首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolism of propranolol in liver microsomes was markedly induced in rats and C57BL6J mice treated with 3-methylcholanthrene (3-MC) or sudan III, inducers of cytochrome P-448. 7,8 Benzoflavone inhibited propranolol metabolism in microsomes from treated rats. 3-MC did not induce propranolol metabolism in genetically nonresponsive DBA2 mice. High-performance liquid chromatographical analysis of propranolol metabolites revealed a 6-fold increase in propranolol N-desisopropylase activities in liver microsomes from sudan III- or 3-methylcholanthrene-treated rats. It is concluded that propranolol N-desisopropylation is predominantly catalyzed by cytochrome P-448.  相似文献   

2.
A number of isomerically pure polychlorinated biphenyls (PCBs) were tested as inducers of hepatic drug-metabolizing enzymes in the rat. The chlorinated biphenyl isomers can be categorized into two distinct groups of inducers, while commercial PCB mixtures have characteristics of both groups. Biphenyls chlorinated symmetrically in both the meta and para positions (3,4,3′,4′- and 3,4,5,3′,4′,5′-) increase the formation of cytochrome P-448, the ratio of the 455 to 430 peaks of the ethyl isocyanide difference spectrum, and aryl hydrocarbon hydroxylase and glucuronyl transferase activities, but decrease aminopyrine N-demethylase activity. These isomers are also the most toxic, as measured by weight loss. Biphenyl isomers chlorinated in both the para and ortho positions induce the formation of cytochrome P-450 rather than P-448, regardless of the chlorination of the meta position. These isomers, which include 2,4,2′,4′-tetra- and 2,4,5,2′,4′,5′-, 2,3,4,2′,3′,4′- and 2,4,6,2′,4′,6′-hexachlorobiphenyls, increase cytochrome P-450 and N-demethylase activity, but produce only a slight increase in aryl hydrocarbon hydroxylase activity, and do not alter the peak of the CO-difference spectrum or the ratio of the 455/430 peaks of the ethyl isocyanide difference spectrum. Isomers which are chlorinated in only one ring, or are chlorinated in both rings but not in the para positions, have very little activity as inducers of liver enzymes. Of the dichlorobiphenyls tested, 3,3′- and 4,4′-dichlorobiphenyls have very slight activity at extremely high doses.  相似文献   

3.
Treatment of uninduced, phenobarbital and 3-methylcholanthrene induced rats with fluroxene and allyl-iso-propylacetamide decreased hepatic microsomal cytochrome P-450 and equivalently decreased microsomal heme, aniline binding and p-nitroanisole demethylase. In contrast, ethylmorpnine demethylase, benzpyrene-3-hydroxylase and ethoxyresofurin deethylase were not in all cases decreased in proportion to the loss of cytochrome P-450. After phenobarbital induction fluroxene and allyl-iso-propylacetamide degrade multiple forms of cytochrome P-450, but degrade in the greatest amounts the form(s) of cytochrome P-450 inducible by phenobarbital. After 3-methylcholanthrene induction fluroxene preferentially degrades cytochrome P-448, while allyl-iso-propylacetamide is relatively specific for the form(s) of cytochrome P-450 inducible by phenobarbital.  相似文献   

4.
The biochemical basis for the marked difference in the rate of the hepatic metabolism of 2,2',4,4',5,5'-hexachlorobiphenyl (245-HCB) by Beagle dogs and Sprague-Dawley rats has been investigated. Control dog liver microsomes metabolize this substrate 15 times faster than control rat liver microsomes. Upon treatment with phenobarbital (PB), at least two cytochrome P-450 isozymes are induced in the dog, and the hepatic microsomal metabolism of 245-HCB is increased on both a per nanomole P-450 basis (twofold) and a per milligram protein basis (fivefold). One of the PB-induced isozymes, PBD-2, has been purified to a specific content of 17-19 nmol/mg protein and to less than 95% homogeneity, as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In a reconstituted system containing cytochrome b5, this isozyme shows an activity toward 245-HCB which is greater than threefold that seen in intact liver microsomes from PB-induced dogs. A reconstituted system containing the major isozyme induced by PB in the rat (PB-B) metabolizes 245-HCB at 1/10 the rate observed with purified PBD-2. Antibody inhibition studies have shown that PBD-2 accounts for greater than 90% of the hepatic microsomal metabolism of 245-HCB in control and PB-induced dogs, while PB-B only accounts for about half of the metabolism of this compound by microsomes obtained from PB-treated rats. Immunoblot analysis has revealed that the level of PBD-2 in dog liver microsomes increases nearly sixfold with PB treatment, and this increase correlates well with the fivefold increase in the rate of hepatic microsomal metabolism of 245-HCB by dogs. Together these data support a primary role for isozyme PBD-2 in the hepatic metabolism of 245-HCB in control and PB-induced dogs. In addition, these results suggest that, in contrast to rats, dogs can readily metabolize 245-HCB as a result of the presence of a cytochrome P-450 isozyme with efficient 245-HCB metabolizing activity.  相似文献   

5.
In the presence of hepatic microsomes, vinyl chloride produces a ‘type I’ difference spectrum and stimulates carbon monoxide inhibitable NADPH consumption. A comparison of the binding and Michaelis parameters for the interaction of vinyl chloride with uninduced, phenobarbital and 3-methylcholanthrene induced microsomes indicates that the binding and metabolism of vinyl chloride is catalyzed by more than one type P-450 cytochrome, but predominantly by cytochrome P-450. Metabolites of vinyl chloride from this enzyme system decrease the levels of cytochrome P-450 and microsomal heme, but not cytochrome b5 or NADPH-cytochrome c reductase in vitro.  相似文献   

6.
Live ppolysomes isolated from rats that had been treated with phenobarbital (PB) are able to incorporate [3H]leucine into total protein invitro at a rate almost five times that of polysomes prepared from control animals. Specific immunoprecipitation of translational products has shown that polysomes from induced animals synthesize cytochrome P-450b at a rate almost seven times greater than polysomes from control animals. The increased protein and cytochrome P-450b synthesis can be detected as early as 6 h following phenobarbital administration and reaches a maximum at 12–18 h. The results suggest that PB administration effects an increase in mRNA for cytochrome P-450b.  相似文献   

7.
Hepatic microsomes isolated from untreated male rats or from rats pretreated with phenobarbital (PB) or 3-methylcholanthrene (3-MC) were labeled with the hydrophobic, photoactivated reagent 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID). [125I]TID incorporation into 3-MC- and PB-induced liver microsomal protein was enhanced 5- and 8-fold, respectively, relative to the incorporation of [125I]TID into uninduced liver microsomes. The major hepatic microsomal cytochrome P-450 forms inducible by PB and 3-MC, respectively designated P-450s PB-4 and BNF-B, were shown to be the principal polypeptides labeled by [125I]TID in the correspondingly induced microsomes. Trypsin cleavage of [125I]TID-labeled microsomal P-450 PB-4 yielded several radiolabeled fragments, with a single labeled peptide of Mr approximately 4000 resistant to extensive proteolytic digestion. The following experiments suggested that TID binds to the substrate-binding site of P-450 PB-4. [125I]TID incorporation into microsomal P-450 PB-4 was inhibited in a dose-dependent manner by the P-450 PB-4 substrate benzphetamine. In the absence of photoactivation, TID inhibited competitively about 80% of the cytochrome P-450-dependent 7-ethoxycoumarin O-deethylation catalyzed by PB-induced microsomes with a Ki of 10 microM; TID was a markedly less effective inhibitor of the corresponding activity catalyzed by microsomes isolated from uninduced or beta-naphthoflavone-induced livers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Three hexachlorobiphenyl isomers, 2,2′,4,4′,5,5′-hexachlorobiphenyl (I), 2,2′,3,3′,4,4′-hexachlorobiphenyl (II) and 2,2′,3,4,4′,5′-hexachlorobiphenyl (III), have been administered to rats and the effects of these three compounds upon hepatic microsomal drug metabolism and upon hepatic porphyrins have been studied. Comparisons have been made with hexachlorobenzene and a commercial polychlorinated biphenyl mixture, Aroclor 1254. From measurements of activities of microsomal drug oxidations in vitro, the durations of pharmacological actions of certain drugs in vivo and spectral shifts associated with cytochrome P-450 it is shown that the three pure hexachlorobiphenyl isomers initially produce changes in hepatic microsomal activity which resemble those seen after treatment with phenobarbitone (PB). In contrast, following chronic feeding of the isomers, compounds II and III but not I produce a pattern of hepatic microsomal enzyme activity which shows some characteristics of the 3-methylcholanthrene (3-MC) and some characteristics of the phenobarbitone classes of inducer. Also, compounds II and III, but not I, cause accumulation in the liver of porphyrins containing either seven or eight carboxyl groups. These two responses are similar to those observed following hexachlorobenzene treatment and suggest that a relationship may exist between the mixed pattern of enzyme induction and the onset of hepatic porphyrin accumulation.  相似文献   

9.
The presence of the components of polysubstrate monooxygenase (PSMO) activity, viz., cytochrome P-450 and NADPH cytochrome P-450 reductase has been established for the first time in the microsomes of Aspergillus parasiticus. The microsomes were able to metabolize benzphetamine. NADPH cytochrome P-450 reductase, benzphetamine metabolism and aflatoxin production was increased by the presence of phenobarbitone (PB, 2mg/ml) in the medium. These results demonstrate that induction of PSMO activity could be a prerequisite for increased production of aflatoxins, since hydroxylation of intermediates is an obligatory step in aflatoxin biosynthesis.  相似文献   

10.
Cytochrome P-450 from rat lung microsomes has been solubilized and purified 8-fold by using affinity chromatography on an ω-amino-n-octyl derivative of Sepharose 4B. The purified fraction was free of cytochrome b5 and NADPH-cytochrome c reductase and showed spectral characteristics similar to those of lung microsomal cytochrome P-450. When combined with NADPH-cytochrome c reductase partially purified from liver microsomes, the cytochrome P-450 fraction supported the hydroxylation of benzo (α)pyrene and the activity was proportional to the content of the hemoprotein. No absolute requirement for phosphatidylcholine was found.  相似文献   

11.
The activities of cytochrome P-450-dependent monooxygenases has been investigated in the liver microsomes of newborn rats (3-16 days after birth) induced with PB or 3-MC. It has been shown that the induction by PB and 3-MC results in the increase of both the total amount of cytochrome P-450 as determined by the CO-reduced spectrum and the amount of induced forms P-450b/e and P-450c respectively. In the course of induction of the specific forms of cytochrome P-450 BP-hydroxylase and 7-ER-O-deethylase activities increased at 3-MC-induction, while BPh-N-demethylase and BP-hydroxylase increased at PB-induction. Analysis of inhibition of monooxygenase reactions with antibodies has showed that only P-450c was involved in metabolism of BP and 7-ER. Participation of P-450b/e in BPh N-demethylation was notably lower in the neonates in comparison to the adult rats. In the one-week-old rats induced with 3-MC a considerable rate of BP hydroxylation and 7-ER O-deethylation (2-4.5 nmol of product min-1 mg-1) has been observed despite a small amount of P-450 (0.02-0.1 nmol/mg of protein). This fact shows the higher catalytic activity of this cytochrome P-450 in the neonates compared to similar characteristics of P-450c in the 3-MC-induced microsomes. Metabolism of BP in the PB-microsomes of the neonatal rats was inhibited neither by anti-P-450b/e nor anti-P-450c in contrast to the adults, where this reaction was inhibited by antibodies against P-450b/e.  相似文献   

12.
Addition of p-nitroanisole to a reaction mixture containing phenobarbital-pretreated rabbit liver microsomes brings about an increase the reoxidation rate of NADH-reduced cytochrome b5. Addition of partially purified cytochrome b5 to a solution containing microsomes results in a marked increase in both NADH- and NADPH-dependent O-demethylation of p-nitroanisole. p-Nitroanisole also increases the rate of NADH mediated cytochrome P-450 reduction. From these and other results described in the Discussion section, we confirm that electrons required for NADH-dependent O-demethylation of p-nitroanisole is transfered from NADH to cytochrome P-450 via cytochrome b5 and that cytochrome P-450 is the enzyme which catalyzes p-nitroanisole O-demethylation.  相似文献   

13.
4′-Iodo-, 4′-bromo-, 4′-chloro- and 4′-fluoro-2,3,4,5-tetrachlorobiphenyl were administered to immature male Wistar rats and the effects of this homologous series of 4′-halo-2,3,4,5-tetrachlorobiphenyls on the microsomal drug-metabolizing enzymes were determined. All the halogenated biphenyls increased microsomal benzo[a]pyrene hydroxylase (or aryl hydrocarbon hydroxylase, AHH), ethoxyresorufin (ER) O-deethylase and dimethylaminoantipyrine (DMAP) N-demethylase. The effects of the 4′-halo-2,3,4,5-tetrachlorobiphenyls on the microsomal enzyme activities and on the relative peak intensities and spectral shifts of the reduced cytochrome P-450:CO and ethylisocyanide (EIC) binding difference spectra were similar to those observed after coadministration of phenobarbitone (PB) and 3-methylcholanthrene (MC). The relative activities of the halogenated biphenyls were determined using two invitro assays; namely cytochrome P-448 associated induction in rat hepatoma H-4-II E cells in culture and competitive binding to the hepatic cytosolic Ah receptor protein from male Wistar rats. Dose-response experiments for the iodo, bromo, chloro and fluoro analogs gave EC50(M) values of 8.5×10?9, 6.6×10?8, 5.7×10?7, and 3.3×10?5, and 1.5×10?6, 2.5×10?6, 4.1×10?6 and 2.5×10?5 for the ER O-deethylase induction and receptor binding assays respectively. The relative potencies of the 4′-halo-2,3,4,5-tetrachlorobiphenyls followed the order I>Br>Cl>F for both assays and differences in the EC50 values for the iodo and fluoro analogs were greater than three orders of magnitude for ER O-deethylase induction in rat hepatoma cells in culture. One possible explanation for these effects may be associated with differences in the polarizability of the laterally substituted halogen groups. However, other differences in the physico-chemical properties of the halogen atoms may also be important.  相似文献   

14.
The purpose of this report is to review the current literature on cytochrome b5 in hepatic microsomes and to draw conclusions as to its role in microsomal electron transfer pathways. For details concerning the history of cytochrome b5 the reader is reffered to reviews by C. F. Strittmatter (1) and P. Strittmatter (2). For information on the chemistry of cytochrome b5 the reader is reffered to the papers by Ozols and Strittmatter (3), Kajihara and Hagihara (4), and Ehrenberg and Bois-Poltoratsky (5). For more recent studies on the isolation and properties of detergent solubilized cytochrome b5, which contains a hydrophobic peptide enabling reincorporation into membranes, the reader is referred to references 6-12.For simplicity, this minireview is divided into four parts, reflecting areas of study on the role of cytochrome b5 in the microsomes. One major area is in fatty acid 9 desaturation. Two other areas concern cytochrome b5 involvement in cytochrome P-450 mediated mixed function oxidations. The fourth section deals with other non-cytochrome P-450 pathways in which cytochrome b5 is suggested as being a component.  相似文献   

15.
In order to define the site of bioactivation of CCl4, CHCl3 and CBrCl3 in the NADPH cytochrome c reductase-cytochrome P-450 coupled systems of liver microsomes, the 14C-labeled hepatotoxins were incubated invitro with isolated rat liver microsomes and a NADPH-generating system. The covalent binding of radiolabel to microsomal protein was used as a measure of the conversion of the hepatotoxins to reactive intermediates. Omission of NADPH, incubation under CO:O2 (8:2) and addition of a cytochrome c reductase specific antisera mardedly reduced the covalent binding of all three compounds. When cytochrome P-450 was reduced to less than 25% of normal by pretreatment of rats with allylisopropylacetamide (AIA), but cytochrome c reductase activity was unchanged, the covalent binding of CCl4, CHCl3, and CBrCl3 was decreased by 63, 83, 70%, respectively. Incubation under an atmosphere of N2 enhanced the binding of CCl4, inhibited the binding of CHCl3 and did not influence the binding of CBrCl3. It is concluded that cytochrome P-450 is the site of bioactivation of these three compounds rather than NADPH cytochrome c reductase and that CCl4 bioactivation proceeds by cytochrome P-450 dependent reductive pathways, while CHCl3 activation proceeds by cytochrome P-450 dependent oxidative pathways.  相似文献   

16.
Liver microsomes and reconstituted cytochrome P-450 systems purified from phenobarbital or 3-methylcholanthrene pre-treated rats metabolize cyclopenta(cd)pyrene at its K-region to trans-9,10-dihydroxy-9,10-dihydrocyclopenta(cd)pyrene. The rate of formation of the K-region product is from 5% to 25% that of trans-3,4-dihydroxy-3,4-dihydro-cyclopenta(cd)pyrene. The preference of microsomes and purified cytochromes P-450 for oxygenating cyclopenta(cd)pyrene at the ethylenic C(3)–C(4) position is explainable in part by the fact that the C(4) position has the greatest electron density in the highest occupied molecular orbital.  相似文献   

17.
The effect of the insecticides, mirex and chordecone (Kepone), on the cytochrome P-450 monooxygenase system in C57BL/6N mouse liver microsomes was studied. Mice were treated intraperitoneally with low (6 mg/kg) and high (30 mg/kg) doses of mirex and chlordecone in corn oil for 2 days. For comparison, mice were also treated with either phenobarbital (PB) or 3-methylcholanthrene (3-MC). All treatments significantly increased the hepatic microsomal P-450 content over that of controls. Benzphetamine N-demethylase, ethoxyresorufin O-deethylase, benzo[a]pyrene hydroxylase, and acetanilide hydroxylase activities were also determined. Mirex and chlordecone resembled phenobarbital with respect to the induction of monooxygenase activities. Immunoquantitation with antibodies to purified P-450 IIB1 (Pb-induced P-450) and P-450 IA1 (3-MC-induced P-450) indicated that mirex and chlordecone induced P-450 IIB1 in a dose-dependent manner. The high dose of mirex also induced a small amount of a protein cross reacting with the antibody to IA1. The induction of this isozyme did not, however, contribute significantly to the monooxygenase activities measured.  相似文献   

18.
NADPH reduces both liver microsomal cytochrome P-450 and cytochrome b5. In the presence of CO, ferrous cytochrome P-450 can slowly transfer electrons to amaranth, an azo dye. This reaction is followed by the reoxidation of cytochrome b5 which proceeds at essentially the same rate as does cytochrome P-450 oxidation. It is suggested that cytochrome b5 directly reduces cytochrome P-450 in rat liver microsomes.  相似文献   

19.
Binding of increasing amounts of detergent-purified cytochrome b5 to rabbit liver microsomes produces a progressive inhibition of NADPH-cytochrome P-450 reductase activity which is accompanied by a similar inhibition of NADPH-supported benzphetamine demethylation. In contrast, NADH-cytochrome P-450 reductase activity in the enriched microsomes is markedly enhanced and this stimulation is accompanied by a similar increase in NADH-peroxidase activity, suggesting that cytochrome b5 in these two reactions functions as an intermediate electron carrier to cytochrome P-450.  相似文献   

20.
The role of cytochrome b5 in the p-nitroanisole O-demethylation was studied with a reconstituted system containing a unique cytochrome P-450, isolated from rabbit liver microsomes as a species with a high affinity for cytochrome b5. The maximal activity was obtained in the complete system consisting of cytochrome P-450, NADPH-cytochrome P-450 reductase, NADH-cytochrome b5 reductase, and Triton X-100 in addition to cytochrome b5. The omission of cytochrome b5 from the complete system entirely abolished the activity. These results clearly show that cytochrome b5 is obligatory in the reconstitute p-nitroanisole O-demethylation system, and this cytochrome P-450 probably interacts with cytochrome b5 in such a way that the second electron is transferred from cytochrome b5 and thus exhibits the demethylase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号