首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zusammenfassung Der Sauerstoffverbrauch des Goldfisches fällt, bei Aufenthalt in der Durchströmungsapparatur, bis zur 8. Std erheblich. Er sinkt auch danach in geringen Grenzen weiter bis zu einem Minimum ab. Helligkeit und Dunkelheit sind ohne wesentlichen Einfluß auf den O2-Verbrauch. Injektion von physiologischer Kochsalzlösung ruft für 30–40 min eine Beunruhigung hervor, die sich in einer O2-Verbrauchserhöhung von etwa 20% bemerkbar macht.Eine einmalige Injektion von Thyroxin bewirkt einen Anstieg des O2-Verbrauchs bis zu 5 1/2 Std nach der Injektion. Im Sommer beträgt die Erhöhung maximal über 100%. Die Kontrollen zeigen weiteres Absinken des O2-Verbrauchs. Es zeigt sich ein deutlicher Unterschied der Thyroxinwirkung zwischen Jungund Alttieren (Grenze 15 g). Jungtiere zeigen weit geringere Reaktion.Einmalige Injektion von thyreotropem Hormon zeigt ebenfalls einen Anstieg des O2-Verbrauchs. Im Unterschied zur Thyroxinwirkung erfolgt er in kürzerer Zeit und steigt auf höhere Werte (maximal über 200%). Auch hier ist ein deutlicher Wirkungsunterschied zwischen Jungund Alttieren vorhanden.An Stelle von Thyreoidektomie wird Methylthiouracil zur Ausschaltung der Schilddrüse Verwendet. 0,1 cm3 einer 5% igen Na-Lösung wirken über 4 Tage stoffwechselsenkend und lassen thyreotropes Hormon nicht zur Wirkung kommen.Im Sommer und Winter bewirkt mehrmalige Verabfolgung von Thyroxin nach einer verschieden langen Latenzzeit einen Anstieg des O2-Verbrauchs.Auch mehrmalige Verabfolgung von thyreotropem Hormon läßt den Sauerstoffverbrauch der Fische ansteigen. Die unterschiedliche Wirkung zwischen Jung und Alttieren läßt sich auch hier statistisch sichern.Wird bei durch thyreotropes Hormon erhöhtem O2-Verbrauch MTU verabfolgt, so sinkt der O2-Wert rapide und steigt auch nicht mehr auf die vorherige Höhe an.Bei Thyroxinbehandlung über längere Zeit zeigt sich zunächst eine Expansion der Melanophoren und eine Zunahme des Pigments, welche dann von einem destruktiven Prozeß an den Farbzellen abgelöst wird, der nach etwa 90 Tagen zum völligen Zerfall aller Melanophoren führt. Bei Behandlung mit thyreotropem Hormon und bei Thyroxinbehandlung an jungen Tieren konnte nur eine Expansion der Melanophoren beobachtet werden.Herrn Prof. Dr. H. Giersberg möchte ich auch an dieser Stelle meinen Dank aussprechen für die Anregung und die Unterstützung bei der Durchführung dieser Arbeit.  相似文献   

2.
Zusammenfassung Es wurde die Wirkung von verschieden hohen Konzentrationen einer Reihe von Konservierungsmitteln auf Hefen über längere Zeitabstände verfolgt. Das System Substrat+Konservierungsmittel+Mikroben strebte dabei stets entweder dem Endziel des Absterbens aller vorhandenen Mikroben oder dem der Vermehrung der vorhandenen Mikroorganismen mit den Erscheinungen des makroskopisch sichtbaren Verderbs zu. Eine lediglich in Vermehrungshemmung bestehende rein statische Wirkung der Konservierungsmittel auf die Mikroorganismen wurde nie beobachtet.Bei genügend hohen Konzentrationen der Konservierungsmittel und entsprechend kurzfristigem Absterben der vorhandenen Mikroorganismen im Verlauf von Minuten entsprach der zeitliche Ablauf des Absterbens sämtlicher vorhandener einzelliger Mikroorganismen, vorausgesetzt, daß es sich um einheitliches Material handelte, ebenso wie der Verlauf des Absterbens unter der Wirkung anderer Zellgifte einer monomolekularen Reaktion.Bei niedrigen Konzentrationen von Konservierungsmitteln, wenn sich das Absterben über Tage bis Wochen hinzog, wurde allmähliche Verlangsamung des Absterbevorganges, die sogar in Wiederaufleben der Vermehrung übergehen konnte, beobachtet.Es wurde der Einfluß einer Reihe von Faktoren wie der der Konzentration des Konservierungsmittels, der Temperatur, der Zusammensetzung der Nährlösung auf den zeitlichen Verlauf des Absterbens untersucht.Als technische Assistentin wirkte Frau G. Präg bei der Durchführung der Versuche mit.  相似文献   

3.
Zusammenfassung Die untersuchten Pilze, Aspergillus flavus und Mucor pusillus, sind gegenüber hohen MgSO4-Gaben resistent, so daß sie noch bei 50% MgSO4·7H2O wachsen. Doch ist die Entwicklung der Pilze bei steigenden MgSO4-Konzentrationen in der Nährlösung insofern verschieden, als die Entwicklung von M. pusillus schon bei niederen Konzentrationen (über 2,5%) verzögert wird, während bei A. flavus erst in den Lösungen mit über 40% MgSO4 eine merkliche Schädigung eintritt.Neben einem Maximum der Erträge bei niederen, optimalen Gaben von MgSO4 (etwa 0,05 bis 1%), das der Wirkung von Magnesium als Elementarnährstoff zuzuschreiben ist, wurde eine zweite Steigerung bei höheren Salzkonzentrationen festgestellt. Dieses Maximum umfaßt einen breiteren Konzentrationsbereich als das erste und ist bei A. flavus stärker als bei M. pusillus ausgeprägt.Die fördernde Wirkung der höheren MgSO4-Konzentrationen läßt sich durch rein chemische Vorgänge, wie auch durch osmotische Verhältnisse in der Nährlösung nicht erklären; sie steht mit der spezifischen physiologischen Wirkung des Salzes MgSO4 in engem Zusammenhang.  相似文献   

4.
Zusammenfassung Umladebereich und mittlerer isoelektrischer Punkt (IEPM) verschiedener menschlicher Gewebe wurden mit Hilfe von gestuften Reihen gepufferter Lösungen vom Fluorochrom Acridinorange auf fluoreszenzmikroskopischem Wege bestimmt. Zum Vergleich wurde an Schnittpräparaten der gleichen Gewebe die Bestimmung von Umladebereich und IEPM mit den Diachromen Methylenblau und Rubin S durchgeführt. Es zeigte sich, daß das Fluorochrom Acridinorange in der Bestimmung des Umladebereiches und IEPM den Diachromen überlegen ist. Infolge der höheren Nachweisempfindlichkeit von Acridinorange und seiner Fluoreszenzmetachromasie läßt sich der Umladebereich viel leichter als bei den Hellfeldfarbstoffen einengen und somit genauer bestimmen. Während man bei Verwendung von Diachromen zur exakten Bestimmung des IEPM zwei Farbstoffe benötigt, genügt bei der Acridinorange Methode ein Farbstoff. Die mit Acridinorange bestimmten Werte vom Umladebereich und IEPM der einzelnen Gewebselemente liegen meist weiter im sauren Bereich als bei Bestimmung mit Diachromen.Bei dem Vergleich unfixierter, in Alkohol oder Formalin gehärteter Gewebe ergab sich, daß nach Fixierung die untere Grenze vom Umladebereich gegenüber der an unfixiertem Gewebe bestimmten weiter in den sauren Bereich verschoben ist.Kurze Originalmitteilung: Naturwiss. 42, 442 (1955). Für die Durchführung der Untersuchungen standen Mittel der Deutschen Forschungsgemeinschaft zur Verfügung.  相似文献   

5.
Zusammenfassung Das Lungengas wird bei der Ventilation durch Diffusion erneuert, zum geringen Teil jedoch durch aktives Kontrahieren und Expandieren der Lunge (wie bei den Stylommatophoren).Die Reflexhandlung der Luftaufnahme verläuft bei Jungtieren von Segmentina nitida äußerst starr. Am Oberflächenhäutchen wird nach wechselnden Zeiten plötzlich in mehreren Ventilationen die Lunge mit Luft gefüllt. Durch Außeneinflüsse kann die Zeit bis zum Eintritt des Reflexes verändert werden. — Auch Armiger crista vermag Luft in die normalerweise Wasser enthaltende Lungenhöhle aufzunehmen.Die bei Jungtieren von Segmentina nitida starr verlaufende Reflexhandlung kann für längere Zeit (1 Stunde und mehr) unterbrochen werden. Der Reizzustand dauert dabei an.Bei den kleineren Arten der Planorbiden verlängert sich mit abnehmender Körpergröße die Tauchzeit. Segmentina nitida macht als sehr bewegliche Art eine Ausnahme. Die kleinen Planorbiden sind auch bei mittleren Temperaturen bei erzwungener Hautatmung (durch Absperren von der Wasseroberfläche) lebensfähig.Im Winter, aber auch im Sommer geht Limnaea stagnalis bei niedriger Temperatur (5° C) zu reiner Hautatmung über.Bei der Ventilation wird das Lungengas weitgehend erneuert. Die kurz nach derselben gemessenen Lungengasmengen variieren je nach den Versuchsbedingungen mehr oder weniger. Bei einer bestehenden Sauerstoffschuld (z. B. nach längerer erzwungener Tauchzeit) wird die Lungenfüllung vergrößert. Auch reiner Stickstoff wird aufgenommen. Nach der Füllung der Lunge mit diesem Gas kriecht die Schnecke abwärts.Luft, der CO2 in geringen Mengen beigemischt wird, hat deutlich abstoßende Wirkung auf Limnaea stagnalis. In geringen Mengen im Versuchswasser gelöstes CO2 verlängert die Zeit des Spiraculumanlegens (Diffusionsregulierung), hat jedoch keinen Einfluß auf die Länge der Tauchzeiten, auf die bei der Ventilation aufgenommene Luftmenge und auf die Gasmenge der Lunge beim Aufstieg am Ende der Submersion.Während der Tauchzeit funktioniert das Lungengas wie bei den tauchenden Insekten als physikalische Kieme.Sauerstoffmangel kann als Atemreiz die negative Geotaxis am Ende der Tauchzeit auslösen (auch bei Armiger crista).Druckversuche zeigen, daß auch die Abnahme der Lungenfüllung als Atemreiz wirken kann. Die Schnecke perzipiert den Füllungsdruck.Durch Versuche mit übergeleiteten Gasgemischen wird das Zusammenwirken beider Faktoren geklärt. Sie können sich in ihrer Wirkung summieren. In einem Sommer- und Winterversuch wurde die Länge der Tauchzeiten durch übergeleitete Gasgemische beeinflußt, und zwar in beiden Versuchen entgegengesetzt. Es wird gezeigt, daß allein ein Variieren von Aufbewahrungs- und Versuchsbedingungen das verschiedene Verhalten bedingen kann. Die beim Aufstieg in der Lunge befindliche Gasmenge bleibt dagegen bei nicht gerade extremen Versuchsbedingungen annähernd konstant. In sauerstoffarmem Wasser sind die Tauchzeiten verkürzt und die Lungengasmengen beim Aufstieg vergrößert.Die Tauchzeiten sind im Winter länger als im Sommer. Die Lungenfüllung beim Aufstieg am Ende derselben ist im Winter geringer.Das beim Atmungsprozeß entstehende CO2 reichert sich nicht im Lungengas an, sondern löst sich sofort im Wasser.Der Sauerstoff des Lungengases wird bei erzwungenen Tauchzeiten weitgehender verbraucht als in Hazelhoffs Versuchen. Nach langen Tauchzeiten enthält das Lungengas von Limnaea stagnalis im Winter 1% O2, im Sommer etwas mehr.Der O2-Verbrauch bei 30 Min. Tauchzeit ist im Winter größer als im Sommer (wahrscheinlich nicht Rassenunterschiede). Bei diesen schon längere Zeit an die Versuchstemperatur angepaßten Schnecken ist der Unterschied im Verbrauch bei 15° und 21,5° C im Sommer größer als im Winter. Die Abhängigkeit der Lungenatmung bei plötzlicher Temperaturänderung ist in beiden Jahreszeiten gleich. Die Temperaturabhängigkeit der Atmung bei plötzlicher Temperaturänderung ist grundsätzlich verschieden von der nach einer Anpassung des Organismus an die Versuchstemperatur. Beides läßt sich nicht zu einem Gesetz vereinigen.Die Anpassung des Organismus nach plötzlicher Temperaturänderung verläuft in den beiden Jahreszeiten grundsätzlich verschieden. Im Sommer werden die endgültigen Werte nach der Anpassung bei der plötzlichen Änderung der Temperatur nicht erreicht, im Winter dagegen überschritten.  相似文献   

6.
Zusammenfassung In der vorliegenden Arbeit ist die Wirkung von verschiedenen Giften auf die Chromatophoren einiger Cephalopodenarten (hauptsächlich Octopus vulgaris und Eledone moschata, aber auch Octopus macropus, Sepia officinalis, Loligo vulgaris) untersucht worden.Die Anwendung eines zu diesem Zwecke besonders geeigneten neuromuskulären Präparates ermöglichte es, bei diesen Untersuchungen die Angriffsstelle oder -stellen der verwendeten Gifte zu erkennen. Die angewendete Methode machte die Unterscheidung wenigstens dreier Angriffsstellen möglich; das ist a) die Nervenfaser, b) die Muskelfaser, c) die möglicherweise zwischen Nerven-und Muskelfaser sich findenden Gebilde.Nur eines der untersuchten Gifte, nämlich das Guanidin, übt eine stark erregende Wirkung auf die Nervenfaser aus; für verschiedene andere Gifte ist die erregende Wirkung unsicher und nicht konstant; am auffallendsten ist sie noch beim Atropin.Die meisten unter den untersuchten Giften üben keine spezifische Wirkung auf die Nervenfaser aus, sondern bewirken nur eine mehr oder weniger starke Schädigung. Relativ besonders stark wird die Nervenfaser durch Aconitin, Atropin, Chinin, Phenol, Physostigmin, Yohimbin, Lobelin, Strophanthin, Veratrin geschädigt. Einige andere Gifte, nämlich Chloreton, Cocain und Tetrahydro--Naphtylamin, lähmen die Nervenfaser in sehr kurzer Zeit und scheinen demnach eine mehr spezifische Wirkung zu haben.In bezug auf ihre Wirkung auf die zwischen Nerven-und Muskelfaser sich findenden Gebilde kann man zuerst zwei gut begrenzte Gruppen von Giften unterscheiden. Die Gifte der ersten Gruppe (Nicotin, Acetylcholin und Cholin, Betain, Coniin, Lobelin, Pilocarpin und -wenn auch mit einigen Abweichungen Physostigmin) wirken erregend und rufen eine kürzer oder länger dauernde Kontraktur hervor, nach deren Abklingen jedoch die Muskelfaser, die selbst noch gut erregbar ist, ihre indirekte Erregbarkeit verloren hat.Einige andere Gifte (Aconitin, Hypophysenextrakte, Yohimbin) kommen denen der ersten Gruppe nahe, obgleich ihre Wirkung sich in mancher Hinsicht von ihnen unterscheidet.Die Gifte der zweiten Gruppe, zu der Strychnin, Chinin, Chloreton, Cocain, Tetrahydro--Naphtylamin, Coffein, Ephedrin, Phenol gehören, lahmen die zwischen Nervenund Muskelfasern sich befindenden Gebilde mehr oder weniger elektiv. Der Lähmung kann eine kurze Erregungsperiode vorangehen. Mit Atropin dauert die Erregung etwas länger; demnach nimmt dieses Gift eine Zwischenstellung zwischen den beiden Gruppen ein.Die anderen verwendeten Gifte (außer Veratrin, von dem später die Rede sein wird) üben auf die Zone zwischen Nerv und Muskel keine Wirkung aus, abgesehen von der unspezifischen Schädigungswirkung, die für Morphin besonders evident ist.Auf die Muskelfaser üben einige Gifte (Adrenalin, Ergotamin, Tyramin, Physostigmin, Coffein, Chinin und — weniger stark — Strychnin und Tetrahydro--Naphtylamin) eine erregbarkeitsteigernde Wirkung aus und verursachen so ein lebhaftes Wolkenwandern bei den Chroatophoren. Andere Gifte setzen die direkte Erregbarkeit herab (Atropin) oder bringen sie zum Verschwinden (Chloreton, Cocain).Unter den Giften, die die Erregbarkeit der Muskelfaser steigern, können die wirksamsten, nämlich Physostigmin, Coffein, und, wenn auch seltener, Chinin, unter günstigen Bedingungen eine Kontraktur verursachen. Digitalin und Strophanthin dagegen bewirken stets Kontraktur, die in diesem Falle auch hauptsächlich durch Erhöhung der Erregbarkeit der Muskelfaser zustande kommt. Verschieden davon scheint dagegen der Mechanismus der Histaminkontraktur zu sein, die wahrscheinlich, ebenso wie die durch Bariumchlorid verursachte Kontraktur, als eine direkte Wirkung auf den kontraktilen Apparat der Muskelfaser zu deuten ist. Die vorangehende Übersicht zeigt, daß verschiedene Gifte an mehr als einer Stelle ihre Wirkung ausüben können; das durch diese Gifte verursachte Symptomenbild stellt also eine Kombination der verschiedenen Elementarwirkungen dar. Im allgemeinen kann man sagen, daß, außer im Falle des Guanidins, die Wirkung auf die Nervenfaser an dem komplexen Symptomenbild der Einwirkung des Giftes auf ein normalinnerviertes Präparat keinen großen Anteil hat; dieses kommt demnach im wesentlichen durch die Wirkungen auf die Muskelfaser und auf die sich zwischen Nerven und Muskel befindlichen Gebilde zustande.Das Hauptergebnis dieser Untersuchung ist der Beweis, daß auch bei den Cephalopoden die Zone zwischen Nerv und Muskel sich als pharmakologisch und physiologisch differenziertes Gebilde erweist; der Beweis für ihre morphologische Differenzierung steht noch aus. Während die Nervenfaser nach der Sektion sehr schnell degeneriert, bleibt die Zwischenzone lange erhalten und behält zunächst ihre spezifische Erregbarkeit für chemische Reize, die sie erst nach mehreren Monaten verliert. Die Zwischenzone unterliegt also wahrscheinlich weniger einer Degeneration als vielmehr einer Atrophie infolge Nichtgebrauches. Das Fehlen einer schnellen Degeneration unterscheidet die Zwischenzone von der Nervenfaser; die schließliche Atrophie unterscheidet sie von der Muskelfaser; auf diese Weise war es möglich, die Resultate der pharmakologischen Analyse auf anderem Wege zu bestätigen.Die elektrische und mechanische Erregbarkeit der Muskelfaser bleibt nach der Nervendegeneration immer gleich, obwohl im ersten Teile dieser Periode die Zwischenzone noch funktioniert, später nicht mehr. Man kann daraus schließen, daß während dieser ganzen Zeit die Zwischenzone durch elektrische und mechanische Reize nicht erregbar ist, sondern nur. durch spezifische chemische Reize. Verschiedene Gründe machen es wahrscheinlich, daß der beschriebene Tatbestand nicht nur auf die Periode beschränkt ist, die der Nervendurchschneidung folgt, sondern auch unter normalen Bedingungen auftritt; das ermöglicht die Auffassung, daß auch normalerweise die Überleitung des Impulses vom Nerven zum Muskel durch die Zwischenzone mittels eines chemischen Mechanismus erfolgt. Die Tatsache, daß unter den die Zwischensubstanz spezifisch erregenden Giften Acetylcholin (dem auch bei den Wirbeltieren bei ähnlichen Phänomenen öfters eine Rolle zugeschrieben wird) und Betain (das in den Muskeln der Cephalopoden vorkommt) sich befinden, macht diese Hypothese wahrscheinlicher.Obgleich sie sich in verschiedener Hinsicht, besonders in bezug auf ihre pharmakologischen Affinitäten, von ihr unterscheidet, ist die Zone zwischen Nerv und Muskel der Cephalopoden der Rezeptivsubstanz der Muskeln der Wirbeltiere nahezusetzen. Die Ähnlichkeiten und Verschiedenheiten beider Gebilde sind im Text diskutiert worden und man kommt zu dem Ergebnis, daß jene größer sind als diese. Dagegen scheint es bei den Cephalopoden völlig an einer Differenzierung zu fehlen, die der der motorischen Nervenendigungen entspräche. In dieser Hinsicht stimmen die pharmakologischen Daten (das schon lange bekannte Fehlen jeder Wirkung des Curare, sowie die Wirkung des Guanidins auf die Nervenfasern) vollkommen mit den morphologischen überein (Fehlen der motorischen Endplatten). Diese Übereinstimmung macht es sehr wahrscheinlich, daß eine Differenzierung der motorischen Nervenendigungen tatsächlich fehlt.Die Untersuchungen haben bewiesen, daß auch bei der Muskelfaser wenigstens zwei Angriffsstellen der Gifte zu unterscheiden sind. Auf die eine, die mit dem Erregungsprozeß verbunden ist, wirken die meisten unter den untersuchten Giften; auf die andere, die wohl mit dem eigentlichen kontraktilen Apparat zu identifizieren ist, üben Bariumchlorid und sehr wahrscheinlich auch Histamin ihre Wirkung aus.Im Lichte der Resultate der pharmakologischen Analyse konnte man die Interpretation bestätigen, die von den auf der isolierten überlebenden Haut beobachteten Phänomenen von rein physiologischen Standpunkten aus gegeben worden war. Namentlich konnte man erkennen, daß die unmittelbar auf den Reiz folgende diffuse Expansion, die man nach direkter Applikation der Elektroden auf die normale Haut beobachtet, durch eine Erregung der Nerven-und nicht der Muskelfasern zustande kommt. Auf der normalen Haut lassen sich die Eigenschaften der Eigenerregbareit der Muskelfaser nur sehr schwer zeigen. Man kann sie dagegen gut beobachten an den Chromatophoren einer Haut, deren indirekte Erregbarkeit vorher aufgehoben worden ist. An einer solchen Haut sieht man, daß die Eigenerregbarkeit der Muskelfaser immer die gleiche bleibt, unabhängig davon, vor wie langer Zeit und auf welche Weise die indirekte Erregbarkeit erloschen ist.Hinsichtlich des Ursprunges des Wolkenwanderns konnte die Erklärung von Hofmann bestätigt werden, die dieses Phänomen auf die Erregung zurückführt, der jede Radialfaser dadurch unterliegt, daß sie durch die nahen sich kontrahierenden Fasern gedehnt wird. Es werden neue Tatsachen zugunsten und zur Vervollständigung dieser Erklärung beigebracht. Unter anderem wird zur Erklärung der Einsinnigkeit des Wolkenwanderns die refraktäre Periode der Muskelfaser herangezogen, deren Bestehen erklärt, warum der Reiz, der die Fasern trifft, die sich eben kontrahiert haben, unwirksam bleibt.Tyramin und Betain üben beide eine direkte Wirkung auf die Chromatophoren aus, die bei dem ersten in einer Erhöhung der Erregbarkeit der Muskelfaser und demnach in dem Auftreten von Wolken, bei dem anderen in einer Erregung der Zone zwischen Nerv und Muskel und demnach in einer Kontraktur sich äußert. Da beide Stoffe im Körper, Betain sogar in den Muskeln der Cephalopoden nachgewiesen sind, so kann man sich vorstellen, daß sie nicht nur durch ihre Wirkung auf die Nervenzentren den Zustand der normalen Chromatophoren in jedem Augenblick bestimmen, sondern auch bei den denervierten Chromatophoren das Auftreten der wohlbekannten Phänomene bewirken (peripherogener Tonus), die dem Durchschneiden des Nerven folgen.Die Wirkung des Veratrins auf die Chromatophoren, die der bekannten Wirkung auf die Muskeln wenigstens in den Grundzügen vollkommen entspricht, ermöglicht es durch einige ihrer Eigenschaften, den Wirkungsmechanismus dieses Stoffes einer feineren Analyse-zu unterziehen. Veratrin wirkt auf den Erregungsprozeß derart, daß auch auf einen Einzelreiz eine mehrmalige Wiederholung der Erregung eintritt, die um so viel häufiger und länger andauernd ist, je stärker die Wirkung des Stoffes ge wesen ist.Die Wirkung des Veratrins auf die Chromatophoren zeigt ferner verschiedene andere interessante Eigenheiten; unter anderem ist es möglich, nach vorangehender Einwirkung des Veratrins durch Magnesium eine paradoxe Expansion zu bekommen, die auf eine kontrakturerregende Wirkung des Magnesiums schließen läßt, die sonst nicht zur Beobachtung kommt.Auch die Wirkung des Strophanthins gibt Anlaß zu interessanten Beobachtungen. Unter anderem gibt sie die Möglichkeit, die erregende Wirkung des Lichtes auf die Chromatophoren ganz klar zu beweisen.  相似文献   

7.
Zusammenfassung Der Farbwechsel von Dixippus als Lichtreaktion wird durch Kontrastwirkung zwischen Untergrund und übriger Umgebung hervorgerufen. Er wird dadurch verwirklicht, daß ein Teil des Auges wenig Licht (dunkler Untergrund) oder gar keines erhält (teilweise Lackierung), während der andere Teil von hellem Licht bestrahlt wird. Dabei ist das Dixippus-Auge ausgesprochen dorsiventral. Lediglich die Verdunkelung der unteren Augenhälften ist wirksam.Der Farbwechsel tritt im Tageslicht schon dann ein, wenn nur ein unteres Viertel eines Auges verdunkelt wird. Bei Verdunkelung größerer Augenpartien muß mindestens ein Augenviertel frei bleiben. Totale Lackierung eines oder beider Augen löst keinen Farbwechsel aus.Zwischem durchfallendem und reflektiertem Licht besteht in der Wirkung auf den Farbwechsel kein Unterschied. Wird der Untergrund einmal durch ein Farbpapier gebildet (reflektiertes Licht), das andere Mal durch ein Filter gleicher Farbe (durchfallendes Licht), so sind die Versuchsergebnisse beide Male die gleichen.Morphologischer und physiologischer Farbwechsel werden unter den Bedingungen des Dispersionsspektrums, d. h. bei relativ geringer Intensität des Ultraviolett, am meisten durch von oben einfallendes grünes Licht gefördert. Die Wirkung läßt sich durch eine Kurve darstellen, deren Gipfel im Grün liegt, und die nach Rot und Ultraviolett abfällt.Unter den Bedingungen des energiegleichen Spektrums, d. h. bei annähernder Energiegleichheit von Grün und Ultraviolett, hat weitaus die stärkste Wirkung das Ultraviolett. Es ergibt sich eine Kurve, die stetig von Rot nach Ultraviolett ansteigt.Unerläßliche Voraussetzung ist jedesmal, daß ein dunkler Untergrund vorhanden ist, bzw. daß den Tieren die unteren Augenhälften schwarz lackiert wurden.Die Wirkung farbigen Untergrundes ist der des von oben einfallenden Lichtes entgegengesetzt. Ersterer fördert dann den Farbwechsel am meisten, wenn möglichst wenige, letzteres, wenn möglichst viele wirksame Strahlen darin enthalten sind. Die Wirkung farbigen Untergrundes auf morphologischen wie physiologischen Farbwechsel stellt sich unter den Bedingungen des Dispersionsspektrums durch eine Kurve dar, deren Minimum im Grün liegt und die nach Bot und Violett hin gleichm aßig ansteigt. Diese Kurve ist derjenigen, die die Wirkung farbigen Oberlichts unter den Bedingungen des Dispersionsspektrums darstellt, gerade entgegengesetzt: ihre tiefste Stelle liegt dort, wo jene das Maximum hat, ihre Maxima dort, wo jene die tiefsten Punkte aufweist.Durchfallendes und reflektiertes Licht haben also entgegengesetzte Wirkung, wenn sie beim Zustandekommen des Kontrastes entgegengesetzte Rollen übernehmen, wenn z. B. das reflektierte Licht die Rolle des Untergrundes, das durchfallende Licht die des Oberlichts übernimmt.Das Licht beeinflußt in allen untersuchten Fällen morphologischen und physiologischen Farbwechsel in gleicher Weise.Bei Ausschaltung der Augen erlischt der Farbwechsel.Die Untersuchung des physiologischen Farbwechsels von Bacillus rossii ergab eine Kurve, die der bei Dixippus unter den gleichen Versuchsbedingungen gewonnenen völlig entsprach.Verteilungsversuche mit Dixippus-Larven im Dispersionsspektrum zeigten, daß diese Ultraviolett bis zu etwa 310 wahrnehmen. Die Verteilungskurve weist einen Gipfel im Grün auf und fällt nach Rot und Ultraviolett hin ab.Im Prinzip die gleiche Kurve erhält man, wenn man energiegleiche, aber infolge der Verwendung eines rotierenden Sektors ziemlich lichtschwache Spektralbezirke miteinander vergleicht.Rechnet man jedoch die im Dispersionsspektrum gewonnene Verteilungskurve auf das energiegleiche Spektrum um, so ergibt sich eine Kurve, die gleichmäßig, vom langwelligen Ende her nach dem Ultraviolett hin ansteigt und den Kurven entspricht, die die Wirkung des Lichts auf den morphologischen und physiologischen Farbwechsel im annähernd energiegleichen Spektrum darstellen.Diese Übereinstimmung zwischen morphologischem und physiologischem Farbwechsel und den Verteilungsversuchen weist auf eine enge Beziehung zwischen Farbwechsel und Sehakt hin.Die Tatsache, daß je nach den Versuchsbedingungen die Kurve einmal im Grün, einmal im Ultraviolett gipfelt, legt die Vermutung nahe, daß von einer gewissen Intensität ab die Einwirkung der kurzwelligen, insbesondere der ultravioletten Strahlen einen anderen Charakter annimmt. Ob hier Beziehungen zu Hell-und Dunkeladaptation farbentüchtiger Tiere, also zu Farben- und Helligkeitssehen, vorliegen, bleibt noch zu prüfen.  相似文献   

8.
Zusammenfassung Bei den Kopffüßlern und beim Olm läßt sich eine Tyrosinase gewinnen, die Tyrosin in ein Melanin umsetzt. Es läßt sich also wohl behaupten, daß hier Prozesse vorliegen, die eine Parallele bilden zu den von v.Fürth undSchneider an andern Tieren betreffs der Bildung dunklen Pigmentes aufgedeckten und chemisch analysierten Vorgängen.Wichtig erscheint besonders bei den Kopffüßlern (Loligo) der Nachweis der Tyrosinase selbst in den noch pigmentfreien Eiern. Diese Tyrosinase befindet sich bedeutsamerweise beim erwachsenen Kopffüßler (Eledone) nur in Haut und Augen, nicht in der Muskulatur, parallel zur Anwesenheit oder dem Fehlen einer Pigmentbildung.Für die kaltes Blut aufweisenden Versuchstiere charakteristisch ist es wohl, daß der thermische Faktor innerhalb weiterer Grenzen keine wesentlich verschiedenen Wirkungen hervorruft, während bei den warmblütigen VersuchstierenDurhams sich die Temperatur von 37 C. als unumgängliches Erfordernis der Melaninbildung und der verwandten Pigmentbildungen erwies.Andre Äußere Faktoren, nicht nur Wärme und Kälte, sondern auch Licht oder Finsternis, scheinen beim Prozeß im Reagenzglase geringere Bedeutung zu haben. Dagegen erweist sich das Licht beim Grottenolme als unbedingtes Erfordernis der Pigmentbildung des lebenden Tieres. Das Reagenzglas zeigt allerdings auch hier Melaninbildung ohne Beihilfe des Lichtes, wobei freilich der stärkste Katalysator verwendet werden muß.überhaupt stellte sich als Erfordernis für das Gelingen der Versuche Über Melaninbildung im Reagenzglase bei unsern relativ schwachen Pigmentbildungsprozessen die Gegenwart anorganischer Katalysatoren heraus. Aus den Versuchen mit verschiedenen Katalysatoren ergab sich betreffs der Wirkung derselben, daß Eisensulfat die stärkste Wirkung ausübt; daran reiht sich die Wirkung des auch chemisch nahe stehenden Mangansulfats; Äußerst schwach waren die Wirkungen, des Platinchlorids, sie unterschieden sich recht wenig von den Ergebnissen bei Mangel jeden Katalysators. (Diese Angaben gelten natürlich für gleiche Mengen angewandter Chemikalien).  相似文献   

9.
Zusammenfassung Bei Haemopis sanguisuga ist die Leitungsgeschwindigkeit im ungedehnten Rückenmuskel 48,6 ± 8,4 cm/sec, sie nimmt bei Dehnung proportional der erreichten Länge zu. Die Leitungsgeschwindigkeit im ungedehnten Nervenstrang ist 18,1 ± 7,5 cm/sec.Die Kontraktion des Rückenmuskels bei einer Einzelerregung steigt in 0,50 ± 0,03 Sek an und fällt in 27 ± 8 Sek. ab.Das absolute Refraktärstadium des Rückenmuskels ist etwa 0,012 Sek.Die Länge der Muskelfasern im Rückenmuskel ist übereinstimmend nach Messungen an Zupfpräparaten und nach elektrischen Reizversuchen mit verschiedenem Elektrodenabstand 5–15 mm am ungedehnten Muskel, die Fasern erstrecken sich somit über 1–3 Dissipimente. Die Chronaxie des Rückenmuskels ist im Mittel 0,068 Sek., die der Bauchganglienkette 0,052 Sek.Die Aktionsströme des Muskels haben eine Anstiegszeit von 0,033 und eine Gesamtdauer von 0,09 Sek.Während die bisher genannten Größen bei den verschiedenen tierischen und pflanzlichen Objekten sehr verschieden sind, ist víelfach das Produkt aus zweien von ihnen recht konstant, wie etwa das aus Leitungsgeschwindigkeit und Dauer des Refraktärstadiums, die Refraktärlänge, und insbesondere das aus Leitungsgeschwindigkeit und Anstiegszeit des Aktionsstromes, die Anstiegslänge. Die Daten von Haemopis fügen sich hier den schon bekannten Gesetzmäßigkeiten gut ein.Theoretische Betrachtungen über die elektrische Erregbarkeit und über die Erregungsleitung machen die Zunahme der Leitungsgeschwindigkeit mit der Dehnung verständlich.Im Bauchmark von Haemopis wurden 6 g Acetylcholin je Gramm Gewebe gefunden, im Rückenmuskel 0,03 g/g. Cholinesterase enthält das Bauchmark etwa 800, der Muskel 500 E nach Hellauer. Das Bauchmark verhält sich damit ähnlich wie cholinerge Teile des Zentralnervensystems der Wirbeltiere.Die pulsierenden Seitengefäße der Egel sind nach Gaskell antagonistisch innerviert, wobei der fördernde Nerv adrenerg ist. Untersuchungen an Herpobdella zeigen, daß der Einfluß von Acetylcholin auf die Gefäße offenbar ein auch zentraler ist, indem wenigstens bei der Verdünnung 1:100000, erst eine Beschleunigung, dann eine Verlangsamung eintritt. Höhere Acetylcholinkonzentrationen, wie 1:5000, verlangsamen nur, wahrscheinlich auch durch eine periphere Wirkung. Durch Atropin 1:5000000 lassen sich alle Acetylcholin Wirkungen, auch die Beschleunigung, beheben, während die Beschleunigung durch Adrenalin erhalten bleibt.Herrn Professor v. Frisch danke ich für die mir gebotene Arbeitsmöglichkeit und für sein Interesse an der Untersuchung, Herrn Professor Umrath für mancherlei Anregungen und für Besprechungen einschlägiger Fragen.  相似文献   

10.
Zusammenfassung Bei den Fischherzen vom Typus A, die man bei den Aalen findet, äußert sich die erste Wirkung des Vagus in einer Verlängerung der refraktären Phase der Überleitungsgebilde zwischen Sinus und Vorhof. Der Sinus arbeitet zumeist in unverminderter Frequenz und unveränderter Kraft weiter, die übrigen Herzabteilungen, Vorhof und Kammer sind noch erregbar, die Ursprungsantriebe, die vom Sinus ihren Ausgang nehmen, können aber nicht in voller Zahl oder überhaupt nicht mehr auf den Vorhof übertragen werden.Zumeist macht sich neben der Blockierung der Überleitung zwischen Sinus und Vorhof auch eine negativ inotrope Wirkung am Vorhof bemerkbar. Diese ist für die Stillegung des zweiten Automatiezehtrums im Ohrkanal von wesentlicher Bedeutung.Eine Verstärkung des Vagusreizes führt eine Verlangsamung der Tätigkeit des Sinus herbei. Bei ganz starken Vaguserregungen wird auch der Sinus stillgelegt, es tritt also ein Stillstand des ganzen Herzens ein.Nach wiederholter Vagusreizung läßt die Wirkung auf die Überleitungsgebilde zwischen Sinus und Vorhof nach, es macht sich dann vorzugsweise eine negativ inotrope Beeinflussung der Tätigkeit des Vorhofes sowie eine Störung an den Überleitungsgebilden zwischen Vorhof und Kammer bemerkbar. Diese äußert sich in der gleichen Weise wie an den Überleitungsfasern zwischen Sinus und Vorhof durch eine allmähliche Verlängerung der refraktären Phase.Ein Unterschied zwischen der Wirkung des rechten und linken Vagus ist nicht nachweisbar.Als Nachwirkung fällt vorzugsweise eine negativ inotrope Beeinflussung der Vorhofstätigkeit auf. Eine Frequenzänderung ist nahezu niemals zu beobachten. Gelegentlich machen sich im Gefolge einer Vaguserregung Störungen der Herztätigkeit bemerkbar.Die vorliegende Untersuchung wurde mit Hilfe einer Spende der Medizinischen Fakultät der Thüringischen Landesuniversität Jena durchgeführt, der auch an dieser Stelle herzlichst gedankt sein soll.  相似文献   

11.
Zusammenfassung Ausbildungsformen der Kutikula bei Larve, Puppe und Imago werden beschrieben.Die Mächtigkeit der Kutikula ist abhängig von der Anzahl der sie aufbauenden Epidermiszellen.Polyploide Epidermiszellen bilden Verbände haarartiger, fächerartiger und höekerartiger Trichome, die teilweise die Länge der echten Haare übertreffen. Die Grö\Be der Trichombildung ist abhängig vom Polyploidiegrad der Bildungszellen.Borsten und Epithelzellen stehen in gesetzmäßigem Zusammenhang, der auf die Entwicklung aus Borsten-Epithel-Stammzellen zurückgeführt wird. Epidermiszellen können rich zu Nebenzellen differenzieren.Bei Gelenkflächen verhindern Trichome das Gleiten von Skleriten aufeinander. Bewegliche Gelenkmembranen ermöglichen starke Strekkungen. Die Epidermiszellen der Membranen werden in der Imago nicht rückgebildet.Sinnesorgane besitzen unterschiedliche Anzahlen von zugehörigen Epidermiszellen und Sinneszellen Bowie unterschiedliche Kernausstattung der Bildungszellen.Über Hautdrüsen bilden sich Kutikulasonderformen.Die Kastenmerkmale Trichome des Stachelapparates, Höcker des Pollenkneters und Widerhaken der Stechborsten differenzieren sich durch unterschiedlichen Polyploidiegrad der Bildungszellen. Die unterschiedliche Anzahl der Sammeltarsusborsten wird auf den untersehiedlichen Zeitpunkt der ersten differentiellen Teilung zurückgeführt.Bei den Porenplatten der Antennen, den Sinneskuppeln an den Stechborsten und den superfiziellen Postgenaldrüsen entwickelt sich die Arbeiterin wie bei den übrigen Merkmalen über das Stadium hinaus, auf dem die Konigin stehen bleibt. Die Befunde unterbauen die These von Demoll von der atavistischen Natur der Bienenkönigin.  相似文献   

12.
Zusammenfassung Durch Zusammenstellung der Ergebnisse von Messungen an kurzlebigen Blütenblättern wurde für vier Pflanzen ein Überblick über den Gaswechsel vom Knospenstadium bis zum Verblühen gewonnen.Auf das Blütenblatt bezogen steigt die Atmung allgemein bis zur Entfaltung, während sie auf Frischgewichtsbasis schon während der Wasseraufnahme vor dem Aufblühen abnimmt.Die respiratorischen Quotienten, die bei den Knospen oft über der Einheit liegen, fallen mit dem Aufblühen auf 1 und darunter. Eine ausgeprägte RQ-Senkung während des Abblühens findet sich nur beiHydrocleis nymphoides.Die Ergebnisse werden insbesondere im Hinblick auf die Frage einer etwa vorhandenen klimakterischen Atmungssteigerung bei Blütenblättern erörtert. Für eine solche ergeben sich keine Anhaltspunkte; der Höhepunkt des Gaswechsels ist demjenigen bei der Entfaltung von Laubblättern vergleichbar.Mit 2 TextabbildungenHerrn Prof. Dr.Walter Schumacher zum 60. Geburtstag gewidmet.  相似文献   

13.
Zusammenfassung Die Lakunen sind im jungen Puppenflügel röhrenförmige, Hämolymphe, Tracheen und Nerven enthaltende Spalträume in der Mittelmembran, welche die Zellkörper der Flügelepithelien nicht berühren. Mit Ausnahme der Lakunen, die später reduziert werden, erweitern sich alle Lakunen vom Zeitpunkt der Verpuppung ab. Die Mittelmembran. soweit sie die Lakunenwand bildet, nähert sich zuerst dem Lakunenbodenepithel (bei etwa 30 Stunden Puppenalter), später (bei 150 Stunden) auch dem Dachepithel. Das Lakunendachepithel gleicht auf allen Stadien dem übrigen Oberseitenepithel; es enthält Schuppenbildungszellen. Das Bodenepithel, an dem sich alle weiteren Differenzierungen der Aderbildung abspielen, ist von 30 Stunden an ein. Plattenepithel. Bei etwa 60 Stunden beginnt das Bodenepithel höher zu werden. Schuppenbildungszellen treten nicht darin auf. Die Zellgrenzen sind, wie in den anderen Flügelepithelien, von etwa 150 Stunden ab im Bodenepithel nicht mehr festzustellen. Vor der Chitinbildung wird das Plasma des Lakunenbodensyncytiums stark vakuolig; die Kerne nähern sich der Oberfläche. Dickes Aderchitin wird nur auf der Flügelunterseite abgeschieden, gleichzeitig mit der Chitinisierung des übrigen Epithels.In den Lakunenwandzellen treten bei 400 Stunden Puppenalter, wie in den übrigen Hypodermiszellen, Spannungsfibrillen (Tonofibrillen) auf. Diese verlaufen in der Aderhypodermis von der einen zur anderen Aderseite, nicht wie in den anderen Hypodermiszellen vom Chitin der Flügeloberseite zur Flügelunterseite.Im Lakunensystem treten während der Puppenruhe folgende Änderungen auf: m, im Vorderflügel auch an werden reduziert; entsprechend der späteren Discoidalquerader verbinden sich r 4 mit m 1 und cu 1 mit m 3.Zwischen dem primären Tracheensystem der Vorpuppe und dem sekundären der Imago bestehen folgende Unterschiede: 1. In beiden Flügeln fehlt die Mediatrachee, im Vorderflügel außerdem die Analistrachee. Die erhaltenen Lakunen m 1 und m 3 führen Tracheen, die von den Nachbartracheen [r] und [cu] ausgehen. 2. Alle Flügeltracheen der Imago sind verzweigt, die der Vorpuppe nicht. 3. An den Basalstücken der Imaginaltracheen sitzen Tracheenblasen.Bei der Metamorphose des primären Traeheensystems entspringen aus Knospungszonen der Tracheenmatrix an der Basis bestimmter primärer Tracheen neue Tracheen und Blasen; die alten Tracheen werden zurückgebildet.Aus der Knospungszone einer Trachee entsteht ein Tracheensproß, der in der Richtung der Lakune vorwächst und schon sehr bald einer Kanal aufweist.Vom Hauptstamm einer sekundären Trachee wachsen seitlich Nebenäste aus, die sich in ähnlicher Weise differenzieren wie der Hauptsproß und aus der Lakune zwischen die beiden Flügelepithelien vordringen.An der Spitze der Nebenäste lösen sich Tracheolenbildungszellen aus dem Verband und wandern fort, dabei eine schon vorher in ihnen aufgerollt gebildete Tracheole hinter sich abrollend.Das primäre Tracheensystem des Vorderflügels besteht aus einer Costo-Radial-Gruppe und einer Medio-Cubito-Anal-Gruppe, das sekundäre aus einer Costo-Cubital-Gruppe und einer Axillar-Gruppe.Das primäre Tracheensystem funktioniert bis zum Schlüpfen der Imago, das sekundäre füllt sich erst in diesem Zeitpunkt mit Luft.Als Dissertation angenommen von der Mathematisch-naturwissenschaftlichen Fakultät der Universität Göttingen.  相似文献   

14.
Zusammenfassung Wird eine Intensität, an die Mya adaptiert ist, für einige Sekunden vermindert und dann wieder auf die alte Höhe gebracht, so benötigt Mya 5 Min., um sich an die Ausgangsintensität zurückzuadaptieren.Es ist damit zu rechnen, daß etwa 70% aller Beschattungen eine Reaktion zeitigen. Das Auftreten oder Fehlen der Reaktion steht nicht in Zusammenhang mit der Länge der Zeit, während der das Tier an die Ausgangsintensität adaptiert wurde, wenn diese Zeit länger als die eigentliche Adaptationszeit ist. Auf Beschattung reagiert Mya in der Regel durch Einschlagen oder Einziehen der an den Siphoöffnungen befindlichen Tentakel, auf Belichtung mittels einer Siphokontraktion. Die biologische Bedeutung dieser beiden Reaktionsweisen wird zu erklären versucht.Die Unterschiedsschwellen für Belichtung und Beschattung fallen annähernd in die gleiche Größenordnung, auf Intensitätserhöhung reagieren die Tiere um ein Geringes empfindlicher. Die Muscheln sprechen im. Durchschnitt auf eine Intensitätsverminderung um 59,35% des Anfangsbetrages gerade eben noch an, während eine Erhöhung um das 1,05fache des Anfangsbetrages als durchschnittliche Unterschiedsschwelle des Licht-reflexes anzusehen ist.Die minimalen Beschattungszeiten und die Latenzzeiten des Schatten-reflexes sind wesentlich kürzer als die minimalen Expositionszeiten und Latenzzeiten des Lichtreflexes unter entsprechenden Bedingungen.Setzt man die Muscheln einer Kombination zweier Lampen aus, von denen jede stets die gleiche Intensität hat, während die Farbe der einen Lampe gewechselt werden kann, und mißt nun die Reaktionszeiten bei Auslöschen des farbigen Lichtes, so ergeben sich bei den verschiedenen Farben verschiedene Reaktionszeiten. Die kürzeste Reaktionszeit fanden wir bei Auslöschen gelben Lichtes. Im Gelb ist also das Absorptions-maximum der den Schattenreflex bedingenden photosensiblen Substanz, in einem anderen Spektralbereich also als das des den Lichtreflex bestimmenden Stoffes.Alle diese Tatsachen führten uns zu der Schlußfolgerung, daß die für den Schatten- und Lichtreflex von Mya verantwortlich zu machenden Rezeptoren miteinander nicht identisch sind.Die Reaktionszeit des mechanischen Reizes verkürzt sich mit steigender Reizstärke. Mechanischer Reiz und ein (an sich zeitlich unterschwelliger) Lichtreiz können sich summieren, was sich in einer Verkürzung der Reaktionszeit zeigt.  相似文献   

15.
Zusammenfassung Wie an Hand verschiedener Angaben in der Literatur gezeigt wird, kann die Farbe von Blüten auch durch den allgemeinen Ernährungszustand der Pflanzen beeinflußt werden.Da die Wirkung der die Blütenfarbe wesentlich beeinflussenden Außenfaktoren, vor allem Licht und Temperatur, sehr komplexer Natur ist, ist im einzelnen Fall experimentell zu entscheiden, ob die durch sie verursachten Veränderungen der Farbintensität unmittelbar bewirkt werden oder indirekt durch den geänderten Ernährungszustand der Pflanzen.Die Auswirkungen des Ernährungszustandes auf die Blütenfarbe können experimentell in einfacher Weise entweder durch Verdunkelung der Vegetationsorgane oder durch Entfernung der Blätter untersucht werden. Über die Wirkung der Entblätterung auf die Farbintensität anthozyanhaltiger Blüten werden verschiedene neue Befunde mitgeteilt. Solche Versuche erscheinen auch zur Klärung des Mechanismus der Farbstoffbildung in den Blüten geeignet.Wie zu erwarten war, kann bei einer Reihe von Pflanzen die Farbintensität durch künstliche Zufuhr von Zucker gesteigert werden, wenn sich diese in einem ungünstigen Ernährungszustand befinden. Wird durch die Zuckergaben bei Schnittpflanzen eine größere Anzahl von Knospen zur Entfaltung gebracht, so resultieren vielfach wieder hellere Blüten, da der größte Teil des gebotenen Zuckers bei der Knospenausbildung aufgebraucht wurde; in solchen Fällen kann jedoch durch höhere Zuckergabe die Normalfarbe weitgehend erreicht werden.  相似文献   

16.
Zusammenfassung Es wird der Nachweis einer doppelten Innervation der Melanophoren der Ellritze zu erbringen versucht. Bei Ausschaltung der sympathischen Fasern mit Ergotamin und Erregung des parasympathischen Systems mit Cholin läßt sich mit elektrischer Reizung eine Expansion der Melanophoren erzielen. Diese Expansion wird erreicht, bei Reizung des Aufhellungszentrums in der Medulla, bei Reizung des Sympathikus, oder schließlich bei Reizung der Farbzellen selber. Der Nachweis dilatorisch wirkender Nervenfasern dürfte in diesem Falle erbracht sein. Es ist die Annahme sehr wahrscheinlich, daß vom Hemmungszentrum im Zwischenhirn dilatorisch wirkende Fasern durch Medulla und Rückenmark, vermutlich auf dem gleichen Wege wie die kontrahierenden koloratorischen Fasern in den Sympathikus ziehen, um die einzelnen Farbzellen zu innervieren. Damit würde der Apparat der Farbwechselregulation den anderen vom Sympathikus innervierten Organsystemen gleichzustellen sein.Dies gilt indeß nicht für sämtliche Chromatophoren der Fische. Gerade bei der Ellritze läßt sich zeigen, daß die gelben und roten Farbzellen höchstwahrscheinlich überhaupt nicht innerviert sind. Innervierte Chromatophoren reagieren auf nervöse Reize. (Erhöhung des Nerventonus durch Reizung oder Abschwächung durch Verletzung.) Sie reagieren auch auf Adrenalin, das zu seiner Wirkung nur das Vorhandensein intrazellularer Nervenenden benötigt. Die farbigen Chromatophoren der Ellritze aber zeigen weder auf Adrenalin noch auf nervöse Reize irgend welche Reaktion. Deshalb unterbindet auch die Durchschneidung des Sympathikus in dem von ihm versorgten Bezirk nur die Reaktion der Melanophoren, während die Xanthophoren und Erythrophoren ihre Farbwechselregulation weiterhin zeigen. Dagegen ist Erhalten der Blutzirkulation für den Farbwechsel der farbigen Chromatophoren der Ellritze notwendig. Diese Farbzellen werden also hormonal reguliert. Freilich ist bei ihnen die Regulation nicht durch das übliche Gegenspiel von Infundin und Adrenalin bedingt, da das Adrenalin keinerlei Einfluß ausübt. Infundin dagegen zeigt starke Wirkung. Als Antagonist kommt vielleicht die Epiphyse in Betracht.Die Einwirkungsart des Infundins am Plasma der Zellen und des Adrenalins an den interzellularen Nervenenden läßt sich besonders schön an den Flossen solcher Fische mit raschem Farbwechsel zeigen, deren Farbzellen im allgemeinen innerviert sind, da in den Flossenrändern die Nerveninnervation aufzuhören pflegt, rein nervöse Reize hier also nicht mehr beantwortet werden, während rein hormonale Blutreize noch Reaktion hervorrufen. Bei Injektion von Infundin erfolgt dann ein gleichsinniges Reagieren der ganzen Flosse, bei Injektion von Adrenalin aber, sowie bei elektrischem Reiz, oder bei Durchschneiden des Sympathikus dagegen tritt ein Gegensatz basaler Flossenteile zu distalen Randpartien auf. Bei der Ellritze zeigt sich ein solcher Gegensatz nur bei den Melanophoren, da bei den farbigen Chromatophoren nervöse Reize nie wirksam werden.Von direkten Einflüssen auf die Farbzellen wurde nur die Einwirkung der Temperatur und des Zuges geprüft. Schwache Zugwirkung ergab Verdunkelung und zwar offensichtlich auf dem Wege der Beeinflussung des Sympathikus (Reagieren ganzer Segmente), starker Zug dagegen Kontraktion durch direkte Reizung der Farbzellen (lokale Wirkung).Das Vorkommen hormonaler Regulation des Farbwechsels bei Fischen macht sie vergleichbar mit den Amphibien und Reptilien, bei denen ja auch beide Regulationsarten, nervöse und hormonale vorhanden sind.  相似文献   

17.
Zusammenfassung Die Entladungsweise des Flügelgelenk-Rezeptors von Locusta migratoria unter verschiedenen Bedingungen der Auslenkung des Flügels wird beschrieben. Der Rezeptor gehört dem Typ der phasischtonischen Mechanorezeptoren an; für die Flugsteuerung ist jedoch die gut ausgebildete tonische Komponente bedeutungslos. Die phasische Komponente signalisiert Auf- und Ab-Bewegung des Flügels und gestattet wahrscheinlich die Auswertung der Phasenverschiebung zwischen den Schlägen von Vorder- und Hinterflügeln. In der regelmäßigen Abfolge der Nervenimpulse treten bei Dauerreiz Lücken auf, aus denen auf eine rhythmische Komponente des Generatorpotentials der Sinnesnervenzelle zu schließen ist, die sich von dem Prozeß der Impuls-Entstehnng trennen läßt.Mit Unterstützung durch die Deutsche Forschungsgemeinschaft.  相似文献   

18.
Zusammenfassung Es wurde das Verhalten der verschiedenen Abteilungen der Fischherzen vom Typus A, B und C nach wirksamen Extrareizen untersucht. Dabei hat sich gezeigt, daß sich das Fischherz prinzipiell ganz anders verhält, als das Amphibienherz.Bei den Herzen vom Typus A und B ist eine Extrazuckung des Sinus von keiner kompensatorischen Pause gefolgt. Es setzt sich vielmehr die der Extrazuokung folgende spontane Zusammenziehung in dem gleichen zeitlichen Abstande an, wie die normalen Zusammenziehungen untereinander.Nach einer Extrazusammenziehung des Vorhofs dieser Herzen ist die Pause ebenfalls keine kompensatorische. Zumeist wird nämlich die Extrazusammenziehung des Vorhofs rückläufig auf den Sinus übertragen und ruft hier eine Extrazusammenziehung hervor. Durch diese wird aber seine Periode verkürzt. Die an die Extrazusammenziehung anschließende Periode ist aber von normaler Länge. Infolgedessen kann die Pause am Vorhof nicht kompensatorisch sein. Dies wäre ja nur dann der Fall, wenn die Periodik des führenden Zentrums nicht gestört worden wäre.Bei der Kammer der Herzen vom Typus A und B ist die Pause nach einer Extrazusammenziehung in der Regel kompensatorisch, auch wenn die Extrazusammenziehung rückläufig auf den Vorhof übertragen wird.Beim Vorhof der Herzen vom Typus C kann man Extrasystolen einstreuen. In diesem Falle findet eine Beeinflussung des im Ohrkanal gelegenen führenden Zentrums durch den gereizten Vorhofsanteil nicht statt. Für die eingestreute Extrasystole gilt die Gesetzmäßigkeit, daß normale Revolution + Extrarevolution + Pause gleich ist dem Normalintervall. Greift dagegen die Extraerregung auf das Zentrum im Ohrkanal über, so verhält sich der Vorhof dieser Herzen wie ein führendes Zentrum. Die mit der Extrasystole beginnende Periode ist von normaler Dauer. Die Pause nach einer Extrazusammenziehung des Vorhofs der Herzen vom Typus C ist also niemals kompensatorisch.Auch nach Extrazusammenziehungen der Kammer der Herzen vom Typus C ist die Pause zumeist keine kompensatorische. Die Extrazusammenziehung wird nämlich rückläufig auf den Vorhpf übertragen und ruft hier auf natürlichem Wege eine Extrazusammenziehung, hervor. Das Verhalten eines führenden Herzteils nach Extrareizen lehrt, daß die Pause nach der Extrazusammenziehung der Kammer keine kompensatorische sein kann.Wenn die mit der Extrasystole eines führenden Herzteils (bei den Herzen vom Typus A und B des Sinus, bei den Herzen vom Typus C des Ohrkanals) beginnende Periode gegenüber der Norm eine Verlängerung aufweist, so ist dies offenbar auf die ungünstige Wirkung des elektrischen Reizes zurückzuführen. Durch diesen werden nämlich die führenden Zentren geschädigt. Die vorliegende Untersuchung wurde mit Hilfe einer Spende der Kossenhaschen-Stiftung durchgeführt, der auch an dieser Stelle herzlichst gedankt sein soll.  相似文献   

19.
Zusammenfassung An Hand elektronenmikroskopischer Präparate werden die Struktur und die Entwicklungsgeschichte der Flügelschuppen von Ephestia kühniella aus dem Gebiet des Symmetriefeldes und der distalen Querbinde des Vorderflügels beschrieben.Die Gestalt einer Schuppe läßt sich zerlegen in eine Grundgestalt, für deren Form in erster Linie die Zellgrenzmembran verantwortlich sein dürfte, und eine größere Zahl von periodisch wiederkehrenden Strukturelementen. Es treten Gradienten auf, die die Strukturelemente verstärken oder abschwächen.Die Ausformung der periodischen Strukturelemente beginnt, sobald über den zunächst nackten Fortsatz der Schuppenbildungszelle in etwa 200 Å Abstand eine mehrschichtige Membran, die Cuticulinschicht, gebreitet worden ist.In dem (extrazellulären!) Raum zwischen der Cuticulinschicht, die das weitere Geschehen gegen den Exuvialraum abriegelt, und der Zellgrenzmembran wird die Cuticula gebildet.Die periodisch wiederkehrenden Strukturelemente werden in endgültigem Abstand voneinander unter Mitwirkung von Cuticulinschicht und Zellgrenzmembran nacheinander angelegt.Als Träger der formbildenden Prozesse ist die Zellgrenzmembran anzusehen.  相似文献   

20.
Zusammenfassung Durch die Behandlung gut teilungsfähiger Fäden vonOedogonium cardiacum mit einer 1%igen Colchicinlösung während 36 Stunden läßt sich Polyploidie auslösen.Die Bestimmung des Zuwachses von je 65 fünfzelligen haploiden und diploiden Keimlingen nach 1, 2 und 3 Wochen ergibt für haploide und diploide Zellen eine weitgehend übereinstimmende Vermehrungsrate.Die haploiden Keimlinge reagieren auf eine leichte Veränderung der Außenbedingungen im Zuge der Überimpfung mit einer höheren Absterberate als die diploiden (31 gegenüber 9).Die Bestimmung der Zellzahl von 500 beliebigen Keimlingen aus Massenkulturen in Abständen von 10, 20 und 30 Tagen nach dem Überimpfen ergibt nach den ersten beiden Zeiträumen eine höhere Zahl für die haploiden, nach 30 Tagen aber eine merkbar höhere für die diploiden Keimlinge. Dabei ist nach 10 und 20 Tagen der Anteil Einzelliger bei den diploiden Keimlingen viel höher als bei den haploiden; ob dies auf verzögerter oder wiederholter Schwärmerbildung beruht oder an einem Keimverzug liegt, ist fraglich. Jedenfalls wird das anfängliche Nachhinken der diploiden Keimlinge nach 20–30 Tagen völlig ausgeglichen.Im Konkurrenzversuch erweist sich unter den gegebenen Kulturbedingungen die diploide der haploiden Sippe hinsichtlich der Vermehrungsrate überlegen; denn bei Beimpfung der Kulturgefäße mit je zehn haploiden und zehn diploiden 40zelligen Fäden (vier Parallelversuche) finden sich in 35 Tage nachher entnommenen Proben ungefähr 2/3 diploide und 1/3 haploide Zellen.Die Mittelwerte des Zellvolumens von haploiden und diploiden Keimlingen verhalten sich wie 14,6, die des Kernvolumens wie 14,0.Die Anzahl der Pyrenoide ist bei den diploiden Zellen erhöht (100 haploide Zellen enthielten 306, 100 diploide 584 Pyrenoide), das einzelne Pyrenoid ist etwas vergrößert.Hinsichtlich der Breite der Chromatophorenlamellen ergeben sich zwischen haploiden und diploiden Zellen keine wesentlichen Unterschiede.Die Chromosomenzahl vonOedogonium cardiacum beträgt n=19. Im haploiden Satz liegen drei verschiedene, charakteristisch gestaltete SAT-Chromosomen vor.Mit Hilfe der Colchicin-Behandlung lassen sich auch tetraploide Zellen und kurze Fadenstücke erzielen, doch zeigt sich bei diesen eine verminderte Vitalität.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号