首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Four types of laboratory populations of the bean weevil (Acanthoscelides obtectus) have been developed to study the effects of density-dependent and age-specific selection. These populations have been selected at high (K) and low larval densities (r) as well as for reproduction early (Y) and late (O) in life. The results presented here suggest that the r- and K-populations (density-dependent selection regimes) have differentiated from each other with respect to the following life-history traits: egg-to-adult viability at high larval density (K > r), preadult developmental time (r > K), body weight (r > K), late fecundity (K > r), total realized fecundity (r > K), and longevity of males (r > K). It was also found that the following traits responded in statistically significant manner in populations subjected to different age-specific selection regimes: egg-to-adult viability (O > Y), body weight (O > Y), early fecundity (Y > O), late fecundity (O > Y), and longevity of females and males (O > Y). Although several life-history traits (viability, body weight, late fecundity) responded in similar manner to both density-dependent and age-specific selection regimes, it appears that underlying genetic and physiological mechanisms responsible for differentiation of the r/K and Y/O populations are different. We have also tested quantitative genetic basis of the bean weevil life-history traits in the populations experiencing density-dependent and age-specific selection. Among the traits traded-off within age-specific selection regimes, only early fecundity showed directional dominance, whereas late fecundity and longevity data indicated additive inheritance. In contrast to age-specific selecton regimes, three life-history traits (developmental time, body size, total fecundity) in the density-sependent regimes exhibited significant dominance effects. Lastly, we have tested the congruence between short-term and long-term effects of larval densities. The comparisons of the outcomes of the r/K selection regimes and those obtained from the low- and high-larval densities revealed that there is no congruence between the selection results and phenotypic plasticity for the analyzed life-history traits in the bean weevil.  相似文献   

2.
A simulation model was used to assess the role of several mechanisms proposed to be responsible for spider mite outbreaks on cotton that are typically observed following applications of insecticides. Simulation results were compared to an outbreak that occurred after two pyrethroid applications on cotton in a controlled experiment in the San Joaquin Valley of California. In the model, physiological effects were simulated by increasing spider mite fecundity and decreasing developmental duration, whereas loss of natural enemies was simulated by increasing spider mite age-specific survival. At the levels simulated, survival had the greatest impact on maximum spider mite density, degree days (oD) to maximum density, and cumulative spider mite-oD, whereas fecundity had the least, and developmental duration had an intermediate effect. There were substantial two-way interactions among all three life history parameters, with age-specific survival having the most influence. Survival had the greatest effect on spider mite population dynamics when in combination with short developmental duration. The influence of developmental duration on maximum spider mite density was greater than comparable percentage changes in fecundity, an effect that was more pronounced at high than at low survival. Changing fecundity, developmental duration, or age-specific survival individually did not result in a spider mite outbreak of the magnitude observed in the field. However, changing these three parameters simultaneously, resulted in a simulated maximum density of 8,000/m2, which represents a 12-fold increase over the untreated control, and closely mimicked the previously observed field outbreak. It is proposed that spider mite outbreaks on cotton following insecticide applications are not solely the result of physiological stimulation, but are rather due to several life history parameters being affected simultaneously, with natural enemy-mediated survival having the greatest individual impact. Implications of chemically-induced phenomena affecting spider mite management on cotton are discussed. A copy of the crop and herbivore simulation models can be obtained by sending an IBM compatible disk to L. T. Wilson.  相似文献   

3.
The role of compensatory mechanisms in the population dynamics of lake trout in the Michigan waters of Lake Superior was explored during three time periods: the pre-sea lamprey period, prior to 1950 when lake trout were at a relatively high abundance and the fishery was the primary source of lake trout mortality; the sea lamprey dominant period, from 1951 to 1961 when lake trout were at a very low abundance due to sea lamprey predation and overexploitation; and currently, from 1985 to 1993 when wild lake trout abundance was at a moderate level. The role of compensatory changes in growth and fecundity rates of lake trout in the Michigan waters of Lake Superior was evaluated using a life table approach. Individual growth and fecundity rates were calculated and compared between time periods. These rates were used to determine age-specific fecundity which, along with age-specific survival, were incorporated into a Leslie projection matrix to calculate the finite rate of population increase (λ). Individual growth rates and age-specific fecundity rates changed in response to the different levels of lake trout abundance during each of the study periods. Lake trout during the sea lamprey dominant period, which experienced the lowest abundance and highest mortality levels, exhibited the fastest individual growth rates and the highest age-specific fecundity. These high rates contributed to the relatively large compensatory scope exhibited by lake trout during the sea lamprey dominant period as compared to lake trout during the pre-sea lamprey or the current periods which are associated with higher levels of abundance.  相似文献   

4.
Mack PD  Lester VK  Promislow DE 《Genetica》2000,110(1):31-41
Evolutionary theories of senescence assume that mutations with age-specific effects exist, yet until now, there has been little experimental evidence to support this assumption. In this study, we allowed mutations to accumulate in an outbred, wild population of Drosophila melanogaster to test for age-specific differences in both male mating ability and fecundity. We assayed for age-specific effects of mutations after 10, 20, and 30 generations of mutation accumulation. For mating ability, we found the strongest effects of mutations in the first half of the life span after 20 generations, and at nearly all ages by generation 30. These results are qualitatively consistent with results from a companion study in which age-specific mortality was assayed on the same lines of D. melanogaster. By contrast, effects of fecundity were confined to late ages after 20 generations of mutation accumulation, but by generation 30, as with male mating ability, effects of novel mutations were distributed across all age classes. We discuss several possible explanations for the differences that we observe between generations within traits, and among traits, and the relevance for these patterns to models of aging as well as models of mate choice and sexual selection. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Anthropophilic mosquitoes such as Aedes aegypti L. (Diptera: Culicidae) have been shown to have superior reproductive success on human blood when sugar is not available. Life-table experiments were conducted with Aedes albopictus Skuse and Ae. aegypti to compare the effects of sugar availability on age-specific survivorship, lifetime and daily fecundity, and blood-feeding frequency when offered human blood daily. There were no significant interactions between the effects of sugar availability and mosquito species for these four variables, indicating similar effects of sugar availability for both species. Lifetime fecundity was not significantly affected by sugar availability, but sugar-deprived females had significantly reduced age-specific survivorship than did sugar-fed females. In absence of sugar, females took bloodmeals twice as often, resulting in a higher daily fecundity. The results indicate that superior reproductive success on human blood without sugar does not seem to be limited to highly anthropophilic mosquito species, such as Ae. aegypti. We conclude that evolution of a highly anthropophilic feeding strategy is not an inevitable result of the ability to thrive on human blood alone.  相似文献   

6.
Variation in the life history traits of cotton aphids, Aphis gossypii Glover, reared on four widely distributed weeds, Ageratum houstonianum Mill., Bidens pilosa L. var. radiata Sch. Bip., Solanum nigrum L. and Spermacoce latifolia Aubl., were investigated. Cotton aphids were reared in the laboratory at 25°C. Each host plant had a distinct effect on aphid life history traits. Cotton aphids reared on S. nigrum had a significantly shorter developmental period, and age-specific fecundity peaked early. In contrast, cotton aphids reared on S. latifolia had a long developmental period and low age-specific fecundity. Cotton aphids that fed on B. pilosa and A. houstonianum displayed intermediate rates of growth and age-specific fecundity. Because the curves of age-specific fecundity ( mx ) and age-specific net maternity ( lx  m x ) on each host plant were close together, development time and the pattern of age-specific fecundity were the major factors determining the population growth potential of the cotton aphid on each weed. As a result, the intrinsic rate of population growth for aphids reared on S. nigrum was significantly higher ( rm =0.527 ± 0.011) than it was for aphids reared on S. latifolia ( rm =0.194 ± 0.012).  相似文献   

7.
Natural populations host a wealth of genetic variation in longevity and age-specific schedules of reproduction. This variation provides critical information for inferring the evolutionary origin of senescence. Patterns of mutational effects on age-specific fecundity and survival provide additional insight to distinguish alternative models of senescence. In this study,P-elements bearing thewhite minigene were inserted at random into a common genetic background, generating lines ofD. melanogaster with single, stable transposon inserts. A series of 48 single-P-element lines revealed statistically significant heterogeneity in both longevity and fecundity. Longevity and early fecundity were only weakly positively correlated (r=0.286,P=0.0398). Both the pooled sample and 30 of the individual lines exhibited a leveling of age-specific mortality at advanced ages, in opposition to the classical demographic models. To the extent that these mutational effects are representative of naturally-occurring mutations in heterogeneous populations, this result presents a problem for the evolutionary theory of senescence. Natural selection is inefficient at removing deleterious mutations that are expressed only at late ages, and selection may not differentiate between mutations whose effects on longevity are post-reproductive. A leveling of the mortality rate would also be seen if mutations whose expression is delayed until very late simply do not occur. A simulation of mutation-selection balance among the 48P-element tagged lines shows that the mean longevity declines monotonically with increasing mutation rate, consistent with the mutation-accumulation model.  相似文献   

8.
The effects of temperature on demographic characteristics of two populations from Ravenna and Genoa of the polychaete Dinophilus gyrociliatus were investigated. Temperature affects age-specific survival and fecundity and all the demographic parameters often to a different degree in the two populations. Individuals from Ravenna survive longer than those from Genoa. The most evident differences in the age-specific fecundity curves of the experimental groups are related to age at maturity and the duration of the reproductive period that are in inverse proportion to temperature. In both populations of D. gyrociliatus, the maximum daily fecundity is observed at intermediate temperatures. In all cases, the Genoa females mature earlier, attain their maximum fecundity more quickly and have a shorter reproductive period than their Ravenna counterparts.Age at maturity, fecundity during the first reproductive events and juvenile survival are by far the most important characteristics in determining the fitness of the two populations at the tested temperatures. Even though the greatest net growth rates and highest expectation of life were recorded at 12 °C in the Ravenna population, the delay in the attainment of sexual maturity means that, at this temperature, the population growth rate is lowest. The higher juvenile survivorship and the greater fecundity observed at 24 °C is counter-balanced by the early attainment of sexual maturity induced at 30 °C. The comparison of the population growth rate calculated in laboratory with field data suggests that temperature is one of the main environmental parameters determining the fitness of D. gyrociliatus.  相似文献   

9.
Flatt T  Kawecki TJ 《Genetica》2004,122(2):141-160
Life history theory assumes that there are alleles with pleiotropic effects on fitness components. Although quantitative genetic data are often consistent with pleiotropy, there are few explicit examples of pleiotropic loci. The Drosophila melanogaster gene Methoprene-tolerant (Met) may be such a locus. The Met gene product, a putative juvenile hormone receptor, facilitates the action of juvenile hormone (JH) and JH analogs; JH affects many life history traits in arthropods. Here we use quantitative complementation to investigate effects of Met mutant and wildtype alleles on female developmental time, onset of reproduction, and fecundity. Whereas the alleles did not differ in their effects on developmental time, we detected allelic variation for the onset of reproduction and for age-specific fecundity. Alleles influenced phenotypic co-variances among traits (developmental time and onset of reproduction; onset of reproduction and both early and late fecundity; early and late fecundity), suggesting that alleles of Met vary in their pleiotropic effects upon life history. Furthermore, the genetic covariance between developmental time and early fecundity attributed to alleles of Met was negative, indicating consistent pleiotropic effects among alleles on these traits. The allelic effects of Met support genetic models where pleiotropy at genes associated with hormone regulation can contribute to the evolution of life history traits.  相似文献   

10.
The phenology of overwintered Tetranychus urticae was studied on the ground cover in apple orchards in the early season, and an oviposition model of overwintered adults was developed. The movement of overwintered adults from trees to ground cover started from mid-March and continued until mid-April. One life cycle from eggs to new adults (the 1st generation adults) on the ground cover was from late March to early May. The longevity and fecundity of overwintered T. urticae were affected largely by temperature. The longevity ranged from 46.6 days at 10 degrees C to 6.5 days at 35 degrees C. The total fecundity was minimum (0.2 eggs) at 10 degrees C and maximum (45.5 eggs) at 25 degrees C. The relationship between total fecundity and temperature was described well by a nonlinear equation. The cumulative age-specific oviposition rate was described well by the two-parameter Weibull function. The overall adult survival exhibited a reverse logistic curve. Three temperature-dependent components, age-specific cumulative oviposition rate, temperature-dependent total fecundity and age-specific survival rate functions, were incorporated into an oviposition model. The oviposition model simulation described the occurrence pattern of eggs laid by overwintered T. urticae on the ground cover in apple orchards relatively well.  相似文献   

11.
We analyze weak fluctuating selection on a quantitative character in an age-structured population not subject to density regulation. We assume that early in the first year of life before selection, during a critical state of development, environments exert a plastic effect on the phenotype, which remains constant throughout the life of an individual. Age-specific selection on the character affects survival and fecundity, which have intermediate optima subject to temporal environmental fluctuations with directional selection in some age classes as special cases. Weighting individuals by their reproductive value, as suggested by Fisher, we show that the expected response per year in the weighted mean character has the same form as for models with no age structure. Environmental stochasticity generates stochastic fluctuations in the weighted mean character following a first-order autoregressive model with a temporally autocorrelated noise term and stationary variance depending on the amount of phenotypic plasticity. The parameters of the process are simple weighted averages of parameters used to describe age-specific survival and fecundity. The "age-specific selective weights" are related to the stable distribution of reproductive values among age classes. This allows partitioning of the change in the weighted mean character into age-specific components.  相似文献   

12.
A sib analysis of adult life-history characters was performed on about twelve hundred females from a laboratory Drosophila melanogaster population that had been sampled from nature and cultured so as to preserve its genetic variability. The following results were found. There was no detectable trend with age in additive or dominance genetic variances for age-specific fecundity. Environmental variance for age-specific fecundity increased with age. The genetic variance for fecundity characters was primarily additive. The genetic variance for longevity was primarily dominance variance. There were negative genetic correlations between early fecundity and lifespan, as well as between mean egg-laying rate and longevity.  相似文献   

13.
Leips J  Gilligan P  Mackay TF 《Genetics》2006,172(3):1595-1605
Life-history theory and evolutionary theories of aging assume the existence of alleles with age-specific effects on fitness. While various studies have documented age-related changes in the genetic contribution to variation in fitness components, we know very little about the underlying genetic architecture of such changes. We used a set of recombinant inbred lines to map and characterize the effects of quantitative trait loci (QTL) affecting fecundity of Drosophila melanogaster females at 1 and 4 weeks of age. We identified one QTL on the second chromosome and one or two QTL affecting fecundity on the third chromosome, but these QTL affected fecundity only at 1 week of age. There was more genetic variation for fecundity at 4 weeks of age than at 1 week of age and there was no genetic correlation between early and late-age fecundity. These results suggest that different loci contribute to the variation in fecundity as the organism ages. Our data provide support for the mutation accumulation theory of aging as applied to reproductive senescence. Comparing the results from this study with our previous work on life-span QTL, we also find evidence that antagonistic pleiotropy may contribute to the genetic basis of senescence in these lines as well.  相似文献   

14.
The population dynamics of the freshwater snail Biomphalariapfeifferi, an intermediate host of the parasitic worm Schistosomamansoni, was studied in the Virunga stream in Eastern Zaïre. Methods are developed to estimate age-specific survivorshipfrom regular quadrat-sampling data without assuming a constantmortality rate, and to approximate age-specific fecundity whenthe fecundity function is known in the laboratory. The population dynamics in the field was found to be very differentfrom that in the laboratory: it is basically discontinuous,with one main generation per year; a massive mortality occursafter hatching; fecundity is reduced considerably; and thereare marked seasonal variations in both survivorship and fecundity.Time-dependent demographic parameters were estimated by monthinstead of by cohort. They show that the environmental conditionsare favourable to an increase of the population only duringa short period of the year. The intrinsic rate of natural increase,r, was found to be well correlated with the changes in egg density. The environmental factors determining the population dynamicsin the Virunga are discussed; current speed seems critical. (Received 4 February 1987;  相似文献   

15.
Late-life fecundity has been shown to plateau at late ages in Drosophila analogously to late-life mortality rates. In this study, we test an evolutionary theory of late life based on the declining force of natural selection that can explain the occurrence of these late-life plateaus in Drosophila. We also examine the viability of eggs laid by late-age females and test a population genetic mechanism that may be involved in the evolution of late-life fecundity: antagonistic pleiotropy. Together these experiments demonstrate that (i) fecundity plateaus at late ages, (ii) plateaus evolve according to the age at which the force of natural selection acting on fecundity reaches zero, (iii) eggs laid by females in late life are viable and (iv) antagonistic pleiotropy is involved in the evolution of late-life fecundity. This study further supports the evolutionary theory of late life based on the age-specific force of natural selection.  相似文献   

16.
Dietary restriction (DR) extends lifespan in an impressively wide array of species spanning three eukaryotic kingdoms. In sharp contrast, relatively little is known about the effects of DR on functional senescence, with most of the work having been done on mice and rats. Here we used Drosophila melanogaster to test the assumption that lifespan extension through DR slows down age-related functional deterioration. Adult virgin females were kept on one of three diets, with sucrose and yeast concentrations ranging from 7% to 11% to 16% (w/v). Besides age-specific survival and fecundity, we measured starvation resistance, oxidative stress resistance, immunity, and cold-stress resilience at ages 1, 3, 5, and 7 weeks. We confirmed that DR extends lifespan: median lifespans ranged from 38 days (16% diet) to 46 days (11% diet) to 54 days (7% diet). We also confirmed that DR reduces fecundity, although the shortest-lived flies only had the highest fecundity when males were infrequently available. The most striking result was that DR initially increased starvation resistance, but strongly decreased starvation resistance later in life. Generally, the effects of DR varied across traits and were age dependent. We conclude that DR does not universally slow down functional deterioration in Drosophila. The effects of DR on physiological function might not be as evolutionarily conserved as its effect on lifespan. Given the age-specific effects of DR on functional state, imposing DR late in life might not provide the same functional benefits as when applied at early ages.  相似文献   

17.
Two types of small-scale selection experiments were performed. (1) Artificial selection experiments were performed on age-specific female fecundity. Selection for early fecundity over three generations produced a statistically detectable direct response. There was no detectable indirect response in other life-history characters. Selection for late fecundity over three generations did not produce any detectable direct response. Indirect responses were detected: early egg-laying decreased and longevity increased. (2) Natural selection for late-age fitness components increased late fecundity, female longevity, and the duration of female reproduction, while early fecundity and mean egg-laying rate decreased.  相似文献   

18.
Severe food shortage is associated with increased mortality and reduced reproductive success in contemporary and historical human populations. Studies of wild animal populations have shown that subtle variation in environmental conditions can influence patterns of mortality, fecundity and natural selection, but the fitness implications of such subtle variation on human populations are unclear. Here, we use longitudinal data on local grain production, births, marriages and mortality so as to assess the impact of crop yield variation on individual age-specific mortality and fecundity in two pre-industrial Finnish populations. Although crop yields and fitness traits showed profound year-to-year variation across the 70-year study period, associations between crop yields and mortality or fecundity were generally weak. However, post-reproductive individuals of both sexes, and individuals of lower socio-economic status experienced higher mortality when crop yields were low. This is the first longitudinal, individual-based study of the associations between environmental variation and fitness traits in pre-industrial humans, which emphasizes the importance of a portfolio of mechanisms for coping with low food availability in such populations. The results are consistent with evolutionary ecological predictions that natural selection for resilience to food shortage is likely to weaken with age and be most severe on those with the fewest resources.  相似文献   

19.
E Immonen  M Collet  J Goenaga  G Arnqvist 《Heredity》2016,116(3):338-347
Mitochondria are involved in ageing and their function requires coordinated action of both mitochondrial and nuclear genes. Epistasis between the two genomes can influence lifespan but whether this also holds for reproductive senescence is unclear. Maternal inheritance of mitochondria predicts sex differences in the efficacy of selection on mitonuclear genotypes that should result in differences between females and males in mitochondrial genetic effects. Mitonuclear genotype of a focal individual may also indirectly affect trait expression in the mating partner. We tested these predictions in the seed beetle Callosobruchus maculatus, using introgression lines harbouring distinct mitonuclear genotypes. Our results reveal both direct and indirect sex-specific effects of mitonuclear epistasis on reproductive ageing. Females harbouring coadapted mitonuclear genotypes showed higher lifetime fecundity due to slower senescence relative to novel mitonuclear combinations. We found no evidence for mitonuclear coadaptation in males. Mitonuclear epistasis not only affected age-specific ejaculate weight, but also influenced male age-dependent indirect effects on traits expressed by their female partners (fecundity, egg size, longevity). These results demonstrate important consequences of sex-specific mitonuclear epistasis for both mating partners, consistent with a role for mitonuclear genetic constraints upon sex-specific adaptive evolution.  相似文献   

20.
Most theoretical models for the evolution of senescence have assumed a very large, well mixed population. Here, we investigate how limited dispersal and kin competition might influence the evolution of ageing by deriving indicators of the force of selection, similar to Hamilton (Hamilton 1966 J. Theor. Biol. 12, 12–45). Our analytical model describes how the strength of selection on survival and fecundity changes with age in a patchy population, where adults are territorial and a fraction of juveniles disperse between territories. Both parent–offspring competition and sib competition then affect selection on age-specific life-history traits. Kin competition reduces the strength of selection on survival. Mutations increasing mortality in some age classes can even be favoured by selection, but only when fecundity deteriorates rapidly with age. Population structure arising from limited dispersal however selects for a broader distribution of reproduction over the lifetime, potentially slowing down reproductive senescence. The antagonistic effects of limited dispersal on age schedules of fecundity and mortality cast doubts on the generality of conditions allowing the evolution of ‘suicide genes’ that increase mortality rates without other direct pleiotropic effects. More generally, our model illustrates how limited dispersal and social interactions can indirectly produce patterns of antagonistic pleiotropy affecting vital rates at different ages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号