首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a system of delay differential equations modeling the predator-prey ecoepidemic dynamics with a transmissible disease in the predator population. The time lag in the delay terms represents the predator gestation period. We analyze essential mathematical features of the proposed model such as local and global stability and in addition study the bifurcations arising in some selected situations. Threshold values for a few parameters determining the feasibility and stability conditions of some equilibria are discovered and similarly a threshold is identified for the disease to die out. The parameter thresholds under which the system admits a Hopf bifurcation are investigated both in the presence of zero and non-zero time lag. Numerical simulations support our theoretical analysis.  相似文献   

2.
In this paper, a predator–prey system with harvesting prey and disease in prey species is given. In the absence of time delay, the existence and stability of all equilibria are investigated. In the presence of time delay, some sufficient conditions of the local stability of the positive equilibrium and the existence of Hopf bifurcation are obtained by analysing the corresponding characteristic equation, and the properties of Hopf bifurcation are given by using the normal form theory and centre manifold theorem. Furthermore, an optimal harvesting policy is investigated by applying the Pontryagin's Maximum Principle. Numerical simulations are performed to support our analytic results.  相似文献   

3.
陈斯养  靳宝 《生态学报》2015,35(7):2339-2348
讨论了具时滞与分段常数变量的捕食-食饵生态模型的稳定性及Neimark-Sacker分支;通过计算得到连续模型对应的差分模型,基于特征值理论和Schur-Cohn判据得到正平衡态局部渐进稳定的充分条件;以食饵的内禀增长率为分支参数,运用分支理论和中心流形定理分析了Neimark-Sacker分支的存在性与稳定性条件;通过举例和数值模拟验证了理论的正确性。  相似文献   

4.
We consider the stability properties of the positive equilibrium of a stochastic model for bacteriophage infection with discrete time delay. Conditions for mean-square stability of the trivial solution of the linearized system around the equilibrium are given by the construction of suitable Lyapunov functionals. The numerical simulations of the strong solutions of the arising stochastic delay differential system suggest that, even for the original non-linear model, the longer the incubation time the more the phage and bacteria populations can coexist on a stable equilibrium in a noisy environment for very long time.  相似文献   

5.
A three-dimensional stage-structured predator–prey model is proposed and analyzed to study the effect of predation and cannibalism of the organisms at the highest trophic level with non-constant harvesting. Time lag in maturation of the predator is introduced in the system and conditions for local asymptotic stability of steady states are derived. The length of the delay preserving the stability is also estimated. Moreover, it is shown that the system undergoes a supercritical Hopf bifurcation when the maturation time lag crosses a certain critical value. Computer simulations have been carried out to illustrate various analytical results.  相似文献   

6.
An susceptible-infective-removed epidemic model incorporating media coverage with time delay is proposed. The stability of the disease-free equilibrium and endemic equilibrium is studied. And then, the conditions which guarantee the existence of local Hopf bifurcation are given. Furthermore, we show that the local Hopf bifurcation implies the global Hopf bifurcation after the second critical value of delay. The obtained results show that the time delay in media coverage can not affect the stability of the disease-free equilibrium when the basic reproduction number is less than unity. However, the time delay affects the stability of the endemic equilibrium and produces limit cycle oscillations while the basic reproduction number is greater than unity. Finally, some examples for numerical simulations are included to support the theoretical prediction.  相似文献   

7.
Recent field experiments on vertebrates showed that the mere presence of a predator would cause a dramatic change of prey demography. Fear of predators increases the survival probability of prey, but leads to a cost of prey reproduction. Based on the experimental findings, we propose a predator–prey model with the cost of fear and adaptive avoidance of predators. Mathematical analyses show that the fear effect can interplay with maturation delay between juvenile prey and adult prey in determining the long-term population dynamics. A positive equilibrium may lose stability with an intermediate value of delay and regain stability if the delay is large. Numerical simulations show that both strong adaptation of adult prey and the large cost of fear have destabilizing effect while large population of predators has a stabilizing effect on the predator–prey interactions. Numerical simulations also imply that adult prey demonstrates stronger anti-predator behaviors if the population of predators is larger and shows weaker anti-predator behaviors if the cost of fear is larger.  相似文献   

8.
Time delay is an inevitable factor in neural networks due to the finite propagation velocity and switching speed. Neural system may lose its stability even for very small delay. In this paper, a two-neural network system with the different types of delays involved in self- and neighbor- connection has been investigated. The local asymptotic stability of the equilibrium point is studied by analyzing the corresponding characteristic equation. It is found that the multiple delays can lead the system dynamic behavior to exhibit stability switches. The delay-dependent stability regions are illustrated in the delay-parameter plane, followed which the double Hopf bifurcation points can be obtained from the intersection points of the first and second Hopf bifurcation, i.e., the corresponding characteristic equation has two pairs of imaginary eigenvalues. Taking the delays as the bifurcation parameters, the classification and bifurcation sets are obtained in terms of the central manifold reduction and normal form method. The dynamical behavior of system may exhibit the quasi-periodic solutions due to the Neimark- Sacker bifurcation. Finally, numerical simulations are made to verify the theoretical results.  相似文献   

9.
考虑了CTLs免疫应答和细胞内部时滞建立HIV-1感染的数学模型.对模型的无感染平衡点全局稳定性进行了分析,对CTLs未激活和CTLs已激活的感染平衡点给出了局部稳定的充分条件.数值模拟支持了得到的理论结果.  相似文献   

10.
J. Rochat 《BioControl》1997,42(1-2):201-213
A particular feature of aphid-parasitoid systems is the existence of a delay between parasitisation (sting) and the death of the host (i.e. mummification). This biological trait is generally not considered important for population stability, except if the delay is very long, and hence it is ignored in most population dynamics studies. However, many crops have relatively short durations, and these time delays may have important consequences and cannot be ignored in a dynamics model. In this study, we are looking for the key-factors that influence an aphidparasitoid system population dynamics during a cropping cycle. Specifically, a simple model based on ordinary and delay differential equations and including biologically meaningful parameters was developed for aphidparasitoid systems and used to examine: (1) effect of biological characteristics of both the aphid and the parasitoid on their dynamics, (2) the effect of parasitoid augmentation on the dynamics of the system (e.g.: date, number and importance of the releases of parasitoids), and (3) to compare observedAphis gossypii — Lysiphlebus testaceipes dynamics in a cucumber crop to the predictions of the model. Good fits between the model and the field data were obtained and suggest that this model may be a powerful tool for selecting species of parasitoid and strategies for their use in biological control augmentation programs for aphid pest management.  相似文献   

11.
In this paper we develop a novel discrete, individual-based mathematical model to investigate the effect of parasitoid foraging strategies on the spatial and temporal dynamics of host-parasitoid systems. The model is used to compare na?ve or random search strategies with search strategies that depend on experience and sensitivity to semiochemicals in the environment. It focuses on simple mechanistic interactions between individual hosts, parasitoids, and an underlying field of a volatile semiochemical (emitted by the hosts during feeding) which acts as a chemoattractant for the parasitoids. The model addresses movement at different spatial scales, where scale of movement also depends on the internal state of an individual. Individual interactions between hosts and parasitoids are modelled at a discrete (micro-scale) level using probabilistic rules. The resulting within-generation dynamics produced by these interactions are then used to generate the population levels for successive generations. The model simulations examine the effect of various key parameters of the model on (i) the spatio-temporal patterns of hosts and parasitoids within generations; (ii) the population levels of the hosts and parasitoids between generations. Key results of the model simulations show that the following model parameters have an important effect on either the development of patchiness within generations or the stability/instability of the population levels between generations: (i) the rate of diffusion of the kairomones; (ii) the specific search strategy adopted by the parasitoids; (iii) the rate of host increase between successive generations. Finally, evolutionary aspects concerning competition between several parasitoid subpopulations adopting different search strategies are also examined.  相似文献   

12.
In this paper, we study the global dynamics and bifurcations of a two-dimensional discrete time host–parasitoid model with strong Allee effect. The existence of fixed points and their stability are analysed in all allowed parametric region. The bifurcation analysis shows that the model can undergo fold bifurcation and Neimark–Sacker bifurcation. As the parameters vary in a small neighbourhood of the Neimark–Sacker bifurcation condition, the unique positive fixed point changes its stability and an invariant closed circle bifurcates from the positive fixed point. From the viewpoint of biology, the invariant closed curve corresponds to the periodic or quasi-periodic oscillations between host and parasitoid populations. Furthermore, it is proved that all solutions of this model are bounded, and there exist some values of the parameters such that the model has a global attractor. These theoretical results reveal the complex dynamics of the present model.  相似文献   

13.
The present paper shows possible effects of antiretroviral treatment on the dynamics of the spread of the disease of human immunodeficiency virus infection in a population of varying size. By introducing time delays, we model the latency period and the delayed onset of positive treatment effects in the patients. The Hopf bifurcation and stability behaviour of the delay differential-equation model are analysed and simulations for different scenarios depending on the size of the treatment-induced delay are presented, and the results are discussed in detail.  相似文献   

14.
Allee效应与种群的灭绝密切相关,其研究对生态保护和管理至关重要。Allee效应对物种续存是潜在的干扰因素,濒危物种更容易受其影响,可能会增加生存于生境破碎化斑块的濒危物种的死亡风险,因此研究Allee效应对种群的动态和续存的影响是必要的。从包含由生物有机体对环境的修复产生的Allee效应的集合种群模型出发,引入由其他机制形成的Allee效应,建立了常微分动力系统模型和基于网格模型的元胞自动机模型。通过理论分析和计算机模拟表明:(1)强Allee效应不利于具有生境恢复的集合种群的续存;(2)生境恢复有利于种群续存;(3)局部扩散影响了集合种群的空间结构、动态行为和稳定性,生境斑块之间的局部作用将会减缓或消除集合种群的Allee效应,有利于集合种群的续存。  相似文献   

15.
A prey-predator model incorporating prey refuge with variable carrying capacity and Holling type-II functional response is proposed and analyzed. The model includes a case of increasing carrying capacity as well as a decreasing carrying capacity case. Sufficient conditions are derived to ensure the existence and local stability of the equilibrium points of the proposed model. Moreover, the occurrence of transcritical bifurcation as well as Hopf bifurcation are investigated. The effect of some model parameter related to the prey refuge and the variable carrying capacity on the prey-predator dynamics has been examined. Numerical simulations are presented to demonstrate the theoretical results and to illustrate the effect of these parameters on the model dynamics. Moreover, a comparison with the constant carrying case has been presented.  相似文献   

16.
具有三个年龄阶段的单种群自食模型   总被引:5,自引:1,他引:4  
建立并研究了两个具有三个年龄阶段的单种群自食模型.这篇文章的主要目的是研究时滞对种群生长的作用,对于没有时滞的的模型,我们利用Liapunov函数,得到了系统平衡点全局渐近稳定的充分条件;而具有时滞的的模型,我们得到,随着时滞T增加,当系数满足一定条件时,正平衡点的稳定性可以改变有限次,最后变成不稳定;否则,时滞模型的正平衡点的稳定性不改变。  相似文献   

17.
考虑CTL免疫反应的饱和效应及免疫时滞两个因素,建立HIV感染模型.分析了无感染平衡点的全局稳定性,得到了系统免疫未激活平衡点及免疫激活平衡点局部渐近稳定的充分条件.针对功能反应函数中的参数及免疫时滞,讨论了免疫被激活平衡点附近存在Hopf分支的充分条件.最后,对所得理论结果进行了数值模拟.  相似文献   

18.
Various spatial approaches were developed to study the effect of spatial heterogeneities on population dynamics. We present in this paper a flux-based model to describe an aphid-parasitoid system in a closed and spatially structured environment, i.e. a greenhouse. Derived from previous work and adapted to host-parasitoid interactions, our model represents the level of plant infestation as a continuous variable corresponding to the number of plants bearing a given density of pests at a given time. The variation of this variable is described by a partial differential equation. It is coupled to an ordinary differential equation and a delay-differential equation that describe the parasitized host population and the parasitoid population, respectively. We have applied our approach to the pest Aphis gossypii and to one of its parasitoids, Lysiphlebus testaceipes, in a melon greenhouse. Numerical simulations showed that, regardless of the number and distribution of hosts in the greenhouse, the aphid population is slightly larger if parasitoids display a type III rather than a type II functional response. However, the population dynamics depend on the initial distribution of hosts and the initial density of parasitoids released, which is interesting for biological control strategies. Sensitivity analysis showed that the delay in the parasitoid equation and the growth rate of the pest population are crucial parameters for predicting the dynamics. We demonstrate here that such a flux-based approach generates relevant predictions with a more synthetic formalism than a common plant-by-plant model. We also explain how this approach can be better adapted to test different management strategies and to manage crops of several greenhouses.  相似文献   

19.
In this paper, we develop a new approach to deal with asymptotic behavior of the age-structured homogeneous epidemic systems and discuss its application to the MSEIR epidemic model. For the homogeneous system, there is no attracting nontrivial equilibrium, instead we have to examine existence and stability of persistent solutions. Assuming that the host population dynamics can be described by the stable population model, we rewrite the basic system into the system of ratio age distribution, which is the age profile divided by the stable age profile. If the host population has the stable age profile, the ratio age distribution system is reduced to the normalized system. Then we prove the stability principle that the local stability or instability of steady states of the normalized system implies that of the corresponding persistent solutions of the original homogeneous system. In the latter half of this paper, we prove the threshold and stability results for the normalized system of the age-structured MSEIR epidemic model.   相似文献   

20.
Dynamic properties of a delayed protein cross talk model   总被引:1,自引:0,他引:1  
In this paper we investigate how the inclusion of time delay alters the dynamical properties of the Jacob-Monod model, describing the control of the beta-galactosidase synthesis by the lac repressor protein in E. coli. The consequences of a time delay on the dynamics of this system are analysed using Hopf's theorem and Lyapunov-Andronov's theory applied to the original mathematical model and to an approximated version. Our analytical calculations predict that time delay acts as a key bifurcation parameter. This is confirmed by numerical simulations. A critical value of time delay, which depends on the values of the model parameters, is analytically established. Around this critical value, the properties of the system change drastically, allowing under certain conditions the emergence of stable limit cycles, that is self-sustained oscillations. In addition, the features of the end product repression play an essential role in the characterisation of these limit cycles: if cooperativity is considered in the end product repression, time delay higher than the mentioned critical value induce differentiated responses during the oscillations, provoking cycles of all-or-nothing response in the concentration of the species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号