cells first with G2 and later with Gx DNA content, which contribute to the regrowth of the tumours.  相似文献   

19.
The influence of pulse labelling with 50 °Ci tritiated thymidine ([3H]TdR) (2 μCi/g) on epidermal cell-cycle distribution in mice was investigated. Animals were injected intraperitoneally with the radioactive tracer or with saline at 08.00 hours, and groups of animals were sacrificed at intervals during the following 32 hr. Epidermal basal cells were isolated from the back skin of the animals and prepared for DNA flow cytometry, and the proportions of cells in the S and G2 phases of the cell cycle were estimated from the obtained DNA frequency distributions. the proportions of mitoses among basal cells were determined in histological sections from the same animals, as were the numbers of [3H]TdR-labelled cells per microscopic field by means of autoradiography. The results showed that the [3H]TdR activity did not affect the pattern of circadian rhythms in the proportions of cells in S, G2 and M phase during the first 32 hr after the injection. the number of labelled cells per vision field was approximately doubled between 8 and 12 hr after tracer injection, indicating an unperturbed cell-cycle progression of the labelled cohort. In agreement with previous reports, an increase in the mitotic index was seen during the first 2 hr. These data are in agreement with the assumption that 50 °Ci [3H]TdR given as a pulse does not perturb cell-cycle progression in mouse epidermis in a way that invalidates percentage labelled mitosis (PLM) and double-labelling experiments.  相似文献   

20.
Cultured human epidermal cells were studied by cell sorting and autoradiography after different 3H-thymidine (3H-dThd)-labelling procedures and after labelling with DNA precursors that are incorporated via salvage or de novo pathways. It was shown that 3H-dThd incorporation was the best measure of the rate of DNA replication. Dose-response experiments with pulse and continuous labelling revealed that all S- and G2-phase cells were cycling, whereas some 20% of the cells stayed in G1-phase for long periods of time. Most, if not all of these cells were probably non-proliferating differentiated keratinocytes. At least two subpopulations of S-phase cells could be discriminated on the basis of the rate of incorporation of DNA precursors. the difference in precursor incorporation did not seem to be caused by differences in nucleotide metabolism but rather to reflect true differences in the rate of DNA replication. Continuous labelling experiments showed that these subpopulations also were apparent in the G1- and G2-phases. Studies of the grain-count distribution revealed that cells that appeared to move rapidly through the S-phase moved slowly through the G2-phase, and vice versa. Cells stained with acridine orange were subjected to a two-parameter analysis in the cell sorter by simultaneous measurement of the DNA and RNA fluorescence. Autoradiography of sorted cells revealed that, on average, cells with low RNA contents incorporated 3H-dThd at a higher rate than cells with high RNA contents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号